Agent Based Models of Polymicrobial Biofilms and the Microbiome—A Review
Abstract
:1. Introduction
2. Microbiological Questions Tackled by ABMs
2.1. Medical Microbiology
2.1.1. Modeling of Biofilm Formation and Growth
2.1.2. Agent Based Models of the Microbiome
2.2. Industrial Microbiology
3. Modeling Approaches
3.1. Existing Software Platforms
3.1.1. Netlogo
3.1.2. iDynoMiCS
3.1.3. LAAMPS (Large-Scale Atomic/Molecular Massively Parallel Simulator) (C++)
3.1.4. Flux Balance Analysis with R
3.1.5. MASON Multi-Agent Simulation Toolkit
3.2. Other Modeling Strategies
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rath, H.; Feng, D.; Neuweiler, I.; Stumpp, N.S.; Nackenhorst, U.; Stiesch, M. Biofilm formation by the oral pioneer colonizer Streptococcus gordonii: An experimental and numerical study. FEMS Microbiol. Ecol. 2017, 93, 1–9. [Google Scholar] [CrossRef]
- Martin, B.; Tamanai-Shacoori, Z.; Bronsard, J.; Ginguené, F.; Meuric, V.; Mahé, F.; Bonnaure-Mallet, M. A new mathematical model of bacterial interactions in two-species oral biofilms. PLoS ONE 2017, 12, e0173153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diener, C.; Gibbons, S.M.; Resendis-Antonio, O. MICOM: Metagenome-Scale modeling to infer metabolic interactions in the gut microbiota. mSystems 2020, 5, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sen, P.; Orešič, M. Metabolic modeling of human gut microbiota on a genome scale: An overview. Metabolites 2019, 9. [Google Scholar] [CrossRef] [Green Version]
- Thiele, I.; Heinken, A.; Fleming, R.M.T. A systems biology approach to studying the role of microbes in human health. Curr. Opin. Biotechnol. 2013, 24, 4–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Aquino, P.; Le Page, C.; Bousquet, F. The selfcormas experiment: Aiding policy and land-use management by linking role-playing games, GIS, and ABM in the Senegal river valley. In Agent-Based Models of Land-Useand Land-Cover Change, Proceedings of the International Workshop, Irvine, CA, USA, 4–7 October 2001; Parker, D.C., Berger, T., Manson, S., Eds.; LUCC International Project Office: Louvain-la-Neuve, Belgium, 2002; pp. 70–71. [Google Scholar]
- Smart, H. Operationalizing a conceptual model of colorism in local policing. Soc. Justice Res. 2019, 32, 72–115. [Google Scholar] [CrossRef]
- Gilbert, N.; Terna, P. How to build and use agent-based models in social science. Mind Soc. 2000, 1, 57–72. [Google Scholar] [CrossRef]
- Janssen, M.A.; Ostrom, E. Empirically based, agent-based models. Ecol. Soc. 2006, 11. [Google Scholar] [CrossRef] [Green Version]
- Norton, K.-A.; Gong, C.; Jamalian, S.; Popel, A.S. Multiscale agent-based and hybrid modeling of the tumor immune microenvironment. Processes 2019, 7. [Google Scholar] [CrossRef] [Green Version]
- Sibly, R.M.; Grimm, V.; Martin, B.T.; Johnston, A.S.A.; Kulakowska, K.; Topping, C.J.; Calow, P.; Nabe-Nielsen, J.; Thorbek, P.; Deangelis, D.L. Representing the acquisition and use of energy by individuals in agent-based models of animal populations. Methods Ecol. Evol. 2013, 4, 151–161. [Google Scholar] [CrossRef] [Green Version]
- Borer, B.; Ataman, M.; Hatzimanikatis, V.; Or, D. Modeling metabolic networks of individual bacterial agents in heterogeneous and dynamic soil habitats (IndiMeSH). PLoS Comput. Biol. 2019, 15, e1007127. [Google Scholar] [CrossRef]
- Blickensdorf, M.; Timme, S.; Figge, M.T. Hybrid agent-based modeling of Aspergillus fumigatus infection to quantitatively investigate the role of pores of kohn in human alveoli. Front. Microbiol. 2020, 11, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Rockett, R.J.; Arnott, A.; Lam, C.; Sadsad, R.; Timms, V.; Gray, K.A.; Eden, J.S.; Chang, S.; Gall, M.; Draper, J.; et al. Revealing COVID-19 transmission in Australia by SARS-CoV-2 genome sequencing and agent-based modeling. Nat. Med. 2020, 26, 1398–1404. [Google Scholar] [CrossRef] [PubMed]
- Doloman, A.; Varghese, H.; Miller, C.D.; Flann, N.S. Modeling de novo granulation of anaerobic sludge. BMC Syst. Biol. 2017, 11, 69. [Google Scholar] [CrossRef]
- Matyjaszkiewicz, A.; Fiore, G.; Annunziata, F.; Grierson, C.S.; Savery, N.J.; Marucci, L.; di Bernardo, M. BSim 2.0: An advanced agent-based cell simulator. ACS Synth. Biol. 2017, 6, 1969–1972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uppal, G.; Vural, D.C. Evolution of specialized microbial cooperation in dynamic fluids. J. Evol. Biol. 2020, 33, 256–269. [Google Scholar] [CrossRef] [Green Version]
- Macal, C.M.; North, M.J. Tutorial on agent-based modeling and simulation. In Proceedings of the Winter Simulation Conference, Orlando, FL, USA, 4 December 2005; pp. 2–15. [Google Scholar] [CrossRef]
- Hellweger, F.L.; Clegg, R.J.; Clark, J.R.; Plugge, C.M.; Kreft, J.-U. Advancing microbial sciences by individual-based modelling. Nat. Rev. Microbiol. 2016, 14, 461–471. [Google Scholar] [CrossRef]
- Chowdhury, S.; Fong, S.S. Computational modeling of the human microbiome. Microorganisms 2020, 8, 197. [Google Scholar] [CrossRef] [Green Version]
- Eetemadi, A.; Rai, N.; Pereira, B.M.P.; Kim, M.; Schmitz, H.; Tagkopoulos, I. The computational diet: A review of computational methods across diet, microbiome, and health. Front. Microbiol. 2020, 11, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Cullen, C.M.; Aneja, K.K.; Beyhan, S.; Cho, C.E.; Woloszynek, S.; Convertino, M.; McCoy, S.J.; Zhang, Y.; Anderson, M.Z.; Alvarez-Ponce, D.; et al. Emerging priorities for microbiome research. Front. Microbiol. 2020, 11. [Google Scholar] [CrossRef] [Green Version]
- Hathroubi, S.; Mekni, M.A.; Domenico, P.; Nguyen, D.; Jacques, M. Biofilms: Microbial shelters against antibiotics. Microb. Drug Resist. 2017, 23, 147–156. [Google Scholar] [CrossRef]
- Bowler, P.; Murphy, C.; Wolcott, R. Biofilm exacerbates antibiotic resistance: Is this a current oversight in antimicrobial stewardship? Antimicrob. Resist. Infect. Control 2020, 9, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Acemel, R.D.; Govantes, F.; Cuetos, A. Computer simulation study of early bacterial biofilm development. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef]
- Bauer, E.; Zimmermann, J.; Baldini, F.; Thiele, I.; Kaleta, C. BacArena: Individual-Based metabolic modeling of heterogeneous microbes in complex communities. PLoS Comput. Biol. 2017, 13, e1005544. [Google Scholar] [CrossRef] [PubMed]
- Beroz, F.; Yan, J.; Meir, Y.; Sabass, B.; Stone, H.A.; Bassler, B.L.; Wingreen, N.S. Verticalization of bacterial biofilms. Nat. Phys. 2018, 14, 954–960. [Google Scholar] [CrossRef]
- Carvalho, G.; Balestrino, D.; Forestier, C.; Mathias, J.-D. How do environment-dependent switching rates between susceptible and persister cells affect the dynamics of biofilms faced with antibiotics? npj Biofilms Microbiomes 2018, 4, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, J.; Mokrzan, E.; Lakhani, V.; Rosas, L.; Jurcisek, J.A.; Ray, W.C.; Bakaletz, L.O. Extracellular DNA and type IV pilus expression regulate the structure and kinetics of biofilm formation by nontypeable haemophilus influenzae. mBio 2017, 8, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gogulancea, V.; González-Cabaleiro, R.; Li, B.; Taniguchi, D.; Jayathilake, P.G.; Chen, J.; Wilkinson, D.; Swailes, D.; McGough, A.S.; Zuliani, P.; et al. Individual based model links thermodynamics, chemical speciation and environmental conditions to microbial growth. Front. Microbiol. 2019, 10, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, R.; Singh, P.K.; Pearce, P.; Mok, R.; Song, B.; Díaz-Pascual, F.; Dunkel, J.; Drescher, K. Emergence of three-dimensional order and structure in growing biofilms. Nat. Phys. 2019, 15, 251–256. [Google Scholar] [CrossRef] [Green Version]
- Head, D.; Devine, D.A.; Marsh, P.D. In silico modelling to differentiate the contribution of sugar frequency versus total amount in driving biofilm dysbiosis in dental caries. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef]
- Jayathilake, P.G.; Gupta, P.; Li, B.; Madsen, C.; Oyebamiji, O.; González-Cabaleiro, R.; Rushton, S.; Bridgens, B.; Swailes, D.; Allen, B.; et al. A mechanistic Individual-based Model of microbial communities. PLoS ONE 2017, 12, e0181965. [Google Scholar] [CrossRef] [Green Version]
- Kragh, K.N.; Hutchison, J.B.; Melaugh, G.; Rodesney, C.; Roberts, A.E.L.; Irie, Y.; Jensen, P.; Diggle, S.P.; Allen, R.J.; Gordon, V.; et al. Role of multicellular aggregates in biofilm formation. mBio 2016, 7, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Zhang, Y.; Yehuda, C. Individual based modeling of Pseudomonas aeruginosa biofilm with three detachment mechanisms. RSC Adv. 2015, 5, 79001–79010. [Google Scholar] [CrossRef]
- Li, B.; Taniguchi, D.; Gedara, J.P.; Gogulancea, V.; Gonzalez-Cabaleiro, R.; Chen, J.; McGough, A.S.; Ofiteru, I.D.; Curtis, T.P.; Zuliani, P. NuFeb: A massively parallel simulator for individual-based modelling of microbial communities. PLoS Comput. Biol. 2019, 15, e1007125. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.; Culver, J.; Weston, B.; Underhill, E.; Gorky, J.; Dhurjati, P. GutLogo: Agent-Based modeling framework to investigate spatial and temporal dynamics in the gut microbiome. PLoS ONE 2018, 13, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Naylor, J.; Fellermann, H.; Ding, Y.; Mohammed, W.K.; Jakubovics, N.S.; Mukherjee, J.; Biggs, C.A.; Wright, P.C.; Krasnogor, N. Simbiotics: A multiscale integrative platform for 3D modeling of bacterial populations. ACS Synth. Biol. 2017, 6, 1194–1210. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Rodríguez, G.; Dias, S.; Pérez-Pérez, M.; Fdez-Riverola, F.; Azevedo, N.F.; Lourenço, A. Agent-Based model of diffusion of N-acyl homoserine lactones in a multicellular environment of Pseudomonas aeruginosa and Candida albicans. Biofouling 2018, 34, 335–345. [Google Scholar] [CrossRef] [Green Version]
- Rudge, T.J.; Steiner, P.J.; Phillips, A.; Haseloff, J. Computational modeling of synthetic microbial biofilms. ACS Synth. Biol. 2012, 1, 345–352. [Google Scholar] [CrossRef]
- Schluter, J.; Nadell, C.D.; Bassler, B.L.; Foster, K.R. Adhesion as a weapon in microbial competition. ISME J. 2015, 9, 139–149. [Google Scholar] [CrossRef]
- Shashkova, T.; Popenko, A.; Tyakht, A.; Peskov, K.; Kosinsky, Y.; Bogolubsky, L.; Raigorodskii, A.; Ischenko, D.; Alexeev, D.; Govorun, V. Agent based modeling of human gut microbiome interactions and perturbations. PLoS ONE 2016, 11, e0148386. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, E.G.; Nishida, A.; Weston, A.; Bañuelos, M.S.; Potter, K.; Conery, J.; Guillemin, K. Agent-Based modeling demonstrates how local chemotactic behavior can shape biofilm architecture. mSphere 2019, 4, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Tack, I.L.M.M.; Nimmegeers, P.; Akkermans, S.; Hashem, I.; Van Impe, J.F.M. Simulation of Escherichia coli dynamics in biofilms and submerged colonies with an individual-based model including metabolic network information. Front. Microbiol. 2017, 8, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Wright, R.J.; Clegg, R.J.; Coker, T.L.R.; Kreft, J.-U. Damage repair versus aging in an individual-based model of biofilms. mSystems 2020, 5, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Weston, B.; Fogal, B.; Cook, D.; Dhurjati, P. An agent-based modeling framework for evaluating hypotheses on risks for developing autism: Effects of the gut microbial environment. Med. Hypotheses 2015, 84, 395–401. [Google Scholar] [CrossRef]
- Lardon, L.A.; Merkey, B.V.; Martins, S.; Dötsch, A.; Picioreanu, C.; Kreft, J.-U.; Smets, B.F. iDynoMiCS: Next-Generation individual-based modelling of biofilms. Environ. Microbiol. 2011, 13, 2416–2434. [Google Scholar] [CrossRef]
- Wilensky, U. NetLogo. Available online: http://ccl.northwestern.edu/netlogo/hubnet.html (accessed on 16 February 2021).
- Mulcahy, L.R.; Isabella, V.M.; Lewis, K. Pseudomonas aeruginosa biofilms in disease. Microb. Ecol. 2014, 68, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Ciofu, O.; Tolker-Nielsen, T.; Jensen, P.Ø.; Wang, H.; Høiby, N. Antimicrobial resistance, respiratory tract infections and role of biofilms in lung infections in cystic fibrosis patients. Adv. Drug Deliv. Rev. 2015, 85, 7–23. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Lee, J.H. Biofilm dispersion in Pseudomonas aeruginosa. J. Microbiol. 2016, 54, 71–85. [Google Scholar] [CrossRef] [PubMed]
- Chambless, J.D.; Stewart, P.S. A three-dimensional computer model analysis of three hypothetical biofilm detachment mechanisms. Biotechnol. Bioeng. 2007, 97, 1573–1584. [Google Scholar] [CrossRef] [PubMed]
- Peleg, A.Y.; Hogan, D.A.; Mylonakis, E. Medically important bacterial–fungal interactions. Nat. Rev. Microbiol. 2010, 8, 340–349. [Google Scholar] [CrossRef]
- Bergeron, A.C.; Seman, B.G.; Hammond, J.H.; Archambault, L.S.; Hogan, D.A.; Wheeler, R.T. Candida and Pseudomonas interact to enhance virulence of mucosal infection in transparent zebrafish. Infect. Immun. 2017, 85, e00475-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Medina, E.; Fan, D.; Coughlin, L.A.; Ho, E.X.; Lamont, I.L.; Reimmann, C.; Hooper, L.V.; Koh, A.Y. Candida albicans inhibits Pseudomonas aeruginosa virulence through suppression of pyochelin and pyoverdine biosynthesis. PLoS Pathog. 2015, 11, e1005129. [Google Scholar] [CrossRef]
- Hogan, D.A.; Vik, Å.; Kolter, R. A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Mol. Microbiol. 2004, 54, 1212–1223. [Google Scholar] [CrossRef] [PubMed]
- Sheiham, A.; James, W.P.T. A reappraisal of the quantitative relationship between sugar intake and dental caries: The need for new criteria for developing goals for sugar intake. BMC Public Health 2014, 14, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Head, D.A.; Marsh, P.D.; Devine, D.A. Non-Lethal control of the cariogenic potential of an agent-based model for dental plaque. PLoS ONE 2014, 9, e105012. [Google Scholar] [CrossRef]
- Hathroubi, S.; Servetas, S.L.; Windham, I.; Merrell, D.S.; Ottemann, K.M. Helicobacter pylori Biofilm formation and its potential role in pathogenesis. Microbiol. Mol. Biol. Rev. 2018, 82, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Diaconu, S.; Predescu, A.; Moldoveanu, A.; Pop, C.S.; Fierbințeanu-Braticevici, C. Helicobacter pylori infection: Old and new. J. Med. Life 2017, 10, 112–117. [Google Scholar]
- Carron, M.A.; Tran, V.R.; Sugawa, C.; Coticchia, J.M. Identification of Helicobacter pylori biofilms in human gastric mucosa. J. Gastrointest. Surg. 2006, 10, 712–717. [Google Scholar] [CrossRef]
- Rader, B.A.; Wreden, C.; Hicks, K.G.; Sweeney, E.G.; Ottemann, K.M.; Guillemin, K. Helicobacter pylori perceives the quorum-sensing molecule AI-2 as a chemorepellent via the chemoreceptor TlpB. Microbiology 2011, 157, 2445–2455. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.K.; Huang, J.Y.; Wreden, C.; Sweeney, E.G.; Goers, J.; James Remington, S.; Guillemin, K. Chemorepulsion from the quorum signal autoinducer-2 promotes Helicobacter pylori biofilm dispersal. mBio 2015, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall-Stoodley, L.; Hu, F.Z.; Gieseke, A.; Nistico, L.; Nguyen, D.; Hayes, J.; Forbes, M.; Greenberg, D.P.; Dice, B.; Burrows, A.; et al. Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. J. Am. Med. Assoc. 2006, 296, 202–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakaletz, L.O. Bacterial biofilms in the upper airway-evidence for role in pathology and implications for treatment of otitis media. Paediatr. Respir. Rev. 2012, 13, 154–159. [Google Scholar] [CrossRef] [Green Version]
- Ibáñez de Aldecoa, A.L.; Zafra, O.; González-Pastor, J.E. Mechanisms and regulation of extracellular DNA release and its biological roles in microbial communities. Front. Microbiol. 2017, 8, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clegg, R.J.; Dyson, R.J.; Kreft, J.U. Repair rather than segregation of damage is the optimal unicellular aging strategy. BMC Biol. 2014, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winkle, J.J.; Igoshin, O.; Bennett, M.R.; Josić, K.; Ott, W. Modeling mechanical interactions in growing populations of rod-shaped bacteria. bioRxiv 2017, 14. [Google Scholar] [CrossRef]
- Drescher, K.; Dunkel, J.; Nadell, C.D.; Van Teeffelen, S.; Grnja, I.; Wingreen, N.S.; Stone, H.A.; Bassler, B.L. Architectural transitions in Vibrio cholerae biofilms at single-cell resolution. Proc. Natl. Acad. Sci. USA 2016, 113, E2066–E2072. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Sharo, A.G.; Stone, H.A.; Wingreen, N.S.; Bassler, B.L. Vibrio cholerae biofilm growth program and architecture revealed by single-cell live imaging. Proc. Natl. Acad. Sci. USA 2016, 113, e5337–e5343. [Google Scholar] [CrossRef] [Green Version]
- Hall-Stoodley, L.; Costerton, J.W.; Stoodley, P. Bacterial biofilms: From the natural environment to infectious diseases. Nat. Rev. Microbiol. 2004, 2, 95–108. [Google Scholar] [CrossRef]
- Sender, R.; Fuchs, S.; Milo, R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 2016, 164, 337–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heberling, C.A.; Dhurjati, P.S.; Sasser, M. Hypothesis for a systems connectivity model of autism spectrum disorder pathogenesis: Links to gut bacteria, oxidative stress, and intestinal permeability. Med. Hypotheses 2013, 80, 264–270. [Google Scholar] [CrossRef]
- Tisue, S.; Wilensky, U. Netlogo: A simple environment for modeling complexity. In Proceedings of the International Conference on Complex Systems, Boston, MA, USA, 16–21 May 2004; pp. 1–10. [Google Scholar]
- Becker, N.; Kunath, J.; Loh, G.; Blaut, M. Human intestinal microbiota: Characterization of a simplified and stable gnotobiotic rat model. Gut Microbes 2011, 2. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Sukumaran, J.; Wu, S.; Rodrigo, A. Neutral models of microbiome evolution. PLoS Comput. Biol. 2015, 11, e1004365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, Q.; Rodrigo, A. Neutral models of short-term microbiome dynamics with host subpopulation structure and migration limitation. Microbiome 2018, 6, 80. [Google Scholar] [CrossRef]
- Glushchenko, O.E.; Prianichnikov, N.A.; Olekhnovich, E.I.; Manolov, A.I.; Tyakht, A.V.; Starikova, E.V.; Odintsova, V.E.; Kostryukova, E.S.; Ilina, E.I. VERA: Agent-Based modeling transmission of antibiotic resistance between human pathogens and gut microbiota. Bioinformatics 2019, 35, 3803–3811. [Google Scholar] [CrossRef] [PubMed]
- Vishwakarma, V. Impact of environmental biofilms: Industrial components and its remediation. J. Basic Microbiol. 2020, 60, 198–206. [Google Scholar] [CrossRef]
- Dobretsov, S. Inhibition and Induction of Marine Biofouling by Biofilms; Springer: Berlin/Heidelberg, Germany, 2008; pp. 1–21. [Google Scholar]
- Kumar, C.G.; Anand, S.K. Significance of microbial biofilms in food industry: A review. Int. J. Food Microbiol. 1998, 42, 9–27. [Google Scholar] [CrossRef]
- Mattila-Sandholm, T.; Wirtanen, G. Biofilm formation in the industry: A review. Food Rev. Int. 1992, 8, 573–603. [Google Scholar] [CrossRef]
- Poblete-Castro, I.; Becker, J.; Dohnt, K.; Dos Santos, V.M.; Wittmann, C. Industrial biotechnology of Pseudomonas putida and related species. Appl. Microbiol. Biotechnol. 2012, 93, 2279–2290. [Google Scholar] [CrossRef]
- Gómez-Cruz, N.A.; Loaiza Saa, I.; Ortega Hurtado, F.F. Agent-Based simulation in management and organizational studies: A survey. Eur. J. Manag. Bus. Econ. 2017, 26, 313–328. [Google Scholar] [CrossRef] [Green Version]
- Litterio, A.M.; Nantes, E.A.; Larrosa, J.M.; Gómez, L.J. Marketing and social networks: A criterion for detecting opinion leaders. Eur. J. Manag. Bus. Econ. 2017, 26, 347–366. [Google Scholar] [CrossRef] [Green Version]
- Cartel, J.E.; Clutario, W.A. Socio-Environmental agent-based simulation on the livability of two cities. J. Sci. Eng. Technol. 2016, 4, 42–48. [Google Scholar]
- Zhu, M.; Panorkou, N.; Lal, P.; Etikyala, S.; Germia, E.; Iranah, P.; Samanthula, B.; Basu, D. Integrating interactive computer simulations into K-12 earth and environmental science. In Proceedings of the 2018 IEEE Integrated STEM Education Conference (ISEC), Princeton, NJ, USA, 11 March 2018; IEEE: Piscataway, NJ, USA, 2018; Volume 2018, pp. 220–223. [Google Scholar]
- Barrientos, A.H. The evolutionary dynamics of the mixe language. In Sociolinguistics-Interdisciplinary Perspectives; InTech: London, UK, 2017. [Google Scholar]
- Malaina, A. The paradigm of complexity in sociology: Epistemological and methodological implications. In Complexity Applications in Language and Communication Sciences; Springer International Publishing: Cham, Switzerland, 2019; pp. 31–42. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. 2020. Available online: https://www.r-project.org/ (accessed on 16 February 2021).
- Biggs, M.B.; Papin, J.A. Novel multiscale modeling tool applied to Pseudomonas aeruginosa Biofilm Formation. PLoS ONE 2013, 8, e78011. [Google Scholar] [CrossRef] [Green Version]
- Verhulst, A.J.; Cappuyns, A.M.; Van Derlinden, E.; Bernaerts, K.; Van Impe, J.F. Analysis of the lag phase to exponential growth transition by incorporating inoculum characteristics. Food Microbiol. 2011, 28, 656–666. [Google Scholar] [CrossRef]
- Jin, X.; Marshall, J.S.; Wargo, M.J. Hybrid Model of Bacterial Biofilm Growth; Springer: New York, NY, USA, 2020; Volume 82, ISBN 0123456789. [Google Scholar]
- Naylor, J.; Fellermann, H.; Krasnogor, N. Easybiotics: A GUI for 3D physical modelling of multi-species bacterial populations. Bioinformatics 2019, 35, 3859–3860. [Google Scholar] [CrossRef]
- Flemming, H.C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S.A.; Kjelleberg, S. Biofilms: An emergent form of bacterial life. Nat. Rev. Microbiol. 2016, 14, 563–575. [Google Scholar] [CrossRef]
- Ehrlich, S.D. MetaHIT: The European Union project on metagenomics of the human intestinal tract. In Metagenomics of the Human Body; Springer: New York, NY, USA, 2011; pp. 307–316. [Google Scholar]
- Turnbaugh, P.J.; Ley, R.E.; Hamady, M.; Fraser-Liggett, C.M.; Knight, R.; Gordon, J.I. The human microbiome project. Nature 2007, 449, 804–810. [Google Scholar] [CrossRef]
- McDonald, D.; Hyde, E.; Debelius, J.W.; Morton, J.T.; Gonzalez, A.; Ackermann, G.; Aksenov, A.A.; Behsaz, B.; Brennan, C.; Chen, Y.; et al. American gut: An open platform for citizen-science microbiome research. bioRxiv 2018, 3, 1–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Prindle, A.; Humphries, J.; Gabalda-Sagarra, M.; Asally, M.; Lee, D.Y.D.; Ly, S.; Garcia-Ojalvo, J.; Süel, G.M. Metabolic co-dependence gives rise to collective oscillations within biofilms. Nature 2015, 523, 550–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reisner, A.; Haagensen, J.A.J.; Schembri, M.A.; Zechner, E.L.; Molin, S. Development and maturation of Escherichia coli K-12 biofilms. Mol. Microbiol. 2003, 48, 933–946. [Google Scholar] [CrossRef] [PubMed]
- Vejborg, R.M.; Klemm, P. Cellular chain formation in Escherichia coli biofilms. Microbiology 2009, 155, 1407–1417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitzpatrick, B.G. Issues in reproducible simulation research. Bull. Math. Biol. 2019, 81, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Mendes, P. Reproducible research using biomodels. Bull. Math. Biol. 2018, 80, 3081–3087. [Google Scholar] [CrossRef] [PubMed]
- Gavaghan, D. Problems with the current approach to the dissemination of computational science research and its implications for research integrity. Bull. Math. Biol. 2018, 80, 3088–3094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Reference | Environment | Interactions | |||||||
---|---|---|---|---|---|---|---|---|---|
Microbiome | Biofilm | Physical | Biological | Microbe/Host | Metabolic | Microbe/EPS | Toxin/Antitoxin | Chemotaxis | |
Acemel et al., 2018 [25] | X | X | X | ||||||
Bauer et al., 2017 [26] | X | X | X | X | X | ||||
Beroz et al., 2018 [27] | X | X | X | X | |||||
Carvalho et al., 2018 [28] | X | X | X | ||||||
Das et al., 2017 [29] | X | X | X | X | |||||
Gogulancea et al., 2019 [30] | X | X | X | X | X | ||||
Hartmann et al., 2019 [31] | X | X | X | ||||||
Head et al., 2017 [32] | X | X | X | X | |||||
Jayathilake et al., 2017 [33] | X | X | X | X | X | ||||
Kragh et al., 2016 [34] | X | X | X | X | X | ||||
Li et al., 2015 [35] | X | X | X | X | |||||
Li et al., 2019 [36] | X | X | X | X | X | ||||
Lin et al., 2018 [37] | X | X | X | ||||||
Naylor et al., 2017 [38] | X | X | X | ||||||
Pérez-Rodríguez et al., 2018 [39] | X | X | X | X | X | ||||
Rudge et al., 2012 [40] | X | X | X | X | |||||
Schluter et al., 2015 [41] | X | X | X | X | X | ||||
Shashkova et al., 2016 [42] | X | X | X | X | |||||
Sweeney et al., 2019 [43] | X | X | X | X | X | X | |||
Tack et al., 2017 [44] | X | X | |||||||
Wright et al., 2020 [45] | X | X | X | X | X | ||||
Weston et al., 2015 [46] | X | X | X | X |
Reference | Environment | Characteristics | Validation Method | Programming Language | |||||
---|---|---|---|---|---|---|---|---|---|
Microbiome | Biofilm | 2D | 3D | Parallel | Experimental Data, This Study | Experimental Data, Literature | None | Click Links to Software if Available | |
Bauer et al., 2017 (BacArena) | X | X | X | X | R | ||||
Beroz et al., 2018 | X | X | X | X | C++ | ||||
Carvalho et al., 2018 | X | X | X | NetLogo * | |||||
Das et al., 2017 | X | X | X | X | not stated | ||||
Gogulancea et al., 2019 (NUFEB) | X | X | X | X | C++-LAMMPS | ||||
Hartmann et al., 2019 | X | X | X | X | not stated | ||||
Head et al., 2017 | X | X | X | not stated | |||||
Jayathilake et al., 2017 (NUFEB) | X | X | X | X | C++-LAMMPS | ||||
Jin et al., 2020 | X | X | X | Fortran | |||||
Kragh et al., 2016 | X | X | X | X | Java ** | ||||
Li et al., 2015 | X | X | X | X | Java ** | ||||
Li et al., 2019 (NUFEB) | X | X | X | X | C++-LAMMPS | ||||
Lin et al., 2018 | X | X | X | Netlogo | |||||
Naylor et al., 2017 (Simbiotics) | X | X | X | X | X | X | Java | ||
Pérez-Rodríguez et al., 2018 | X | X | X | Java *** | |||||
Rudge et al., 2012 (Cell Modeler) | X | X | X | X | Python | ||||
Shashkova et al., 2016 | X | X | X | Java, R | |||||
Sweeney et al., 2019. | X | X | X | X | Java ** | ||||
Tack et al., 2017 | X | X | Java *** | ||||||
Wright et al., 2020 | X | X | X | X | Java ** | ||||
Weston et al., 2015 | X | X | X | Netlogo |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koshy-Chenthittayil, S.; Archambault, L.; Senthilkumar, D.; Laubenbacher, R.; Mendes, P.; Dongari-Bagtzoglou, A. Agent Based Models of Polymicrobial Biofilms and the Microbiome—A Review. Microorganisms 2021, 9, 417. https://doi.org/10.3390/microorganisms9020417
Koshy-Chenthittayil S, Archambault L, Senthilkumar D, Laubenbacher R, Mendes P, Dongari-Bagtzoglou A. Agent Based Models of Polymicrobial Biofilms and the Microbiome—A Review. Microorganisms. 2021; 9(2):417. https://doi.org/10.3390/microorganisms9020417
Chicago/Turabian StyleKoshy-Chenthittayil, Sherli, Linda Archambault, Dhananjai Senthilkumar, Reinhard Laubenbacher, Pedro Mendes, and Anna Dongari-Bagtzoglou. 2021. "Agent Based Models of Polymicrobial Biofilms and the Microbiome—A Review" Microorganisms 9, no. 2: 417. https://doi.org/10.3390/microorganisms9020417
APA StyleKoshy-Chenthittayil, S., Archambault, L., Senthilkumar, D., Laubenbacher, R., Mendes, P., & Dongari-Bagtzoglou, A. (2021). Agent Based Models of Polymicrobial Biofilms and the Microbiome—A Review. Microorganisms, 9(2), 417. https://doi.org/10.3390/microorganisms9020417