Oil Bioremediation in the Marine Environment of Antarctica: A Review and Bibliometric Keyword Cluster Analysis
Abstract
:1. Introduction
2. Review Methodology
3. Publications Relating to Oil Pollution Affecting Marine Environment of Antarctica, 1970–2020
4. Types of Fuel Included in Research Published 2000–2020
5. Studies of Hydrocarbon Degraders
6. Metabolic Mechanisms of Bacterial Biodegradation of Hydrocarbons
6.1. Aerobic Biodegradation
6.2. Anaerobic Biodegradation
7. Analysis of Co-Occurrence of Keywords in Publications between 2000 and 2020
8. Bibliometric Analysis: Focus and Research Direction
9. Emerging Trends in Genomic Studies of Antarctic Marine Microorganisms: Prospects and Challenges
10. Application of Metagenomics in Marine Bioremediation
11. Whole Genome Studies
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Charman, D.J.; Amesbury, M.J.; Roland, T.P.; Royles, J.; Hodgson, D.A.; Convey, P.; Griffiths, H. Spatially coherent late-Holocene Antarctic Peninsula surface air temperature variability. Geology 2018, 46, 1071–1074. [Google Scholar] [CrossRef]
- Ruoppolo, V.; Woehler, E.J.; Morgan, K.; Clumpner, C.J. Wildlife and oil in the Antarctic: A recipe for cold disaster. Polar Rec. 2013, 49, 97–109. [Google Scholar]
- Szopińska, M.; Szumińska, D.; Bialik, R.J.; Dymerski, T.; Rosenberg, E.; Polkowska, Ż. Determination of polycyclic aromatic hydrocarbons (PAHs) and other organic pollutants in freshwaters on the western shore of Admiralty Bay (King George Island, Maritime Antarctica). Environ. Sci. Pollut. Res. 2019, 26, 18143–18161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabrerizo, A.; Dachs, J.; Barceló, D.; Jones, K.C. Influence of organic matter content and human activities on the occurrence of organic pollutants in Antarctic soils, lichens, grass, and mosses. Environ. Sci. Technol. 2012, 46, 1396–1405. [Google Scholar] [CrossRef]
- Redgwell, C. Environmental Protection in Antarctica: The 1991 Protocol. Int. Comp. Law Q. 1991, 43, 599–634. [Google Scholar] [CrossRef]
- Lee, I.S.; Lee, H.; Chen, Y.H.; Chae, Y. Bibliometric analysis of research assessing the use of acupuncture for pain treatment over the past 20 years. J. Pain Res. 2020, 13, 367–376. [Google Scholar] [CrossRef] [Green Version]
- van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Wallace, D.P.; Fleet, C.V. Knowledge into Action: Research and Evaluation in library and Information Science; Libraries Unlimited: Santa Barbara, CA, USA, 2012. [Google Scholar]
- Bazm, S.; Kalantar, S.M.; Mirzaei, M. Bibliometric mapping and clustering analysis of Iranian papers on reproductive medicine in Scopus database (2010–2014). Int. J. Reprod. Biomed. 2016, 14, 371–382. [Google Scholar] [CrossRef] [Green Version]
- van Eck, N.J.; Waltman, L. VOSviewer Manual; Universiteit Leiden: Leiden, The Netherlands, 2020; pp. 1–53. [Google Scholar]
- Kennicutt, M.C.; Sweet, S.T.; Fraser, W.R.; Stockton, W.L.; Culver, M. The Fate of Diesel Fuel Spilled by the Bahia Paraiso in Arthur Harbour, Antarctica. In 1991 Oil Spill Conference; American Petroleum Institute: Washington, DC, USA, 1991; pp. 493–500. [Google Scholar]
- Stark, J.S.; Mohammad, M.; McMinn, A.; Ingels, J. The effects of hydrocarbons on meiofauna in marine sediments in Antarctica. J. Exp. Mar. Biol. Ecol. 2017, 496, 56–73. [Google Scholar] [CrossRef]
- Stewart, E.J.; Draper, D. The sinking of the MS Explorer: Implications for cruise tourism in Arctic Canada. Arctic 2008, 61, 224. [Google Scholar]
- Vázquez, S.; Monienc, P.; Minetti, R.P.; Jürgens, J.; Curtosi, A.; Primitz, J.V.; Frickenhaus, S.; Abele, D.; MacCormack, W.P.; Helmke, E. Bacterial communities and chemical parameters in soils and coastal sediments in response to diesel spills at Carlini Station, Antarctica. Sci. Total Environ. 2017, 605–606, 26–37. [Google Scholar]
- Deprez, P.; Arens, M.; Locher, H. Identification and assessment of contaminated sites at Casey Station, Wilkes Land, Antarctica. Polar Rec. 1999, 35, 299–316. [Google Scholar] [CrossRef]
- Wilkness, P. Fuel spill clean up in the Antarctic. Antarctic J. US 1990, 25, 3–8. [Google Scholar]
- CEP-IV-IP62. Report of the Chilean Vessel “Patriarche” Accident. Twenty-Fourth Antarctic Treaty Consultative Meeting—Fourth Committee on Environmental Protection Meeting; Russian Federation: St. Petersburg, Russia, 2001. [Google Scholar]
- Palmer, T.A.; Klein, A.G.; Sweet, S.T.; Montagna, P.A.; Hyde, L.J.; Sericano, J.; Wade, T.L.; Kennicutt, M.C.; Pollack, J.B. Long-term changes in contamination and macrobenthic communities adjacent to McMurdo Station, Antarctica. Sci.Total Environ. 2020, 142798. [Google Scholar] [CrossRef] [PubMed]
- Cleaning up oil spills. Mar. Pollut. Bull. 1970, 1, 163–164. Available online: https://www.sciencedirect.com/journal/marine-pollution-bulletin/vol/1/issue/11 (accessed on 30 November 2020). [CrossRef]
- Platt, H.M. Sedimentation and the distribution of organic matter in a sub-Antarctic marine bay. Estuar. Coast. Mar. Sci. 1979, 9, 51–63. [Google Scholar] [CrossRef]
- Weber, R.R.; Bicego, M.C. Petroleum Aromatic hydrocarbons in surface waters around Elephant Island, Antarctic Peninsula. Mar. Pollut. Bull. 1990, 21, 448–449. [Google Scholar] [CrossRef]
- Delille, D.; Bassères, A.; Dessommes, A.; Rosiers, C. Influence of daylight on potential biodegradation of diesel and crude oil in Antarctic seawater. Mar. Environ. Res. 1998, 45, 249–258. [Google Scholar]
- Cripps, G.C.; Shears, J. The fate in the marine environment of a minor diesel fuel spill from an Antarctic research station. Environ. Monit. Assess. 1997, 46, 221–232. [Google Scholar]
- Lo Giudice, A.; Casella, P.; Caruso, C.; Mangano, S.; Bruni, V.; De Domenico, M.; Michaud, L. Occurrence and characterization of psychrotolerant hydrocarbon-oxidizing bacteria from surface seawater along the Victoria Land coast (Antarctica). Polar Biol. 2010, 33, 929–943. [Google Scholar]
- De Domenico, M.; Lo Giudice, A.; Michaud, L.; Saitta, M.; Bruni, V. Diesel oil and PCB-degrading psychrotrophic bacteria isolated from Antarctic seawaters (Terra Nova Bay, Ross Sea). Polar Res. 2004, 23, 141–146. [Google Scholar] [CrossRef]
- Stark, J.S.; Snape, I.; Riddle, M.J. The effects of petroleum hydrocarbon and heavy metal contamination of marine sediments on recruitment of Antarctic soft-sediment assemblages: A field experimental investigation. J. Exp. Mar. Biol. Ecol. 2020, 283, 21–50. [Google Scholar] [CrossRef]
- Rizzo, C.C.; Malavenda, R.; Gerçe, B.; Papale, M.; Syldatk, C.; Hausmann, R.; Bruni, V.; Michaud, L.; Lo Giudice, A.; Amalfitano, S. Effects of a simulated acute oil spillage on bacterial communities from Arctic and Antarctic marine sediments. Microorganisms 2019, 7, 632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mackie, P.R.; Platt, H.M.; Hardy, R. Hydrocarbons in the marine environment: II. Distribution of n-alkanes in the fauna and environment of the sub-Antarctic island of South Georgia, Estuar. Coast. Mar Sci. 1978, 6, 301–313. [Google Scholar] [CrossRef]
- Rowland, J.; Hird, S.J.; Robson, J.N.; Venkatesan, M.I. Hydrogenation behaviour of two highly branched C25 dienes from Antarctic marine sediments. Org. Geochem. 1990, 15, 215–218. [Google Scholar] [CrossRef]
- Fowler, S.W. Critical review of selected heavy metal and chlorinated hydrocarbon concentrations in the marine environment. Mar. Environ. Res. 1990, 29, 1–64. [Google Scholar] [CrossRef]
- Yakimov, M.M.; Giuliano, L.; Gentile, G.; Crisafi, E.; Chernikova, T.N.; Abraham, W.R.; Lünsdorf, H.; Timmis, K.N.; Golyshin, P.N. Oleispira antarctica gen. nov., sp. nov., a novel hydrocarbonoclastic marine bacterium isolated from Antarctic coastal sea water. Int. J. Syst. Evol. Microbiol. 2003, 53, 779–785. [Google Scholar] [CrossRef]
- Michaud, L.; Lo Giudice, A.; Saitta, M.; De Domenico, M.; Bruni, V. The biodegradation efficiency on diesel oil by two psychrotrophic Antarctic marine bacteria during a two-month-long experiment. Mar. Pollut. Bullet. 2004, 49, 405–409. [Google Scholar] [CrossRef]
- Powell, S.M.; Snape, I.; Bowman, J.P.; Thompson, B.A.W.; Stark, J.S.; McCammon, S.A.; Riddle., M.J. A comparison of the short-term effects of diesel fuel and lubricant oils on Antarctic benthic microbial communities. J. Exp. Mar. Biol. Ecol. 2005, 322, 53–65. [Google Scholar] [CrossRef]
- Cao, S.; Zhang, W.; Ding, W.; Wang, M.; Fan, S.; Yang, B.; Mcminn, A.; Wang, M.; Xie, B.B.; Qin, Q.L.; et al. Correction to: Structure and function of the Arctic and Antarctic marine microbiota as revealed by metagenomics. Microbiome 2020, 8, 77. [Google Scholar]
- Dickinson, I.; Goodall-Copestake, W.; Thorne, M.A.; Schlitt, T.; Ávila-Jiménez, M.L.; Pearce, D.A. Extremophiles in an Antarctic marine ecosystem. Microorganisms 2016, 4, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gentile, G.; Bonsignore, M.; Santisi, S.; Catalfamo, M.; Giuliano, L.; Genovese, L.; Yakimov, M.M.; Denaro, R.; Genovese, M.; Cappello, S. Biodegradation potentiality of psychrophilic bacterial strain Oleispira antarctica RB-8T. Mar. Pollut. Bull. 2016, 105, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.E.; King, C.K.; Harrison, P.L. Lethal and behavioral impacts of diesel and fuel oil on the Antarctic Amphipod Paramoera Walker. Environ. Toxicol. Chem. 2017, 36, 2444–2455. [Google Scholar] [CrossRef] [PubMed]
- Aronson, R.B.; Thatje, S.; Mcclintock, J.B.; Hughes, K.A. Anthropogenic impacts on marine ecosystems. Ann. N. Y. Acad. Sci. 2011, 1223, 82–107. [Google Scholar] [CrossRef] [PubMed]
- Brooks, S.T.; Jabour, J.; Sharman, A.J.; Bergstrom, D.M. An analysis of environmental incidents for a national Antarctic program. J. Environ. Manage 2018, 212, 340–348. [Google Scholar] [CrossRef] [Green Version]
- Brown, K.E.; King, C.K.; Kotzakoulakis, K.; George, S.C.; Harrison, P.L. Assessing fuel spill risks in polar waters: Temporal dynamics and behaviour of hydrocarbons from Antarctic diesel, marine gas oil and residual fuel oil. Mar. Pollut. Bull. 2016, 110, 343–353. [Google Scholar] [CrossRef]
- Dauner, A.L.L.; Hernandes, E.A.; MacCormack, W.P.; Martins, C.C. Molecular characterisation of anthropogenic sources of sedimentary organic matter from Potter Cove, King George Island, Antarctica. Sci. Total Environ. 2015, 502, 408–416. [Google Scholar] [CrossRef]
- Malavenda, R.; Rizzo, C.; Michaud, L.; Gerc, B.; Bruni, V.; Syldatk, C.; Hausmann, R.; Giudice, A.L. Biosurfactant production by Arctic and Antarctic bacteria growing on hydrocarbons. Polar Biol. 2015, 38, 1565–1574. [Google Scholar] [CrossRef]
- Martins, C.C.; Bicego, M.C.; Taniguchi, S.; Montone, R.C. Aliphatic and polycyclic aromatic hydrocarbons in surface sediments in Admiralty Bay, King George Island, Antarctica. Antarct. Sci. 2004, 16, 117–122. [Google Scholar] [CrossRef]
- Thompson, B.A.W.; Goldsworthy, P.M.; Riddle, M.J.; Snape, I.; Stark, J.S. Contamination effects by a ‘conventional’ and a ‘biodegradable’ lubricant oil on infaunal recruitment to Antarctic sediments: A field experiment. J. Exp. Mar. Biol. Ecol. 2007, 340, 213–226. [Google Scholar] [CrossRef]
- Payne, S.J.; King, C.K.; Zamora, L.M.; Virtue, P. Temporal changes in the sensitivity of coastal Antarctic zooplankton communities to diesel fuel: A comparison between single- and multi-species toxicity tests. Environ. Toxicol. Chem. 2014, 33, 882–890. [Google Scholar] [CrossRef] [PubMed]
- Powell, S.; Stark, J.; Snape, I.; Woolfenden, E.; Bowman, J.; Riddle, M. Effects of diesel and lubricant oils on Antarctic benthic microbial communities over five years. Aquat. Microb. Ecol. 2010, 59, 119–127. [Google Scholar] [CrossRef]
- Brown, K.E.; King, C.K.; Harrison, P.L. Impacts of petroleum fuels on fertilization and development of the Antarctic sea urchin Sterechinus neumayeri. Environ. Toxicol. Chem. 2020, 39, 2527–2539. [Google Scholar] [CrossRef] [PubMed]
- Chi, X.Q.; Zhang, J.J.; Zhao, S.; Zhou, N.Y. Bioaugmentation with a consortium of bacterial nitrophenol-degraders for remediation of soil contaminated with three nitrophenol isomers. Environ. Pollut. 2012, 172, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, D.; Ghosh, R.; Sengupta, T.K. Biofilm-mediated enhanced crude oil degradation by newly isolated Pseudomonas species. ISRN Biotechnol. 2013, 2013, 250749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zakaria, N.; Roslee, A.; Gomez-Fuentes, C.; Zulkharnain, A.; Abdulrasheed, M.; Sabri, S.; Ramírez-Moreno, N.; Calisto-Ulloa, N.; Ahmad, S.A. Kinetic studies of marine psychrotolerant microorganisms capable of degrading diesel in the presence of heavy metals. Rev. Mex. Ing. Quím. 2020, 19, 1375–1388. [Google Scholar] [CrossRef]
- Jadhav, V.V.; Yadav, A.; Shouche, Y.S.; Aphale, S.; Moghe, A.; Pillai, S.; Arora, A.; Bhadekar, R.K. Studies on biosurfactant from Oceanobacillus Sp. BRI 10 isolated from Antarctic sea water. Desalination 2013, 318, 64–71. [Google Scholar] [CrossRef]
- Atlas, R.M.; Hazen, T.C. Oil biodegradation and bioremediation: A tale of the two worst spills in US history. Environ. Sci. Technol. 2011, 45, 6709–6715. [Google Scholar] [CrossRef] [Green Version]
- Broderick, J.B. Catechol dioxygenases. Essays Biochem. 1999, 34, 173–189. [Google Scholar]
- Ratledge, C. Biodegradation and biotransformations of oils and fats-introduction. J. Chem. Technol. Biotechnol. 1992, 55, 397–399. [Google Scholar]
- Rojo, F. Degradation of alkanes by bacteria: Minireview. Environ. Microbiol. 2009, 11, 2477–2490. [Google Scholar] [CrossRef] [PubMed]
- Abalos, A.; Viñas, M.; Sabaté, J.; Manresa, M.A.; Solanas, A.M. Enhanced biodegradation of Casablanca crude oil by a microbial consortium in presence of a rhamnolipid produced by Pseudomonas aeruginosa AT10. Biodegradation. 2004, 15, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Hearn, E.M.; Patel, D.R.; Lepore, B.W.; Indic, M.; van den Berg, B. Transmembrane passage of hydrophobic compounds through a protein channel wall. Nature 2009, 458, 367–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van den Berg, B. Going forward laterally: Transmembrane passage of hydrophobic molecules through protein channel walls. ChemBiochem 2010, 11, 133913–133943. [Google Scholar] [CrossRef] [Green Version]
- Hong, H.; Patel, D.R.; Tamm, L.K.; van den Berg, B. The outer membrane protein OmpW forms an eight-stranded beta-barrel with a hydrophobic channel. J. Biol. Chem. 2006, 281, 7568–7577. [Google Scholar] [CrossRef] [Green Version]
- Kim, I.S.; Foght, J.M.; Gray, M.R. Selective transport and accumulation of alkanes by Rhodococcus erythropolis S + 14He. Biotechnol. Bioeng. 2002, 80, 650–659. [Google Scholar] [CrossRef]
- Wilkes, H.; Kühner, S.; Bolm, C.; Fischer, T.; Classen, A.; Widdel, F.; Rabus, R. Formation of n-alkane- and cycloalkane-derived organic acids during anaerobic growth of a denitrifying bacterium with crude oil. Org. Geochem. 2003, 34, 1313–1323. [Google Scholar] [CrossRef]
- Kotani, T.; Yurimoto, H.; Kato, N.; Sakai, Y. Novel acetone metabolism in a propane-utilizing bacterium, Gordonia sp. strain TY-5. J. Bacteriol. 2007, 189, 886–893. [Google Scholar]
- Cao, B.; Nagarajan, K.; Loh, K.C. Biodegradation of aromatic compounds: Current status and opportunities for biomolecular approaches. Appl. Microbiol. Biotechnol. 2009, 85, 207–228. [Google Scholar] [CrossRef]
- Abbasian, F.; Lockington, R.; Mallavarapu, M.; Naidu, R. A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria. Appl. Biochem. Biotechnol. 2015, 176, 670–699. [Google Scholar] [CrossRef]
- van Beilen, J.B.; Funhoff, E.G. Alkane hydroxylases involved in microbial alkane degradation. Appl. Microbiol. Biotechnol. 2007, 74, 13–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosal, D.; Ghosh, S.; Dutta, T.K.; Ahn, Y.H. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): A Review. Front. Microbiol. 2018, 7, 1369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallick, S.; Chakraborty, J.; Dutta, T.K. Role of oxygenases in guiding diverse metabolic pathways in the bacterial degradation of low-molecular-weight polycyclic aromatic hydrocarbons: A review. Crit. Rev. Microbiol. 2011, 37, 64–90. [Google Scholar] [CrossRef] [PubMed]
- Madigan, M.T.; Martinko, J.M.; Dunlap, P.V.; Clark, D.P. Brock Biology of Microorganisms, Pearson, 12th ed.; Pearson: San Francisco, CA, USA, 2009. [Google Scholar]
- Moody, J.D.; Freeman, J.P.; Fu, P.P.; Cerniglia, C.E. Degradation of benzo[a]pyrene by Mycobacterium vanbaalenii PYR-1. Appl. Environ. Microbiol. 2004, 70, 340–345. [Google Scholar] [CrossRef] [Green Version]
- van Hamme, J.D.; Singh, A.; Ward, O.P. Recent advances in petroleum microbiology. Microbiol. Mol. Biol. Rev. 2003, 67, 503–549. [Google Scholar] [CrossRef] [Green Version]
- dos Santos, H.F.; Cury, J.C.; do Carmo, F.L.; dos Santos, A.L.; Tiedje, J.; van Elsas, J.D.; Rosado, A.S.; Peixoto, R.S. Mangrove bacterial diversity and the impact of oil contamination revealed by pyrosequencing: Bacterial proxies for oil pollution. PLoS ONE 2011, 6, e16943. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, M.; Kojima, H.; Fukui, M. Labilibaculum antarcticum sp. nov., a novel facultative anaerobic, psychrotorelant bacterium isolated from marine sediment of Antarctica. Antonie Van Leeuwenhoek 2020, 113, 349–355. [Google Scholar] [CrossRef]
- Mbadinga, S.M.; Wang, L.Y.; Zhou, L.; Liu, J.F.; Gu, J.D.; Mu, B.Z. Microbial communities involved in anaerobic degradation of alkanes. Int. Biodeterior. Biodegrad. 2011, 65, 1–13. [Google Scholar] [CrossRef]
- Widdel, F.; Boetius, A.; Rabus, R. Anaerobic biodegradation of hydrocarbons including methane. In The Prokaryotes; Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., Stackebrandt, E., Eds.; Springer: New York, NY, USA, 2006; pp. 1028–1049. [Google Scholar]
- Callaghan, A.V.; Davidova, I.A.; Savage-Ashlock, K.; Parisi, V.A.; Gieg, L.M.; Suflita, J.M.; Kukor, J.J.; Wawrik, B. Diversity of benyzl- and alkylsuccinate synthase genes in hydrocarbon-impacted environments and enrichment cultures. Environ. Sci. Technol. 2010, 44, 7287–7294. [Google Scholar]
- So, C.M.; Phelps, C.D.; Young, L.Y. Anaerobic transformation of alkanes to fatty acids by sulfate-reducing bacterium, strain Hxd3. Appl. Environ. Microbiol. 2003, 69, 3892–3900. [Google Scholar] [CrossRef] [Green Version]
- Thauer, R.K.; Shima, S. Methane as fuel for anaerobic microorganisms. Ann. N. Y. Acad. Sci. 2008, 1125, 158–170. [Google Scholar] [CrossRef] [PubMed]
- Mehboob, F.; Junca, H.; Schraa, G.; Stams, A. Growth of Pseudomonas chloritidismutans AW-1T on n-alkanes with chlorate as electron acceptor. Appl. Microbiol. Biotechnol. 2009, 83, 739–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ettwig, K.F.; Butler, M.K.; Le Paslier, D.; Pelletier, E.; Mangenot, S.; Kuypers, M.M.M.; Schreiber, F.; Dutilh, B.E.; Zedelius, J.; de Beer, D.; et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 2010, 464, 543–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Head, I.; Gray, N.; Aitken, C.; Sherry, A.; Jones, M.; Larter, S. Hydrocarbon Activation under Sulfate-Reducing and Methanogenic Conditions Proceeds by Different Mechanisms. In Proceedings of the EGU General Assembly, Vienna, Austria, 2–7 May 2010; p. 14884. [Google Scholar]
- Miller, J.I.; Techtmann, S.; Fortney, J.; Mahmoudi, N.; Joyner, D.; Liu, J.; Olesen, S.; Alm, E.; Fernandez, A.; Gardinali, P.; et al. Oil hydrocarbon degradation by Caspian Sea microbial communities. Front. Microbiol. 2019, 10, 995. [Google Scholar] [CrossRef] [PubMed]
- Hasinger, M.; Scherr, K.E.; Lundaa, T.; Bräuer, L.; Zach, C.; Loibner, A.P. Changes in iso-and n-alkane distribution during biodegradation of crude oil under nitrate and sulphate reducing conditions. J. Biotechnol. 2012, 157, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Hosoda, A.; Kasai, Y.; Hamamura, N.; Takahata, Y.; Watanabe, K. Development of a PCR method for the detection and quantification of benzoyl-CoA reductase genes and its application to monitored natural attenuation. Biodegradation 2005, 16, 591–601. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile or polycyclicaromatic hydrocarbons. Acenaphthene, Acenaphthylene, Anthracene, Benzo[a]anthracene, Benzo[a]pyrene, Benzo[b]fluoranthene, Benzo[g,i,h]perylene, Benzo[k]fluoranthene, Chrysene, Dibenzo[a,h]anthracene, Fluoranthene, Fluorene, Indeno[1,2,3-c,d]pyrene, Phenanthrene, Pyrene. Atlanta, GA: Agency for Toxic Substances and Disease Registry. 1990. Available online: https://www.atsdr.cdc.gov/toxprofiles (accessed on 12 December 2020).
- Murthy, N.B.K.; Sherkhane, P.D.; Kale, S.P. Metabolism of 14C-naphthalene in marine sediments. Environ. Technol. 2002, 23, 1272–1273. [Google Scholar] [CrossRef]
- Maillacheruvu, K.Y.; Pathan, I.A. Biodegradation of naphthalene, phenanthrene, and pyrene under anaerobic conditions. J. Environ. Sci. Health Part A 2009, 44, 1315–1326. [Google Scholar] [CrossRef]
- Rotaru, A.E.; Probian, C.; Wilkes, H.; Harder, J. Highly enriched Betaproteobacteria growing anaerobically with p-xylene and nitrate. FEMS Microbiol. Ecol. 2010, 71, 460–468. [Google Scholar]
- Szaleniec, M.; Hagel, C.; Menke, M.; Nowak, P.; Witko, M.; Heider, J. Kinetics and mechanism of oxygen-independent hydrocarbon hydroxylation by ethylbenzene dehydrogenase. Biochemistry 2007, 46, 7637–7646. [Google Scholar] [CrossRef]
- Jobst, B.; Schuhle, K.; Linne, U.; Heider, J. ATP-dependent carboxylation of acetophenone by a novel type of carboxylase. J. Bacteriol. 2010, 192, 1387–1394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brodkorb, D.; Gottschall, M.; Marmulla, R.; Lüddeke, F.; Harder, J. Linalool dehydratase-isomerase, a bifunctional enzyme in the anaerobic degradation of monoterpenes. J. Biol. Chem. 2010, 285, 30436–30442. [Google Scholar]
- Head, I.M.; Jones, D.M.; Röling, W.F. Marine microorganisms make a meal of oil. Nat. Rev. Microbiol. 2006, 4, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Marietou, A.; Chastain, R.; Beulig, F.; Scoma, A.; Hazen, T.; Bartlett, D. The Effect of hydrostatic pressure on enrichments of hydrocarbon degrading microbes from the Gulf of Mexico following the Deepwater Horizon oil spill. Front. Microbiol. 2018, 9, 808. [Google Scholar]
- Redmond, M.C.; Valentine, D.L. Natural gas and temperature structured a microbial community response to the Deepwater Horizon oil spill. Proc. Natl. Acad. Sci. USA 2012, 109, 20292–20297. [Google Scholar] [CrossRef] [Green Version]
- Kostka, J.E.; Teske, A.P.; Joye, S.B.; Head, I.M. The metabolic pathways and environmental controls of hydrocarbon biodegradation in marine ecosystems. Front. Microbiol. 2014, 5, 471. [Google Scholar] [CrossRef] [Green Version]
- Xiang, C.; Wang, Y.; Liu, H.A. Scientometrics review on nonpoint source pollution research. Ecol. Eng. 2017, 99, 400–408. [Google Scholar] [CrossRef]
- Lima, S. Bibliometric analysis on scientific production on sharing economy. Rev. de Gestão. 2019, 26, 237–255. [Google Scholar] [CrossRef]
- Handelsman, J.; Rondon, M.R.; Brady, S.F.; Clardy, J.; Goodman, R.M. Molecular biological access to the chemistry of unknown soil microbes: A new frontier for natural products. Chem. Biol. 1998, 5, 245–249. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, S.H.; Woinarski, A.Z.; Snape, I.; Morris, C.E.; Revill, A.T. A field trial of in situ chemical oxidation to remediate long-term diesel contaminated Antarctic soil. Cold Reg. Sci. Technol. 2004, 40, 47–60. [Google Scholar] [CrossRef]
- McDonald, S.J.; Kennicutt, M.C.; Liu, H.; Safe, S.H. Assessing aromatic hydrocarbon exposure in Antarctic fish captured near Palmer and McMurdo Stations, Antarctica. Arch. Environ. Contam. Toxicol. 1995, 29, 232–240. [Google Scholar] [CrossRef]
- International Maritime Organisation. Protection of the Sea (Prevention of Pollution from Ships) Act- Annexes I, II and V (1992) Special Areas. 2011. Available online: http://www.imo.org/OurWork/Environment/PollutionPrevention/SpecialAreasUnderMARPOL/Pages/Default.aspx (accessed on 9 November 2020).
- Koren, S.; Phillippy, A.M. One chromosome, one contig: Complete microbial genomes from long-read sequencing and assembly. Curr. Op. Microbiol. 2015, 23, 110–120. [Google Scholar]
- Nagarajan, N.; Pop, M. Sequence assembly demystified. Nat. Rev. Genet. 2013, 14, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.R.; Koren, S.; Sutton, G. Assembly algorithms for next- generation sequencing data. Genomics 2010, 95, 315–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Treangen, T.J.; Abraham, A.-L.L.; Touchon, M.; Rocha, E.P. Genesis, effects and fates of repeats in prokaryotic genomes. FEMS Microbiol. Rev. 2009, 33, 539–571. [Google Scholar] [CrossRef] [Green Version]
- Kingsford, C.; Schatz, M.C.; Pop, M. Assembly complexity of prokaryotic genomes using short reads. BMC Bioinform. 2010, 11, 21. [Google Scholar] [CrossRef] [Green Version]
- Hugenholz, P.; Goebel, B.M.; Pace, N.R. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 1998, 180, 4765–4774. [Google Scholar] [CrossRef] [Green Version]
- Brooks, P.; Edwards, D.J.; Harwich, M.D., Jr.; Rivera, M.C.; Fettweis, J.M.; Serrano, M.G.; Reris, R.A.; Sheth, N.U.; Huang, B.; Girerd, P.; et al. The truth about metagenomics: Quantifying and counteracting bias in 16S rRNA studies. BMC Microbiol. 2015, 15, 66. [Google Scholar]
- Cowan, D.A.; Chown, S.L.; Convey, P.; Tuffin, M.; Hughes, K.; Pointing, S.; Vincent, W. Non-indigenous microorganisms in the Antarctic: Assessing the risks. Trends Microbiol. 2011, 19, 540–548. [Google Scholar] [CrossRef]
- Bharagava, R.N.; Purchase, D.; Saxena, G.; Mulla, S.I. Application of Metagenomics in Microbial Bioremediation of Pollutants: From Genomics to Environmental Cleanup. Microbial Diversity in the Genomic Era; Academic Press: Oxford, UK, 2019; pp. 459–477. [Google Scholar]
- Lane, D.J.; Pace, B.; Olsen, G.J.; Stahl, D.A.; Sogin, M.L.; Pace, N.R. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. USA 1985, 82, 6955–6959. [Google Scholar]
- Pace, N.R.; Stahl, D.A.; Lane, D.J.; Olsen, G.J. Analyzing natural microbial populations by rRNA sequences. ASM News 1985, 51, 4–12. [Google Scholar]
- Pace, N.R.; Delong, E.F.; Pace, N.R. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J. Bacteriol. 1991, 173, 4371–4378. [Google Scholar]
- Simon, C.; Daniel, R. Metagenomic analyses: Past and future trends. Appl. Environ. Microbiol. 2011, 77, 41153–41161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitra, S.; Rupek, P.; Richter, D.C.; Urich, T.; Gilbert, J.A.; Meyer, F.; Wilke, A.; Huson, D.H. Functional analysis of metagenomes and metatranscriptomes using SEED and KEGG. BMC Bioinformatics. 2011, 12 (Suppl. 1), S21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wooley, J.C.; Godzik, A.; Friedberg, I.B.; Philip, E. A primer on metagenomics. PLoS Computat. Biol. 2010, 6, 1000667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vergeynst, L.; Christensen, J.H.; Kjeldsen, K.U.; Meire, L.; Boone, W.; Malmquist, L.M.V.; Rysgaard, S. In situ biodegradation, photooxidation and dissolution of petroleum compounds in Arctic seawater and sea ice. Water Res. 2019, 148, 459–468. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.H.; Ye, C.C.; Zhou, Q.Z.; Wu, X.Y.; Yuan, J.P.; Peng, J.; Deng, H.; Wang, J.H. Genome sequencing reveals the potential of Achromobacter sp. HZ01 for bioremediation. Front. Microbiol. 2017, 8, 1507. [Google Scholar] [CrossRef] [Green Version]
- Muangchinda, C.; Rungsihiranrut, A.; Prombutara, P.; Soonglerdsongpha, S.; Pinyakong, O. 16S metagenomic analysis reveals adaptability of a mixed-PAH-degrading consortium isolated from crude oil-contaminated seawater to changing environmental conditions. J. Haz. Mat. 2018, 357, 119–127. [Google Scholar] [CrossRef]
- Hidalgo, K.J.; Sierra-Garcia, I.N.; Dellagnezze, B.M.; de Oliveira, V.M. Metagenomic insights into the mechanisms for biodegradation of polycyclic aromatic hydrocarbons in the oil supply chain. Front. Microbiol. 2020, 11, 2250. [Google Scholar] [CrossRef]
- Kim, Y.H.; Cho, K.; Yun, S.H.; Kim, J.Y.; Kwon, K.H.; Yoo, J.S.; Kim, S.I. Analysis of aromatic catabolic pathways in Pseudomonas putida KT 2440 using a combined proteomic approach: 2DE/MS and cleavable isotope-coded affinity tag analysis. Proteomics 2006, 6, 1301–1318. [Google Scholar] [CrossRef]
- Jennings, L.K.; Chartrand, M.M.; Lacrampe-Couloume, G.; Lollar, B.S.; Spain, J.C.; Gossett, J.M. Proteomic and transcriptomic analyses reveal genes upregulated by cis-dichloroethene in Polaromonas JS666. Appl. Environ. Microbiol. 2009, 11, 3733–3744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keum, Y.S.; Seo, J.S.; Qing, X.L.; Kim, J.H. Comparative metabolomic analysis of Sinorhizobium sp. C4 during the degradation of phenanthrene. Appl. Microbiol. Biotechnol. 2009, 80, 863–872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jansson, J.K.; Hofmockel, K.S. The soil microbiome-from metagenomics to metaphenomics. Curr. Opin. Microbiol. 2018, 43, 162–168. [Google Scholar] [CrossRef] [PubMed]
- George, I.; Stenuit, B.; Agathos, S.N. Application of metagenomics to bioremediation. In Metagenomics Theory, Methods and Applications, Caister; Diana, M., Ed.; Academic Press: Norfolk, UK, 2010; pp. 119–140. [Google Scholar]
- Kube, M.; Chernikova, T.N.; Al-Ramahi, Y.; Beloqui, A.; Lopez-Cortez, N.; Guazzaroni, M.E.; Heipieper, H.J.; Klages, S.; Kotsyurbenko, O.R.; Langer, I.; et al. Genome sequence and functional genomic analysis of the oil-degrading bacterium Oleispira antarctica. Nat. Commun. 2013, 4, 2156. [Google Scholar] [CrossRef] [Green Version]
- Rong, J.C.; Liu, Y.; Yu, S.; Xi, L.; Chi, N.Y.; Zhang, Q.F. Complete genome sequence of Paenisporosarcina antarctica CGMCC 1.6503T, a marine psychrophilic bacterium isolated from Antarctica. Mar. Genom. 2019, 49, 100690. [Google Scholar] [CrossRef]
- Rong, J.C.; Liu, M.; Li, Y.; Sun, T.Y.; Xie, B.B.; Shi, M.; Chen, X.L.; Qin, Q.L. Insight into the genome sequence of a sediment-adapted marine bacterium Neptunomonas antarctica S3-22(T) from Antarctica. Mar. Genom. 2016, 25, 29–31. [Google Scholar] [CrossRef] [Green Version]
- Na, G.; Zhang, W.; Gao, H.; Wang, C.; Li, R.; Zhao, F.; Zhang, K.; Hou, C. Occurrence and antibacterial resistance of culturable antibiotic-resistant bacteria in the Fildes Peninsula, Antarctica. Mar. Pollut. Bull. 2020, 111829. [Google Scholar] [CrossRef]
- Martorell, M.M.; Lannert, M.; Matula, C.V.; Quartino, M.L.; de Figueroa, L.I.C.; Mac Cormack, W.P.; Ruberto, L.A.M. Studies toward the comprehension of fungal-macroalgae interaction in cold marine regions from a biotechnological perspective. Fungal Biol. 2020. [Google Scholar] [CrossRef]
- Gu, X.Q.; Li, J.; Lin, X.Z.; Gui, Y.Y.; Pan, A.H. Complete genome sequence of the novel alginolytic Psychroserpens sp. NJDZ02 isolated from macroalgae collected from King George Island, Antarctica. Mar. Genom. 2020, 51, 100705. [Google Scholar] [CrossRef]
- Bharudin, I.; Abu Bakar, M.F.; Hashim, N.; Mat Isa, M.N.; Alias, H.; Firdaus-Raih, M.; Md Illias, R.; Najimudin, N.; Mahadi, N.M.; Abu Bakar, F.D.; et al. Unravelling the adaptation strategies employed by Glaciozyma antarctica PI12 on Antarctic sea ice. Mar. Environ. Res. 2018, 137, 169–176. [Google Scholar]
- Sivasankar, P.; Priyanka, K.; Rekadwad, B.; Sivakumar, K.; Thangaradjou, T.; Poongodi, S.; Manimurali, R.; Bhaskar, P.V.; Anilkumar, N. Actinobacterial community structure in the polar frontal waters of the Southern Ocean of the Antarctica using geographic information system (GIS): A novel approach to study ocean microbiome. Data Brief 2018, 17, 1307–1313. [Google Scholar] [CrossRef] [PubMed]
- Cabrita, M.T.; Padeiro, A.; Amaro, E.; Dos Santos, M.C.; Leppe, M.; Verkulich, S.; Hughes, K.A.; Peter, H.U.; Canário, J. Evaluating trace element bioavailability and potential transfer into marine food chains using immobilised diatom model species Phaeodactylum tricornutum, on King George Island, Antarctica. Mar. Pollut. Bull. 2017, 121, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Michaud, L.; Di Marco, G.; Bruni, V.; Lo Giudice, A. Biodegradative potential and characterization of psychrotolerant polychlorinated biphenyl-degrading marine bacteria isolated from a coastal station in the Terra Nova Bay (Ross Sea, Antarctica). Mar. Pollut. Bull. 2007, 54, 1754–1761. [Google Scholar] [CrossRef] [PubMed]
- Hoyoux, A.; Jennes, I.; Dubois, P.; Genicot, S.; Dubail, F.; Francois, J.M.; Baise, E.; Feller, G.; Gerday, C. Cold-adapted beta-galactosidase from the Antarctic psychrophile Pseudoalteromonas haloplanktis. Appl. Environ. Microbiol. 2001, 67, 1529–1535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Decade | Subject Areas | Example References |
---|---|---|
1970–1980 | Distribution of hydrocarbons in the marine environment, pollution studies, toxicity assessments of Antarctic marine organisms (plankton, macrobenthos) | [20,28] |
1981–1990 | Chemical studies on alkane chains found in Antarctic marine sediments, chlorinated hydrocarbons | [21,29,30] |
1991–2000 | Toxicity studies on Antarctic fish, indigenous hydrocarbon-degrading bacteria, intertidal sediment studies, Bahia Paraiso, monitoring of hydrocarbon levels in seawater | [22,23,31] |
2001–2010 | Biodegradation studies by marine bacterial species, bioremediation, molecular and physiological studies of marine bacteria | [24,25,32,33] |
2011–2020 | Dynamic changes to microbial communities, genome sequencing, microcosm studies, biodegradation studies by bacterial consortia, hydrocarbon monitoring studies | [14,18,26,34,35,36,37,38,39,40,41,42] |
Year of Publication | Location of Study | Hydrocarbon Studied | Reference |
---|---|---|---|
2003 | Rod Bay, Ross Sea | Crude oil, diesel | [31] |
2004 | Terra Nova Bay Ross Sea | Diesel | [32] |
2004 | Admiralty Bay, King George Island | Diesel | [43] |
2004 | Terra Nova Bay, Ross Sea | Diesel | [25] |
2007 | Casey Station | Lubricant oil | [44] |
2010 | Victoria Land Coast | Diesel | [24] |
2014 | Davis Station | Diesel | [45] |
2016 | Rod Bay, Ross Sea | Diesel | [36] |
2017 | Carlini Station | Diesel | [14] |
2010 | Casey | Diesel, lubricant oil | [46] |
2017 | O’Brien Bay | Diesel, Lubricant oil | [12] |
2020 | Casey Station | Petroleum hydrocarbons | [26] |
2016; 2017; 2020 | Davis Station | Special Antarctic Blend (SAB) diesel, Marine Gas Oil (MGO) Lubricant oil, Intermediate fuel oil (IFO-180) | [37,40,47] |
2020 | McMurdo Station | Polyaromatic hydrocarbons (PAH) | [18] |
Location | Organism/ Consortium | Hydrocarbon Source | Reference |
---|---|---|---|
Rod Bay, Ross Sea | Oleispira antarctica RB-8T | Crude oil, diesel | [31,36] |
Marine sediment, Casey Station | Microbial community | SAB diesel, lubricant | [33] |
Surface seawater, Victoria Land Coast, Ross Sea | Bacterial community | Diesel | [24] |
Antarctic seawater | Oceanobacillus sp. | Lubricant oil, crude oil, diesel kerosene | [51] |
Coastal sediment, King George Island | Bacterial community | Diesel | [2] |
Antarctic marine sediments | Microcosm | Diesel, crude oil | [27] |
Antarctic pristine seawater, Cape Legoupil | Bacterial community | Diesel | [50] |
Keyword | Occurrences | Total Link Strength |
---|---|---|
Antarctica | 444 | 1784 |
Southern Ocean | 227 | 984 |
Pollution | 140 | 663 |
Bioremediation | 119 | 417 |
Biodegradation | 109 | 376 |
Hydrocarbons | 81 | 278 |
Antarctic | 69 | 262 |
Bacteria | 60 | 174 |
Polycyclic aromatic hydrocarbons | 64 | 175 |
Petroleum hydrocarbons | 42 | 156 |
Oil | 31 | 136 |
Petroleum | 30 | 137 |
Crude oil | 22 | 132 |
Diesel | 21 | 62 |
Fuel | 16 | 85 |
Diesel oil | 11 | 50 |
Fossil fuels | 9 | 52 |
SAB | 6 | 30 |
Special Antarctic Blend diesel | 5 | 20 |
Diesel fuel | 5 | 25 |
Lubricant oil | 5 | 15 |
Oil spill | 43 | 146 |
Fuel spills | 9 | 36 |
Aromatic hydrocarbons | 11 | 39 |
Organism | Method of Study | Location | Application | References |
---|---|---|---|---|
Marine sediments, Pseudomonas and Athrobacter sp. | Cell culture | Fildes Peninsula | Antibiotic and drug resistance mechanisms | [128] |
Macroalgae and fungal isolates | Cell culture | Potter Cove | Bioprospecting for antifungal activity | [129] |
Macroalgae: Psychroserpens sp. NJDZ02 | Whole genome sequencing | King George Island | Sodium alginate degradation, potential application in enzymatic industries | [130] |
Marine microbiota | Metagenomics Illumina sequencing | Antarctic surface- and deep- seawater | Global ocean microbiota studies | [34] |
Psychrophilic yeast - Glaciozyma antarctica PI12 | Expressed Sequence Tags (EST) | Antarctic sea ice | Antifreeze proteins, expansin-like proteins | [126,131] |
Paenisporosarcina antarctica CGMCC 1.6503T | Whole Genome sequencing | King George Island | Antifreeze proteins, Cold shock proteins, Osmotolerance | [126] |
Sediment bacterial sample | T-RFLP coupled with DGGE | Livingston Island | Highlights the selection of microbial consortia with higher potential in response to oil spills in polar environments | [27] |
Actinobacterial community | Geographic Information System (GIS) | Indian Ocean Sector of the Southern Ocean | Geospatial studies of Antarctic marine microbiome | [132] |
Diatom: Phaeodactylum tricornutum | Cell immobilisation | Bellinghausen Dome, Ardley Cove. | Biomonitoring and evaluation of trace element bioavailability and potential transfer into marine food chains in Antarctica | [133] |
Surface seawater bacterial community | Metagenomics: 454 pyrosequencing and MISEQ | Southern Ocean | Genes related to secondary metabolites of potential interest | [35] |
Marine sediment, coastal seawater microbial samples | Laboratory setup | South Shetland Islands | Glycolipid surfactant, a potential biosurfactant | [42] |
Oleispira antarctica RB 8 | Whole Genome sequencing | Isolated fromAntarctic seawater | Osmoprotectants, alkane monooxygenase pathways, gene-transfer events | [125] |
Pseudoalteromonas, Psychrobacter, Arthrobacter members. | Cell culture | Terra Nova Bay (Ross Sea) | Biodegradation of polychlorinated biphenyl | [134] |
Pseudoalteromonas haloplanktis TAE 79 | Cell culture | Antarctic seawater | Polar-active enzyme β-galactosidase, a potential candidate for lactose removal from dairy products at low temperatures | [135] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zakaria, N.N.; Convey, P.; Gomez-Fuentes, C.; Zulkharnain, A.; Sabri, S.; Shaharuddin, N.A.; Ahmad, S.A. Oil Bioremediation in the Marine Environment of Antarctica: A Review and Bibliometric Keyword Cluster Analysis. Microorganisms 2021, 9, 419. https://doi.org/10.3390/microorganisms9020419
Zakaria NN, Convey P, Gomez-Fuentes C, Zulkharnain A, Sabri S, Shaharuddin NA, Ahmad SA. Oil Bioremediation in the Marine Environment of Antarctica: A Review and Bibliometric Keyword Cluster Analysis. Microorganisms. 2021; 9(2):419. https://doi.org/10.3390/microorganisms9020419
Chicago/Turabian StyleZakaria, Nur Nadhirah, Peter Convey, Claudio Gomez-Fuentes, Azham Zulkharnain, Suriana Sabri, Noor Azmi Shaharuddin, and Siti Aqlima Ahmad. 2021. "Oil Bioremediation in the Marine Environment of Antarctica: A Review and Bibliometric Keyword Cluster Analysis" Microorganisms 9, no. 2: 419. https://doi.org/10.3390/microorganisms9020419
APA StyleZakaria, N. N., Convey, P., Gomez-Fuentes, C., Zulkharnain, A., Sabri, S., Shaharuddin, N. A., & Ahmad, S. A. (2021). Oil Bioremediation in the Marine Environment of Antarctica: A Review and Bibliometric Keyword Cluster Analysis. Microorganisms, 9(2), 419. https://doi.org/10.3390/microorganisms9020419