The Effects of Dietary Supplementation of Lactococcus lactis Strain Plasma on Skin Microbiome and Skin Conditions in Healthy Subjects—A Randomized, Double-Blind, Placebo-Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Standards
2.2. Subjects
2.3. Study Design, Outcomes, Randomization and Allocation
2.4. Collection of Skin Microbiome
2.5. Next-Generation Sequencer Analysis
2.6. Quantitation of Representative Bacteria and Calculation of Total Bacteria
2.7. Gene Expression in Hair Follicle
2.8. Diagnosis of Skin Condition by Dermatologists
2.9. Skin Moisture and Trans-Epidermal Water Loss (TEWL), Pigmentation Assessment
2.10. Blood Collection and Safety Evaluation
2.11. Statistical Analyses
3. Results
3.1. Subject Characteristics
3.2. The Change of Composition of Skin Microbiome
3.3. The Change of Counts of Total Bacteria and Representative Species
3.4. Alpha Diversity of Skin Microbiome
3.5. The Change of Gene Expressions in Hair Follicles
3.6. Diagnosis of Skin Conditions
3.7. Measurement of Skin Conditions
3.8. Safety Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Natsuga, K. Epidermal barriers. Cold Spring Harb. Perspect. Med. 2014, 4, a018218. [Google Scholar] [CrossRef]
- Segre, J.A. Epidermal barrier formation and recovery in skin disorders. J. Clin. Investig. 2006, 116, 1150–1158. [Google Scholar] [CrossRef]
- Grice, E.A.; Kong, H.H.; Conlan, S.; Deming, C.B.; Davis, J.; Young, A.C.; Bouffard, G.G.; Blakesley, R.W.; Murray, P.R.; Green, E.D.; et al. Topographical and temporal diversity of the human skin microbiome. Science 2009, 324, 1190. [Google Scholar] [CrossRef] [Green Version]
- Sanford, J.A.; Gallo, R.L. Functions of the skin microbiota in health and disease. Semin. Immunol. 2013, 25, 370–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nodake, Y.; Matsumoto, S.; Miura, R.; Honda, H.; Ishibashi, G.; Matsumoto, S.; Dekio, I.; Sakakibara, R. Pilot study on novel skin care method by augmentation with staphylococcus epidermidis, an autologous skin microbe—A blinded randomized clinical trial. J. Dermatol. Sci. 2015, 79, 119–126. [Google Scholar] [CrossRef]
- Belkaid, Y.; Segre, J.A. Dialogue between skin microbiota and immunity. Science 2014, 346, 954. [Google Scholar] [CrossRef]
- Belkaid, Y.; Tamoutounour, S. The influence of skin microorganisms on cutaneous immunity. Nat. Rev. Immunol. 2016, 16, 353–366. [Google Scholar] [CrossRef] [PubMed]
- Schommer, N.N.; Gallo, R.L. Structure and function of the human skin microbiome. Trends Microbiol. 2013, 21, 660–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bojar, R.A.; Holland, K.T. Acne and Propionibacterium acnes. Clin. Dermatol. 2004, 22, 375–379. [Google Scholar] [CrossRef]
- Webster, G.F. Inflammation in acne vulgaris. J. Am. Acad. Dermatol. 1995, 33, 247–253. [Google Scholar] [CrossRef]
- Elias, P.M. The skin barrier as an innate immune element. Semin. Immunopathol. 2007, 29, 3. [Google Scholar] [CrossRef] [PubMed]
- Marples, R.R.; Downing, D.T.; Kligman, A.M. Control of free fatty acids in human surface lipids by Corynebacterium acnes. J. Investig. Dermatol. 1971, 56, 127–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCaig, L.F.; McDonald, L.C.; Mandal, S.; Jernigan, D.B. Staphylococcus aureus–associated skin and soft tissue infections in ambulatory care. Emerg. Infect. Dis. 2006, 12, 1715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moran, G.J.; Krishnadasan, A.; Gorwitz, R.J.; Fosheim, G.E.; McDougal, L.K.; Carey, R.B.; Talan, D.A. Methicillin-resistant S. aureus infections among patients in the emergency department. N. Engl. J. Med. 2006, 355, 666–674. [Google Scholar] [CrossRef] [PubMed]
- Becker, K.; Heilmann, C.; Peters, G. Coagulase-negative staphylococci. Clin. Microbiol. Rev. 2014, 27, 870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwase, T.; Uehara, Y.; Shinji, H.; Tajima, A.; Seo, H.; Takada, K.; Agata, T.; Mizunoe, Y. Staphylococcus epidermidis esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 2010, 465, 346–349. [Google Scholar] [CrossRef] [PubMed]
- Janek, D.; Zipperer, A.; Kulik, A.; Krismer, B.; Peschel, A. High frequency and diversity of antimicrobial activities produced by nasal Staphylococcus strains against bacterial competitors. PLoS Pathog. 2016, 12, e1005812. [Google Scholar] [CrossRef] [Green Version]
- Sugimoto, S.; Iwamoto, T.; Takada, K.; Okuda, K.-I.; Tajima, A.; Iwase, T.; Mizunoe, Y. Staphylococcus epidermidis esp degrades specific proteins associated with Staphylococcus aureus biofilm formation and host-pathogen interaction. J. Bacteriol. 2013, 195, 1645. [Google Scholar] [CrossRef] [Green Version]
- Zipperer, A.; Konnerth, M.C.; Laux, C.; Berscheid, A.; Janek, D.; Weidenmaier, C.; Burian, M.; Schilling, N.A.; Slavetinsky, C.; Marschal, M.; et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature 2016, 535, 511–516. [Google Scholar] [CrossRef]
- Naik, S.; Bouladoux, N.; Linehan, J.L.; Han, S.-J.; Harrison, O.J.; Wilhelm, C.; Conlan, S.; Himmelfarb, S.; Byrd, A.L.; Deming, C.; et al. Commensal–dendritic-cell interaction specifies a unique protective skin immune signature. Nature 2015, 520, 104–108. [Google Scholar] [CrossRef] [Green Version]
- Jounai, K.; Ikado, K.; Sugimura, T.; Ano, Y.; Braun, J.; Fujiwara, D. Spherical lactic acid bacteria activate plasmacytoid dendritic cells immunomodulatory function via TLR9-dependent crosstalk with myeloid dendritic cells. PLoS ONE 2012, 7, e32588. [Google Scholar] [CrossRef]
- Jounai, K.; Sugimura, T.; Morita, Y.; Ohshio, K.; Fujiwara, D. Administration of Lactococcus lactis strain Plasma induces maturation of plasmacytoid dendritic cells and protection from rotavirus infection in suckling mice. Int. Immunopharmacol. 2018, 56, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Jounai, K.; Sugimura, T.; Ohshio, K.; Fujiwara, D. Oral administration of Lactococcus lactis subsp. lactis JCM5805 enhances lung immune response resulting in protection from murine parainfluenza virus infection. PLoS ONE 2015, 10, e0119055. [Google Scholar] [CrossRef]
- Suzuki, H.; Tsuji, R.; Sugamata, M.; Yamamoto, N.; Yamamoto, N.; Kanauchi, O. Administration of plasmacytoid dendritic cell-stimulative lactic acid bacteria is effective against dengue virus infection in mice. Int. J. Mol. Med. 2019, 43, 426–434. [Google Scholar] [CrossRef] [Green Version]
- Sugimura, T.; Jounai, K.; Ohshio, K.; Suzuki, H.; Kirisako, T.; Sugihara, Y.; Fujiwara, D. Long-term administration of pDC-stimulative Lactococcus lactis strain decelerates senescence and prolongs the lifespan of mice. Int. Immunopharmacol. 2018, 58, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, R.; Komano, Y.; Ohshio, K.; Ishii, N.; Kanauchi, O. Long-term administration of pDC stimulative lactic acid bacteria, Lactococcus lactis strain Plasma, prevents immune-senescence and decelerates individual senescence. Exp. Gerontol. 2018, 111, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, R.; Fujii, T.; Nakamura, Y.; Yazawa, K.; Kanauchi, O. Staphylococcus aureus epicutaneous infection is suppressed by Lactococcus lactis strain Plasma via interleukin 17a elicitation. J. Infec. Dis. 2019, 220, 892–901. [Google Scholar] [CrossRef]
- Sugimura, T.; Jounai, K.; Ohshio, K.; Tanaka, T.; Suwa, M.; Fujiwara, D. Immunomodulatory effect of Lactococcus lactis JCM5805 on human plasmacytoid dendritic cells. Clin. Immunol. 2013, 149, 509–518. [Google Scholar] [CrossRef]
- Maekawa, M.; Yamada, K.; Toyoshima, M.; Ohnishi, T.; Iwayama, Y.; Shimamoto, C.; Toyota, T.; Nozaki, Y.; Balan, S.; Matsuzaki, H.; et al. Utility of scalp hair follicles as a novel source of biomarker genes for psychiatric illnesses. Biol. Psychiatry 2015, 78, 116–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larionov, A.; Krause, A.; Miller, W. A standard curve based method for relative real time PCR data processing. BMC Bioinform. 2005, 6, 62. [Google Scholar] [CrossRef] [Green Version]
- de Almada, C.N.; Almada, C.N.; Martinez, R.C.R.; Sant’Ana, A.S. Paraprobiotics: Evidences on their ability to modify biological responses, inactivation methods and perspectives on their application in foods. Trends Food Sci. Technol. 2016, 58, 96–114. [Google Scholar] [CrossRef]
- Taverniti, V.; Guglielmetti, S. The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: Proposal of paraprobiotic concept). Genes Nutr. 2011, 6, 261–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanauchi, O.; Andoh, A.; AbuBakar, S.; Yamamoto, N. Probiotics and paraprobiotics in viral infection: Clinical application and effects on the innate and acquired immune systems. Curr. Pharm. Des. 2018, 24, 710–717. [Google Scholar] [CrossRef]
- Degitz, K.; Placzek, M.; Borelli, C.; Plewig, G. Pathophysiology of acne. J. Dtsch. Dermatol. Ges. 2007, 5, 316–323. [Google Scholar] [CrossRef]
- Serup, J.; Agner, T. Colorimetric quantification of erythema—A comparison of two colorimeters (lange micro color and minolta chroma meter CR-200) with a clinical scoring scheme and laser-doppler flowmetry. Clin. Exp. Dermatol. 1990, 15, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Kuo, S.; Shu, M.; Yu, J.; Huang, S.; Dai, A.; Two, A.; Gallo, R.L.; Huang, C.-M. Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: Implications of probiotics in acne vulgaris. Appl. Microbiol. Biotechnol. 2014, 98, 411–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kloos, W.E.; Bannerman, T.L. Update on clinical significance of coagulase-negative staphylococci. Clin. Microbiol. Rev. 1994, 7, 117. [Google Scholar] [CrossRef] [PubMed]
- Chesneau, O.; Morvan, A.; Grimont, F.; Labischinski, H.; El Solh, N. Staphylococcus pasteuri sp. Nov., isolated from human, animal, and food specimens. Int. J. Syst. Evol. Microbiol. 1993, 43, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.; Quan, L.-H.; Heu, S.; Jung, K.S.; Han, S.-W.; Moon, E.; Roh, E. A new antimicrobial substance produced by Staphylococcus pasteuri isolated from vegetables. Food Sci. Biotechnol. 2014, 23, 983–990. [Google Scholar] [CrossRef]
- Ito, T.; Tsuji, G.; Ohno, F.; Uchi, H.; Nakahara, T.; Hashimoto-Hachiya, A.; Yoshida, Y.; Yamamoto, O.; Oda, Y.; Furue, M. Activation of the OVOL1-OVOL2 axis in the hair bulb and in pilomatricoma. Am. J. Pathol. 2016, 186, 1036–1043. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.; Villarreal-Ponce, A.; Fallahi, M.; Ovadia, J.; Sun, P.; Yu, Q.-C.; Ito, S.; Sinha, S.; Nie, Q.; Dai, X. Transcriptional mechanisms link epithelial plasticity to adhesion and differentiation of epidermal progenitor cells. Develop. Cell 2014, 29, 47–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teng, A.; Nair, M.; Wells, J.; Segre, J.A.; Dai, X. Strain-dependent perinatal lethality of OVOL1-deficient mice and identification of OVOL2 as a downstream target of OVOL1 in skin epidermis. Biochim. Biophys. Acta Mol. Basis Dis. 2007, 1772, 89–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamer, F.; Yuksel, M.E.; Sarifakioglu, E.; Karabag, Y. Staphylococcus aureus is the most common bacterial agent of the skin flora of patients with seborrheic dermatitis. Dermatol. Pract. Concept. 2018, 8, 80–84. [Google Scholar] [CrossRef] [Green Version]
- McLaughlin, J.; Watterson, S.; Layton, A.M.; Bjourson, A.J.; Barnard, E.; McDowell, A. Propionibacterium acnes and acne vulgaris: New insights from the integration of population genetic, multi-omic, biochemical and host-microbe studies. Microorganisms 2019, 7, 128. [Google Scholar] [CrossRef] [Green Version]
- Paetzold, B.; Willis, J.R.; Pereira de Lima, J.; Knödlseder, N.; Brüggemann, H.; Quist, S.R.; Gabaldón, T.; Güell, M. Skin microbiome modulation induced by probiotic solutions. Microbiome 2019, 7, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrieri, A.; Haiminen, N.; Maudsley-Barton, S.; Gardiner, L.J.; Murphy, B.; Mayes, A.; Paterson, S.; Grimshaw, S.; Martyn Winn, M.; Shand, C.; et al. Explainable AI reveals changes in skin microbiome composition linked to phenotypic differences. Sci. Rep. 2021, 11, 4565. [Google Scholar] [CrossRef]
Inclusion Criteria | |
(1) | Healthy Japanese females aged from 20 to less than 45 years old, when giving the informed consent. |
(2) | Healthy individuals not having any chronic disease. |
(3) | Individuals whose skin bacteria can be detected from forehead. |
(4) | Individuals who generally have skin problems. |
(5) | Individuals who are working more than 3 days per week. |
(6) | Individuals who give the informed consents in writing, after receiving enough explanation of the purpose and details of the study, understanding the study well, and deciding to attend the study with their own will. |
(7) | Individuals who can accomplish their tasks in the study at the appointed date. |
(8) | Individuals who are judged suitable for this study by the investigators. |
Exclusion Criteria | |
(1) | Individuals who have diseases with medications. |
(2) | Individuals who receive medications within 1 month before examination. |
(3) | Individuals who have a medical history of serious disease of liver, kidney, heart, lung, blood and digestive tract. |
(4) | Individuals who have severe skin disorder, such as skin burn. |
(5) | Individuals who are difficult to take samples for gene expression analysis. |
(6) | Individuals who refuse to disclose their biological sexes. |
(7) | Individuals who may have an allergic symptom to test foods, or individuals who may have a serious allergic symptom to other foods, or medicaments. |
(8) | Individuals who are alcoholic or have mental disorders. |
(9) | Individuals who have a smoking habitat. |
(10) | Individuals who will change their life style during test period, such as traveling for a long period. |
(11) | Individuals who cannot keep from direct sunlight exposure, such as tanning activities, during test period. |
(12) | Individuals who may occur seasonal allergic symptoms, such as hay fever, and receive medications during test period. |
(13) | Individuals who have severe menopausal symptoms. |
(14) | Individuals who are taking or took foods or medications, specified for skin conditions or are planning to take these foods during test period. |
(15) | Individuals who cannot stop eating probiotics or lactic acid bacteria containing foods during test period. |
(16) | Individuals who have severe anemia. |
(17) | Individuals who donate more than 200 mL of blood within 1 month or more than 400 mL of blood within 3 months. |
(18) | Individuals who have a surgical or treatment history on the regions of measurement within 6 months. |
(19) | Individuals who are pregnant, breastfeeding, or planning to be pregnant in the near future. |
(20) | Individuals who are participating or participated in another clinical trial within the last 3 months. |
(21) | Individuals who and whose family living with them work for a company manufacturing or selling healthy foods or cosmetics. |
(22) | Individuals who are judged as unsuitable for participating this study by the investigator. |
Gene | Primer Sequence | |
---|---|---|
TGFB1 | F′ | 5′-CCCAGCATCTGCAAAGCTC-3′ |
R′ | 5′-GTCAATGTACAGCTGCCGCA-3′ | |
BD1 | F′ | 5′-ACCTTCTGCTGTTTACTCTCTGCTTAC-3′ |
R′ | 5′-TCCACTGCTGACGCAATTGTA-3′ | |
BD2 | F′ | 5′-TCCTCTTCTCGTTCCTCTTCATATTC-3′ |
R′ | 5′-GACTGGATGACATATGGCTCCAC-3′ | |
BD3 | F′ | 5′-CCATTATCTTCTGTTTGCTTTGCTC-3′ |
R′ | 5′-CCGCCTCTGACTCTGCAATAATA-3′ | |
S100A8 | F′ | 5′-ATGCCGTCTACAGGGATGAC-3′ |
R′ | 5′-ACGCCCATCTTTATCACCAG-3′ | |
S100A9 | F′ | 5′-TCATCAACACCTTCCACCAA-3′ |
R′ | 5′-GTGTCCAGGTCCTCCATGAT-3′ | |
CLDN1 | F′ | 5′-CTGCCCCAGTGGAGGATTTA-3′ |
R′ | 5′-CATGGCCTGGGCGGT-3′ | |
ZO1 | F′ | 5′-CAGCCGGTCACGATCTCCT-3′ |
R′ | 5′-TCCGGAGACTGCCATTGC-3′ | |
OCLN | F′ | 5′-AACCCAACTGCTCAGTCTTC-3′ |
R′ | 5′-TGATCCACGTAGAGTCCAGTAG-3′ | |
OVOL1 | F′ | 5′-CCGTGCGTCTCCACGTGCAA-3′ |
R′ | 5′-GGCTGTGGTGGGCAGAAGCC-3′ | |
GAPDH | F′ | 5′-GCACCGTCAAGGCTGAGAAC-3′ |
R′ | 5′-TGGTGAAGACGCCAGTGGA-3′ |
Item | Placebo | LC-Plasma | p-Value |
---|---|---|---|
Number of subjects | 34 | 34 | |
Age | 34.1 ± 7.2 | 34.0 ± 6.5 | 0.94 |
BMI | 21.1 ± 2.9 | 20.6 ± 2.5 | 0.508 |
P. acnes counts (CFU equivalent) | 39172 ± 37324 | 45784 ± 51079 | 0.55 |
Number of S. aureus positive subjects | 21/34 | 24/34 | |
a-value | 7.72 ± 1.41 | 7.90 ± 1.62 | 0.51 |
Simpson Index | Shannon Index | ||||||
---|---|---|---|---|---|---|---|
0W | 8W | p Value | 0W | 8W | p Value | ||
Genus | Placebo | 0.72 ± 0.19 | 0.47 ± 0.22 | 0.000 ** | 3.61 ± 1.36 | 2.03 ± 1.14 | 0.000 ** |
LC-Plasma | 0.71 ± 0.19 | 0.52 ± 0.26 | 0.000 ** | 3.47 ± 1.22 | 2.26 ± 1.31 | 0.000 ** | |
Species | Placebo | 0.76 ± 0.19 | 0.49 ± 0.23 | 0.000 ** | 4.45 ± 1.64 | 2.51 ± 1.49 | 0.000 ** |
LC-Plasma | 0.74 ± 0.19 | 0.55 ± 0.28 | 0.000 ** | 4.22 ± 1.44 | 2.91 ± 1.75 | 0.000 ** |
Indexes | Group | 0W | 8W | p Value |
---|---|---|---|---|
Cytokine genes | ||||
TGFB1 | Placebo | 0.86 ± 0.19 | 0.92 ± 0.28 | 0.192 |
LC-Plasma | 0.93 ± 0.24 | 1.05 ± 0.33 | 0.019 * | |
AMP genes | ||||
BD1 | Placebo | 0.86 ± 0.59 | 1.13 ± 0.79 | 0.042 * |
LC-Plasma | 1.12 ± 1.02 | 1.35 ± 1.02 | 0.02 * | |
BD2 | Placebo | 0.77 ± 1.24 | 1.32 ± 2.48 | 0.134 |
LC-Plasma | 0.61 ± 1.42 | 0.91 ± 1.96 | 0.225 | |
BD3 | Placebo | 0.79 ± 0.70 | 0.83 ± 0.59 | 0.628 |
LC-Plasma | 0.76 ± 0.55 | 0.97 ± 0.59 | 0.008 ** | |
S100A8 | Placebo | 0.74 ± 0.49 | 0.86 ± 0.66 | 0.257 |
LC-Plasma | 0.86 ± 0.68 | 1.14 ± 0.97 | 0.063 † | |
S100A9 | Placebo | 0.87 ± 0.44 | 1.05 ± 0.40 | 0.023 * |
LC-Plasma | 1.08 ± 0.58 | 1.33 ± 0.66 | 0.007 ** | |
TJ genes | ||||
Cldn1 | Placebo | 0.86 ± 0.30 | 1.05 ± 0.40 | 0.000 ** |
LC-Plasma | 1.06 ± 0.41 | 1.47 ± 0.53 | 0.000 ** | |
OCLN | Placebo | 0.85 ± 0.31 | 1.08 ± 0.38 | 0.003 ** |
LC-Plasma | 0.98 ± 0.36 | 1.18 ± 0.43 | 0.026 * | |
ZO1 | Placebo | 1.22 ± 0.28 | 1.28 ± 0.30 | 0.374 |
LC-Plasma | 1.30 ± 0.35 | 1.36 ± 0.34 | 0.410 | |
Other genes | ||||
OVOL1 | Placebo | 1.07 ± 0.75 | 0.81 ± 0.40 | 0.03 * |
LC-Plasma | 1.03 ± 0.64 | 0.94 ± 0.78 | 0.543 |
Indices | Group | 0W | 8W | p Value |
---|---|---|---|---|
Dryness | Placebo | 0.41 ± 0.78 | 0.88 ± 0.94 | 0.003 ** |
LC-Plasma | 1.18 ± 1.27 | 1.32 ± 1.04 | 0.503 | |
Erythema | Placebo | 1.71 ± 0.87 | 1.44 ± 1.05 | 0.107 |
LC-Plasma | 2.03 ± 0.90 | 1.71 ± 1.12 | 0.041 * | |
Scale | Placebo | 0.56 ± 0.79 | 0.85 ± 0.93 | 0.110 |
LC-Plasma | 1.21 ± 1.20 | 1.21 ± 1.07 | 0.908 | |
Irritaion | Placebo | 0.00 ± 0.00 | 0.03 ± 0.17 | 1.000 |
LC-Plasma | 0.06 ± 0.34 | 0.00 ± 0.00 | 1.000 | |
Itching | Placebo | 0.00 ± 0.00 | 0.03 ± 0.17 | 1.000 |
LC-Plasma | 0.03 ± 0.17 | 0.03 ± 0.17 | 1.000 |
Indices | Group | 0W | 8W | p Value |
---|---|---|---|---|
TEWL (gm−2h−1) | Placebo | 16.85 ± 6.26 | 21.34 ± 6.80 | 0.002 ** |
LC-Plasma | 16.44 ± 5.07 | 22.09 ± 8.86 | 0.000 ** | |
Skin Moisture (A.U.) | Placebo | 58.32 ± 10.43 | 55.16 ± 11.79 | 0.140 |
LC-Plasma | 55.38 ± 12.13 | 52.93 ± 15.61 | 0.200 | |
L* | Placebo | 64.51 ± 2.36 | 65.29 ± 2.11 | 0.002 ** |
LC-Plasma | 64.36 ± 2.94 | 65.33 ± 2.64 | 0.001 ** | |
a* | Placebo | 7.90 ± 1.76 | 7.82 ± 1.62 | 0.526 |
LC-Plasma | 7.72 ± 1.74 | 7.58 ± 1.42 | 0.700 | |
b* | Placebo | 16.55 ± 1.98 | 15.97 ± 2.16 | 0.004 ** |
LC-Plasma | 16.45 ± 2.02 | 15.75 ± 2.21 | 0.000 ** | |
Melanine | Placebo | 0.92 ± 0.16 | 0.87 ± 0.14 | 0.000 ** |
LC-Plasma | 0.91 ± 0.20 | 0.85 ± 0.18 | 0.000 ** | |
Hb index | Placebo | 1.18 ± 0.28 | 1.08 ± 0.25 | 0.735 |
LC-Plasma | 1.16 ± 0.24 | 1.14 ± 0.21 | 0.637 | |
HbSO2 | Placebo | 52.58 ± 4.27 | 56.06 ± 5.02 | 0.000 ** |
LC-Plasma | 53.66 ± 5.05 | 57.95 ± 4.59 | 0.000 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsuji, R.; Yazawa, K.; Kokubo, T.; Nakamura, Y.; Kanauchi, O. The Effects of Dietary Supplementation of Lactococcus lactis Strain Plasma on Skin Microbiome and Skin Conditions in Healthy Subjects—A Randomized, Double-Blind, Placebo-Controlled Trial. Microorganisms 2021, 9, 563. https://doi.org/10.3390/microorganisms9030563
Tsuji R, Yazawa K, Kokubo T, Nakamura Y, Kanauchi O. The Effects of Dietary Supplementation of Lactococcus lactis Strain Plasma on Skin Microbiome and Skin Conditions in Healthy Subjects—A Randomized, Double-Blind, Placebo-Controlled Trial. Microorganisms. 2021; 9(3):563. https://doi.org/10.3390/microorganisms9030563
Chicago/Turabian StyleTsuji, Ryohei, Kamiyu Yazawa, Takeshi Kokubo, Yuumi Nakamura, and Osamu Kanauchi. 2021. "The Effects of Dietary Supplementation of Lactococcus lactis Strain Plasma on Skin Microbiome and Skin Conditions in Healthy Subjects—A Randomized, Double-Blind, Placebo-Controlled Trial" Microorganisms 9, no. 3: 563. https://doi.org/10.3390/microorganisms9030563
APA StyleTsuji, R., Yazawa, K., Kokubo, T., Nakamura, Y., & Kanauchi, O. (2021). The Effects of Dietary Supplementation of Lactococcus lactis Strain Plasma on Skin Microbiome and Skin Conditions in Healthy Subjects—A Randomized, Double-Blind, Placebo-Controlled Trial. Microorganisms, 9(3), 563. https://doi.org/10.3390/microorganisms9030563