Comparison of Phenotypical Antimicrobial Resistance between Clinical and Non-Clinical E. coli Isolates from Broilers, Turkeys and Calves in Four European Countries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Processing
2.2. Overcoming the Lack of Harmonization within Countries on Antimicrobial Susceptibility Testing
2.3. Statistical Analysis
3. Results
3.1. Ampicillin
3.2. Gentamicin
3.3. Nalidixic Acid
3.4. Tetracycline
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A.
Drug\Year | 2014 | 2015 | 2016 | 2017 |
---|---|---|---|---|
Penicillins * | 16,122.4 | 11,209.2 | 8879.5 | 6612.2 |
Tetracyclines | 12,446.0 | 6655.7 | 3310.4 | 712.0 |
References
- World Health Organization. Global Action Plan on Antimicrobial Resistance. Available online: http://www.who.int/antimicrobial-resistance/global-action-plan/en/ (accessed on 24 March 2021).
- European Commision. A European One Health Action Plan against Antimicrobial Resistance (AMR). Available online: https://ec.europa.eu/health/amr/antimicrobial-resistance_en (accessed on 24 March 2021).
- Ministry of Social Affairs and Health. Some Innovative Measures of the French Antimicrobial Resistance National Action Plan. Available online: https://solidarites-sante.gouv.fr/IMG/pdf/quelques_mesures_innovantes_pour_lutter_contre_l_antibioresistance.pdf (accessed on 24 March 2021).
- The Federal Ministry of Health the Federal Ministry of Food and Agriculture and the Federal Ministry of Education and Research. DART 2020. Fighting Antibiotic Resistance for the Good of Both Humans and Animals. Available online: https://www.bundesgesundheitsministerium.de/fileadmin/Dateien/5_Publikationen/Gesundheit/Berichte/BMG_DART_2020_Bericht_en.pdf (accessed on 24 March 2021).
- UK Goverment. UK 5-Year Action Plan for Antimicrobial Resistance 2019 to 2024. Available online: https://www.gov.uk/government/publications/uk-5-year-action-plan-for-antimicrobial-resistance-2019-to-2024 (accessed on 24 March 2021).
- FAO/WHO/OIE. Joint FAO/OIE/WHO Expert Workshop on Non-Human Antimicrobial Usage and Antimicrobial Resistance: Scientific Assessment. Available online: http://www.fao.org/3/a-bq500e.pdf (accessed on 24 March 2021).
- Sanders, P.; Vanderhaeghen, W.; Fertner, M.; Fuchs, K.; Obritzhauser, W.; Agunos, A.; Carson, C.; Borck Høg, B.; Dalhoff Andersen, V.; Chauvin, C.; et al. Monitoring of Farm-Level Antimicrobial Use to Guide Stewardship: Overview of Existing Systems and Analysis of Key Components and Processes. Front. Vet. Sci. 2020, 7. [Google Scholar] [CrossRef] [PubMed]
- Djordjevic, S.P.; Stokes, H.W.; Roy Chowdhury, P. Mobile elements, zoonotic pathogens and commensal bacteria: Conduits for the delivery of resistance genes into humans, production animals and soil microbiota. Front. Microbiol. 2013, 4, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Commission. Commission Implementing Decision of 12 November 2013 on the Monitoring and Reporting of Antimicrobial Resistance in Zoonotic and Commensal Bacteria (Notified under Document C(2013) 7145) (Text with EEA Relevance) (2013/652/EU). 12 October 2018. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32013D0652&qid=1539349584328&from=EN (accessed on 24 March 2021).
- European Food Safety Authorithy (EFSA). The European Union Summary Report on Antimicrobial Resistance in Zoonotic and Indicator Bacteria from Humans, Animals and Food in 2017. EFSA J. 2019, 17, 5598. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA J. 2018, 16, e05500. [Google Scholar]
- Nhung, N.T.; Cuong, N.V.; Thwaites, G.; Carrique-Mas, J. Antimicrobial Usage and Antimicrobial Resistance in Animal Production in Southeast Asia: A Review. Antibiotics 2016, 5, 37. [Google Scholar] [CrossRef] [Green Version]
- EUCAST. MIC and Zone Diameter Distributions and ECOFFs. Available online: https://www.eucast.org/mic_distributions_and_ecoffs/ (accessed on 24 March 2021).
- EUCAST. Clinical Breakpoints-Breakpoints and Guidance. Available online: https://www.eucast.org/clinical_breakpoints/ (accessed on 24 March 2021).
- EUCAST. New S, I and R Definitions. Available online: https://www.eucast.org/newsiandr/ (accessed on 24 March 2021).
- Mesa-Varona, O.; Chaintarli, K.; Muller-Pebody, B.; Anjum, M.; Eckmanns, T.; Norström, M.; Boone, I.; Tenhagen, B.-A. Monitoring Antimicrobial Resistance and Drug Usage in the Human and Livestock Sector and Foodborne Antimicrobial Resistance in Six European Countries. Infect. Drug Resist. 2020, 13, 957–993. [Google Scholar] [CrossRef] [Green Version]
- El Garch, F.; de Jong, A.; Simjee, S.; Moyaert, H.; Klein, U.; Ludwig, C.; Marion, H.; Haag-Diergarten, S.; Richard-Mazet, A.; Thomas, V.; et al. Monitoring of antimicrobial susceptibility of respiratory tract pathogens isolated from diseased cattle and pigs across Europe, 2009–2012: VetPath results. Vet. Microbiol. 2016, 194, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Schrijver, R.; Stijntjes, M.; Rodriguez-Bano, J.; Tacconelli, E.; Babu Rajendran, N.; Voss, A. Review of antimicrobial resistance surveillance programmes in livestock and meat in EU with focus on humans. Clin. Microbiol. Infect. 2018, 24, 577–590. [Google Scholar] [CrossRef] [Green Version]
- Mader, R.; Damborg, P.; Amat, J.-P.; Bengtsson, B.; Bourély, C.; Broens, E.M.; Busani, L.; Crespo-Robledo, P.; Filippitzi, M.-E.; Fitzgerald, W.; et al. Building the European Antimicrobial Resistance Surveillance network in veterinary medicine (EARS-Vet). Eurosurveillance 2021, 26, 2001359. [Google Scholar] [CrossRef]
- European Medicines Agency (EMA). Interactive ESVAC Database. 2019. Available online: https://esvacbi.ema.europa.eu/analytics/saw.dll?PortalPages (accessed on 24 March 2021).
- Veterinary Medicines Directorate (VMD). UK Veterinary Antibiotic Resistance and Sales Surveillance Report (UK-VARSS 2018). 2019. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/842678/PCDOCS-_1705145-v1-UK-VARSS_2018_Report__2019__FINAL_v2.pdf (accessed on 24 March 2021).
- Köper, L.M.; Bode, C.; Bender, A.; Reimer, I.; Heberer, T.; Wallmann, J. Eight years of sales surveillance of antimicrobials for veterinary use in Germany—What are the perceptions? PLoS ONE 2020, 15, e0237459. [Google Scholar] [CrossRef] [PubMed]
- AbuOun, M.; O’Connor, H.M.; Stubberfield, E.J.; Nunez-Garcia, J.; Sayers, E.; Crook, D.W.; Smith, R.P.; Anjum, M.F. Characterizing Antimicrobial Resistant Escherichia coli and Associated Risk Factors in a Cross-Sectional Study of Pig Farms in Great Britain. Front. Microbiol. 2020, 11, 861. [Google Scholar] [CrossRef] [PubMed]
- Aasmae, B.; Hakkinen, L.; Kaart, T.; Kalmus, P. Antimicrobial resistance of Escherichia coli and Enterococcus spp. isolated from Estonian cattle and swine from 2010 to 2015. Acta Vet. Scand. 2019, 61, 5. [Google Scholar] [CrossRef]
- Mesa-Varona, O.; Kaspar, H.; Grobbel, M.; Tenhagen, B.-A. Phenotypical antimicrobial resistance data of clinical and non-clinical Escherichia coli from poultry in Germany between 2014 and 2017. PLoS ONE 2020, 15, e0243772. [Google Scholar] [CrossRef]
- Callens, B.; Dewulf, J.; Kronvall, G.; Catry, B.; Haesebrouck, F.; Boyen, F. Antimicrobial resistance surveillance in Escherichia coli by using normalized resistance interpretation. Vet. Microbiol. 2016, 197, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Kronvall, G. Normalized Resistance Interpretation as a Tool for Establishing Epidemiological MIC Susceptibility Breakpoints. J. Clin. Microbiol. 2010, 48, 4445–4452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bundesamt für Verbarucherschutz und Lebensmittelsicherheit (BVL). Zoonosen-Monitoring. Available online: https://www.bvl.bund.de/DE/Arbeitsbereiche/01_Lebensmittel/01_Aufgaben/02_AmtlicheLebensmittelueberwachung/06_ZoonosenMonitoring/lm_zoonosen_monitoring_node.html (accessed on 24 March 2021).
- Bundesamt für Verbraucherschutz und Lebensmittelsicherkeit (BVL). Bericht zum GERM-Vet Monitoring Programm. 2016. Available online: https://www.bvl.bund.de/SharedDocs/Fachmeldungen/07_untersuchungen/2018/2018_10_09_Fa_GERM-Vet-2016.html (accessed on 24 March 2021).
- European Food Safety Authority (EFSA). Trends and Sources of Zoonoses and Zoonotic Agents in Food Stuffs, Animals and Feeding Stuffs (France). 2018. Available online: https://www.efsa.europa.eu/sites/default/files/zoocountryreport18fr.pdf (accessed on 24 March 2021).
- Norwegian Veterinary Institute. NORM-VET Reports. Available online: https://www.vetinst.no/en/surveillance-programmes/norm-norm-vet-report (accessed on 24 March 2021).
- French Agency for Food Environmental and Occupational Health & Safety (ANSES). French Surveillance Network for Antimicrobial Resistance in Bacteria from Diseased Animals (RESAPATH). 2019. Available online: https://www.anses.fr/en/system/files/LABO-Ra-Resapath2017EN.pdf (accessed on 24 March 2021).
- The British Society of Antimicrobial Chemotherapy. BSAC Methods for Antimicrobial Susceptibility Testing. Available online: https://bsac.org.uk/wp-content/uploads/2012/02/BSAC-disc-susceptibility-testing-method-Jan-2015.pdf (accessed on 24 March 2021).
- Vourli, S.; Dafopoulou, K.; Vrioni, G.; Tsakris, A.; Pournaras, S. Evaluation of two automated systems for colistin susceptibility testing of carbapenem-resistant Acinetobacter baumannii clinical isolates. J. Antimicrob. Chemother. 2017, 72, 2528–2530. [Google Scholar] [CrossRef] [PubMed]
- EUCAST. Problems with Colistin Susceptibility Testing and Several Commercially Available Products. Available online: https://www.eucast.org/ast_of_bacteria/warnings/ (accessed on 24 March 2021).
- Flor, M.; Käsbohrer, A.; Kaspar, H.; Tenhagen, B.-A.; Wallmann, J. Arbeitsgruppe Antibiotikaresistenz des Bundesinstituts für Risikobewertung und des Bundesamtes für Verbraucherschutz und Lebensmittelsicherheit. Themenkomplex 1: Entwicklung der Antibiotikaabgabe- und -verbrauchsmengen Sowie der Therapiehäufigkeit. 2019. Available online: https://www.bmel.de/SharedDocs/Downloads/DE/_Tiere/Tiergesundheit/Tierarzneimittel/16-AMG-Novelle-Anlage2.pdf?__blob=publicationFile&v=2 (accessed on 24 March 2021).
- French Agency for Food Environmental and Occupational Health & Safety (ANSES). Sales Survey of Veterinary Medicinal Products Containing Antimicrobials in France in 2017. 2018. Available online: https://www.anses.fr/en/system/files/ANMV-Ra-Antibiotiques2017EN.pdf (accessed on 24 March 2021).
- Kronvall, G.; Smith, P. Normalized resistance interpretation, the NRI method. APMIS 2016, 124, 1023–1030. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA); Aerts, M.; Battisti, A.; Hendriksen, R.; Kempf, I.; Teale, C.; Tenhagen, B.-A.; Veldman, K.; Wasyl, D.; Guerra, B.; et al. Technical specifications on harmonised monitoring of antimicrobial resistance in zoonotic and indicator bacteria from food-producing animals and food. EFSA J. 2019, 17, e05709. [Google Scholar] [CrossRef] [Green Version]
- EFSA/EMA/ECDC. Analysis of Antimicrobial Consumption and Resistance (‘JIACRA’ Reports). Available online: https://www.ema.europa.eu/en/veterinary-regulatory/overview/antimicrobial-resistance/analysis-antimicrobial-consumption-resistance-jiacra-reports (accessed on 24 March 2021).
- Tenhagen, B.A.; Käsbohrer, A.; Grobbel, M.; Hammerl, J.; Kaspar, H. Antimicrobial resistance in E. coli from different cattle populations in Germany. Tierarztl. Prax. Ausg. G Grosstiere Nutztiere 2020, 48, 218–227. [Google Scholar] [CrossRef]
- Duggett, N.; Ellington, M.J.; Hopkins, K.L.; Ellaby, N.; Randall, L.; Lemma, F.; Teale, C.; Anjum, M.F. Detection in livestock of the human pandemic Escherichia coli ST131 fimH30(R) clone carrying blaCTX-M-27. J. Antimicrob. Chemother. 2021, 76, 263–265. [Google Scholar] [CrossRef] [PubMed]
- Treacy, J.; Jenkins, C.; Paranthaman, K.; Jorgensen, F.; Mueller-Doblies, D.; Anjum, M.; Kaindama, L.; Hartman, H.; Kirchner, M.; Carson, T.; et al. Outbreak of Shiga toxin-producing Escherichia coli O157:H7 linked to raw drinking milk resolved by rapid application of advanced pathogen characterisation methods, England, August to October 2017. Eurosurveillance 2019, 24, 1800191. [Google Scholar] [CrossRef] [PubMed]
- Stubberfield, E.; AbuOun, M.; Sayers, E.; O’Connor, H.M.; Card, R.M.; Anjum, M.F. Use of whole genome sequencing of commensal Escherichia coli in pigs for antimicrobial resistance surveillance, United Kingdom, 2018. Eurosurveillance 2019, 24, 1900136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ITAVI. Professional Network of References on the Uses of Antibiotics in Poultry Farming, 2018. 2019. Available online: https://www.itavi.asso.fr/content/reseau-professionnel-de-references-sur-les-usages-dantibiotiques-en-elevage-avicole (accessed on 24 March 2021).
- European Food Safety Authority (EFSA). The European Union Summary Report on Antimicrobial Resistance in Zoonotic and Indicator Bacteria from Humans, Animals and Food in 2014. EFSA J. 2016, 14, 4380. [Google Scholar]
- European Food Safety Authority (EFSA). The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2016. EFSA J. 2018, 16, e05182. [Google Scholar]
- European Food Safety Authority (EFSA). The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2015. EFSA J. 2017, 15, e04694. [Google Scholar]
- EFSA Panel on Biological Hazards (BIOHAZ); Ricci, A.; Allende, A.; Bolton, D.; Chemaly, M.; Davies, R.; Fernández Escámez, P.S.; Girones, R.; Koutsoumanis, K.; Lindqvist, R.; et al. Risk for the development of Antimicrobial Resistance (AMR) due to feeding of calves with milk containing residues of antibiotics. EFSA J. 2017, 15, e04665. [Google Scholar] [CrossRef] [Green Version]
- Ceccarelli, D.; Hesp, A.; van der Goot, J.; Joosten, P.; Sarrazin, S.; Wagenaar, J.A.; Dewulf, J.; Mevius, D.J. Antimicrobial resistance prevalence in commensal Escherichia coli from broilers, fattening turkeys, fattening pigs and veal calves in European countries and association with antimicrobial usage at country level. J. Med. Microbiol. 2020, 69, 537–547. [Google Scholar] [CrossRef] [PubMed]
- World Organisation for Animal Health (OIE). OIE List of Antimicrobial Agents of Veterinary Importance; World Organisation for Animal Health: Paris, France, 2019. [Google Scholar]
- European Medicines Agency (EMA). Reflection Paper on Use of Aminoglycosides in Animals in the European Union: Development of Resistance and Impact on Human and Animal Health; European Medicines Agency: London, UK, 2017.
- Cheng, A.C.; Turnidge, J.; Collignon, P.; Looke, D.; Barton, M.; Gottlieb, T. Control of fluoroquinolone resistance through successful regulation, Australia. Emerg. Infect. Dis. 2012, 18, 1453–1460. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, K.; Wong, A. The mutational landscape of quinolone resistance in Escherichia coli. PLoS ONE 2019, 14, e0224650. [Google Scholar] [CrossRef] [Green Version]
- Osińska, A.; Harnisz, M.; Korzeniewska, E. Prevalence of plasmid-mediated multidrug resistance determinants in fluoroquinolone-resistant bacteria isolated from sewage and surface water. Environ. Sci. Pollut. Res. Int. 2016, 23, 10818–10831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourély, C.; Cazeau, G.; Jarrige, N.; Jouy, E.; Haenni, M.; Lupo, A.; Madec, J.-Y.; Leblond, A.; Gay, E. Co-resistance to Amoxicillin and Tetracycline as an Indicator of Multidrug Resistance in Escherichia coli Isolates From Animals. Front. Microbiol. 2019, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Committee on Antimicrobial Susceptibility Testing. MIC Distributions and Epidemiological Cut-Off Value (ECOFF) Setting; EUCAST SOP 10.1; EUCAST: Växjö, Sweden, 2019.
- Coz, E.; Jouy, E.; Cazeau, G.; Jarrige, N.; Delignette-Muller, M.-L.; Chauvin, C. Colistin Resistance trends in Escherichia coli Isolated from Diseased Food-Produciong Animals in France—A Bayesian Estimation from Antibiograms Data. Tenth International Conference on Antimicrobial Agents in Veterinary Medicine (AAVM). 2020. Available online: https://www.aavmconference.com/general-information (accessed on 24 March 2021).
- Jaspers, S.; Lambert, P.; Aerts, M. A Bayesian approach to the semiparametric estimation of a minimum inhibitory concentration distribution. Ann. Appl. Stat. 2016, 10, 906–924. [Google Scholar] [CrossRef]
Antimicrobial Drug Tested | Cut-Offs (Number of Isolates Tested for the Determination) | |||
---|---|---|---|---|
Ampicillin | Nalidixic Acid | Tetracycline | Gentamicin | |
Epidemiological cut-off values (ECOFFs-EUCAST) for broth microdilution (mg/L) | >8 (73,390) | >8 (39,317) | >8 (17,276) | >2 (80,274) |
French NRI cut-offs adopting all IZD data (mm) | <17 (5792) | <22 (39,317) | <20 (51,882) | <20 (55,901) |
NRI cut-offs adopting all IZD data (mm) from the United Kingdom | <11 (2793) | <19 (2684) | ||
NRI cut-offs adopting all broth microdilution data from France, Germany, the United Kingdom and Norway (mg/L) | >16 (8381) | >8 (8379) | >4 (8373) | >2 (8372) |
Country Drug | 2014 | 2015 | 2016 | 2017 | ||
---|---|---|---|---|---|---|
Clinical | Non-Clinical 2 | Clinical | Clinical | Non-Clinical 2 | Clinical | |
Norway | ||||||
AMP | na | 6.3 (205) | 6.3 (16) 1 | 2.3 (43) | 3.9 (181) | 10.4 (77) |
GEN | na | 0.0 (205) | 0.0 (16) 1 | 2.3 (43) | 0.6 (181) | 3.9 (77) |
NAL | na | 3.4 (205) | 0.0 (16) 1 | 4.7 (43) | 6.1 (181) | 13.0 (77) |
TET | na | 1.5 (205) | 6.3 (16) 1 | 4.7 (43) | 3.3 (181) | 16.9 (77) |
UK | ||||||
AMP | 52.4 (103) | 73.6 (159) | 56.1 (171) | 34.7 (170) | 79.5 (303) | 26.7 (75) |
TET | 47.6 (103) | 60.4 (159) | 53.2 (171) | 36.5 (170) | 50.5 (303) | 25.3 (75) |
France | ||||||
AMP | 28.7 (411) | 55.9 (227) | 32.4 (519) | 29.1 (515) | 55.9 (188) | 27.8 (421) |
GEN | 5.5 (1352) | 1.8 (227) | 6.2 (2406) | 5.5 (3357) | 3.2 (188) | 5.1 (4156) |
NAL | 34.8 (881) | 43.7 (227) | 42.1 (1963) | 47.5 (2878) | 34.7 (188) | 45.9 (3650) |
TET | 49.8 (1495) | 63.4 (227) | 45.8 (2638) | 44.6 (3164) | 62.2 (188) | 45.8 (3453) |
Germany | ||||||
AMP | 50.0 (18) 1 | 55.2 (230) | 30.3 (76) | 32.0 (50) | 59.3 (177) | 56.1 (41) |
GEN | 5.5 (18) 1 | 7.0 (230) | 2.7 (75) | 12.0 (50) | 6.8 (177) | 7.3 (41) |
NAL | 44.4 (18) 1 | 44.8 (230) | 67.1 (76) | 58.0 (50) | 56.5 (177) | 46.3 (41) |
TET | 44.4 (18) 1 | 33.5 (230) | 17.3 (75) | 14.0 (50) | 28.8 (177) | 31.7 (41) |
Country Drug | 2014 | 2015 | 2016 | 2017 | ||
---|---|---|---|---|---|---|
Clinical | Clinical | Non-Clinical 1 | Clinical | Clinical | Non-Clinical 1 | |
France | ||||||
AMP | 79.3 (527) | 84.1 (592) | 53.5 (202) | 83.6 (477) | 83.9 (342) | 45.0 (202) |
GEN | 23.3 (2668) | 21.6 (3814) | 5.9 (202) | 20.9 (4543) | 20.2 (4117) | 4.4 (202) |
NAL | 47.1 (1124) | 42.8 (2203) | 12.4 (202) | (41.5 (2859) | 35.5 (2454) | 9.4 (202) |
TET | 79.9 (2290) | 78.0 (3542) | 72.8 (202) | 76.2 (4323) | 76.4 (3900) | 65.8 (202) |
Germany | ||||||
AMP | 70.9 (206) | 70.5 (207) | 31.8 (192) | 65.3 (121) | 75.0 (112) | 35.5 (242) |
GEN | 37.9 (203) | 29.9 (204) | 0.5 (192) | 20.7 (121) | 25.9 (112) | 3.3 (242) |
NAL | 50.5 (206) | 56.6 (205) | 10.4 (192) | 48.8 (121) | 50.9 (112) | 8.7 (242) |
TET | 63.7 (204) | 63.2 (204) | 38.5 (192) | 58.7 (121) | 67.9 (112) | 38.0 (242) |
Country Drug | 2014 | 2015 | 2016 | 2017 | ||
---|---|---|---|---|---|---|
Clinical | Non-Clinical 1 | Clinical | Clinical | Non-Clinical 1 | Clinical | |
France | ||||||
AMP | 41.6 (113) | 64.4 (239) | 34.8 (135) | 45.9 (109) | 67.0 (182) | 46.2 (117) |
GEN | 3.8 (640) | 4.2 (239) | 4.3 (1188) | 2.1 (1478) | 1.1 (182) | 1.7 (1552) |
NAL | 20.0 (551) | 20.9 (239) | 19.8 (1097) | 22.2 (1426) | 23.1 (182) | 20.3 (1401) |
TET | 48.0 (783) | 75.3 (239) | 47.3 (1401) | 41.8 (1345) | 67.6 (182) | 38.7 (1219) |
Germany | ||||||
AMP | 37.8 (82) | 64.1 (184) | 36.5 (104) | 37.9 (95) | 63.3 (188) | 57.1 (63) |
GEN | 2.5 (80) | 10.3 (184) | 3.8 (104) | 3.2 (95) | 6.4 (188) | 9.5(63) |
NAL | 49.4 (81) | 32.6 (184) | 22.9 (105) | 24.2 (95) | 22.3 (188) | 20.6 (63) |
TET | 41.3 (80) | 56.0 (184) | 22.1 (104) | 17.9 (95) | 43.6 (188) | 30.2 (63) |
Animal Category Drug | Factor | France | Germany | UK | Norway 1 | ||||
---|---|---|---|---|---|---|---|---|---|
p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | ||
Broilers | |||||||||
AMP | Isolate type | <0.001 | 0.34 (0.27–0.42) | <0.001 | 0.45 (0.31–0.65) | <0.001 | 0.23 (0.17–0.3) | 0.628 | 0.59 (0.03–3.45) |
Year | <0.001 | 0.9 (0.83–0.97) | 0.97 | 1.0 (0.86–1.17) | 0.001 | 0.8 (0.7–0.92) | na | na | |
GEN | Isolate type | 0.008 | 2.37 (1.33–4.77) | 0.913 | 0.97 (0.45–1.93) | na | na | 0.307 | 4.28 (0.16–109.86) |
Year | 0.456 | 0.98 (0.91–1.05) | 0.673 | 1.07 (0.78–1.47) | na | na | na | na | |
NAL | Isolate type | 0.043 | 1.24 (1.01–1.51) | 0.0529 | 1.44 (1.0–2.08) | na | na | 0.72 | 0.75 (0.11–2.95) |
Year | <0.001 | 1.12 (1.08–1.17) | 0.034 | 1.19 (1.02–1.4) | na | na | na | na | |
TET | Isolate type | <0.001 | 0.51 (0.41–0.62) | 0.006 | 0.55 (0.35–0.83) | <0.001 | 0.63 (0.49–0.81) | 0.673 | 1.42 (0.20–6.43) |
Year | 0.002 | 0.95 (0.92–0.98) | 0.172 | 0.89 (0.74–1.06) | <0.001 | 0.75 (0.65–0.85) | na | na | |
Calves | |||||||||
AMP | Isolate type | <0.001 | 4.92 (3.92–6.18) | <0.001 | 4.66 (3.59–6.06) | na | na | na | na |
Year | 0.005 | 0.89 (0.81–0.97) | <0.001 | 0.81 (0.73–0.9) | na | na | na | na | |
GEN | Isolate type | <0.001 | 4.95 (3.27–7.93) | <0.001 | 20.24 (10.85–43.09) | na | na | na | na |
Year | <0.001 | 0.94 (0.91–0.98) | <0.001 | 0.62 (0.53–0.72) | na | na | na | na | |
NAL | Isolate type | <0.001 | 5.65 (4.17–7.85) | <0.001 | 10.14 (7.18–14.67) | na | na | na | na |
Year | <0.001 | 0.86 (0.82–0.89) | <0.001 | 0.71 (0.63–0.8) | na | na | na | na | |
TET | Isolate type | <0.001 | 1.51 (1.22–1.87) | <0.001 | 2.79 (2.18–3.6) | na | na | na | na |
Year | <0.001 | 0.94 (0.9–0.97) | 0.003 | 0.85 (0.77–0.95) | na | na | na | na | |
Turkeys | |||||||||
AMP | Isolate type | <0.001 | 0.38 (0.29–0.5) | <0.001 | 0.4 (0.3–0.54) | na | na | na | na |
Year | 0.441 | 0.96 (0.85–1.08) | 0.857 | 1.02 (0.88–1.17) | na | na | na | na | |
GEN | Isolate type | 0.892 | 0.96 (0.55–1.85) | 0.035 | 0.51 (0.27–0.94) | na | na | na | na |
Year | <0.001 | 0.72 (0.62–0.84) | 0.624 | 0.94 (0.7–1.25) | na | na | na | na | |
NAL | Isolate type | 0.598 | 0.94 (0.74–1.2) | 0.628 | 0.93 (0.68–1.27) | na | na | na | na |
Year | 0.635 | 1.02 (0.96–1.09) | <0.001 | 0.76 (0.65–0.88) | na | na | na | na | |
TET | Isolate type | <0.001 | 0.31 (0.25–0.38) | <0.001 | 0.38 (0.28–0.51) | na | na | na | na |
Year | <0.001 | 0.83 (0.78–0.87) | <0.001 | 0.74 (0.64–0.86) | na | na | na | na |
Animal Category Drug | Factor | France | Germany | UK | |||
---|---|---|---|---|---|---|---|
p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | ||
Broilers | |||||||
AMP | Isolate type | <0.001 | 0.34 (0.27–0.43) | <0.001 | 0.23 (0.17–0.3) | ||
Year | 0.533 | 0.98 (0.9–1.06) | 0.005 | 0.81 (0.7–0.94) | |||
NAL | Isolate type | 0.382 | 1.1 (0.9–1.35) | 0.236 | 1.28 (0.86–1.91) | na | na |
Year | <0.001 | 1.12 (1.07–1.16) | 0.142 | 1.15 (0.96–1.36) | na | na | |
TET | Isolate type | <0.001 | 0.52 (0.43–0.64) | <0.001 | 0.64 (0.5–0.83) | ||
Year | 0.037 | 0.97 (0.93–1.0) | <0.001 | 0.75 (0.66–0.86) | |||
Calves | |||||||
AMP | Isolate type | <0.001 | 5.03 (3.97–6.39) | <0.001 | 4.85 (3.66–6.47) | na | na |
Year | 0.492 | 1.04 (0.94–1.15) | 0.481 | 1.05 (0.93–1.19) | na | na | |
GEN | Isolate type | <0.001 | 4.86 (3.21–7.78) | <0.001 | 17.23 (9.11–37.02) | na | na |
Year | 0.002 | 0.95 (0.91–0.98) | 0.017 | 0.83 (0.71–0.97) | na | na | |
NAL | Isolate type | <0.001 | 5.49 (4.05–7.64) | <0.001 | 9.82 (6.82–14.45) | na | na |
Year | <0.001 | 0.87 (0.83–0.9) | 0.584 | 0.97 (0.85–1.1) | na | na | |
TET | Isolate type | <0.001 | 1.48 (1.19–1.83) | <0.001 | 2.82 (2.15–3.71) | na | na |
Year | <0.001 | 0.94 (0.9–0.97) | 0.877 | 1.01 (0.9–1.14) | na | na | |
Turkeys | |||||||
TET | Isolate type | <0.001 | 0.34 (0.27–0.42) | <0.001 | 0.41 (0.3–0.56) | na | na |
Year | <0.001 | 0.87 (0.82–0.92) | 0.002 | 0.79 (0.68–0.92) | na | na |
Animal Category Drug | Factor | France | Germany | UK | |||
---|---|---|---|---|---|---|---|
p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | ||
Broilers | |||||||
AMP | Clinical isolates | 0.496 | 0.97 (0.89–1.07) | 0.011 | 1.67 (1.13–2.49) | <0.001 | 0.64 (0.53–0.77) |
Non-clinical isolates | 0.984 | 1.0 (0.83–1.22) | 0.407 | 1.09 (0.9–1.33) | 0.148 | 1.18 (0.94–1.48) | |
GEN | Clinical isolates | 0.166 | 0.95 (0.88–1.03) | 0.218 | 1.6 (0.76–3.46) | na | na |
Non-clinical isolates | 0.351 | 1.36 (0.72–2.7) | 0.944 | 0.99 (0.67–1.46) | na | na | |
NAL | Clinical isolates | <0.001 | 1.13 (1.09–1.18) | 0.086 | 0.72 (0.49–1.05) | na | na |
Non-clinical isolates | 0.061 | 0.83 (0.68–1.01) | 0.011 | 1.3 (1.06–1.58) | na | na | |
TET | Clinical isolates | 0.038 | 0.97 (0.93–1.0) | 0.108 | 1.47 (0.92–2.35) | <0.001 | 0.7 (0.58–0.84) |
Non-clinical isolates | 0.801 | 0.98 (0.8–1.2) | 0.315 | 0.9 (0.73–1.11) | 0.043 | 0.82 (0.67–0.99) | |
Calves | |||||||
AMP | Clinical isolates | 0.079 | 1.11 (0.99–1.24) | 0.804 | 1.03 (0.88–1.2) | na | na |
Non-clinical isolates | 0.091 | 0.85 (0.7–1.03) | 0.410 | 1.09 (0.9–1.34) | na | na | |
GEN | Clinical isolates | 0.002 | 0.95 (0.92–0.98) | 0.003 | 0.79 (0.67–0.93) | na | na |
Non-clinical isolates | 0.503 | 0.86 (0.55–1.34) | 0.078 | 2.56 (1.09–11.04) | na | na | |
NAL | Clinical isolates | <0.001 | 0.87 (0.83–0.9) | 0.745 | 0.98 (0.85–1.13) | na | na |
Non-clinical isolates | 0.339 | 0.86 (0.63–1.18) | 0.539 | 0.91 (0.66–1.26) | na | na | |
TET | Clinical isolates | <0.001 | 0.94 (0.91–0.98) | 0.778 | 1.03 (0.89–1.19) | na | na |
Non-clinical isolates | 0.132 | 0.85 (0.69–1.05) | 0.911 | 0.99 (0.82–1.21) | na | na | |
Turkeys | |||||||
AMP | Clinical isolates | 0.209 | 1.12 (0.95–1.32) | 0.036 | 1.26 (1.02–1.55) | na | na |
Non-clinical isolates | 0.578 | 1.06 (0.87–1.3) | 0.867 | 0.99 (0.8–1.22) | na | na | |
GEN | Clinical isolates | <0.001 | 0.72 (0.61–0.85) | 0.089 | 1.57 (0.95–2.7) | na | na |
Non-clinical isolates | 0.08 | 0.51 (0.2–1.0) | 0.173 | 0.77 (0.53–1.12) | na | na | |
NAL | Clinical isolates | 0.618 | 1.02 (0.95–1.1) | 0.003 | 0.71 (0.57–0.89) | na | na |
Non-clinical isolates | 0.596 | 1.07 (0.85–1.35) | 0.033 | 0.79 (0.64–0.99) | na | na | |
TET | Clinical isolates | <0.001 | 0.87 (0.82–0.92) | 0.062 | 0.81 (0.64–1.01) | na | na |
Non-clinical isolates | 0.081 | 0.83 (0.67–1.03) | 0.017 | 0.78 (0.64–0.96) | na | na |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mesa-Varona, O.; Mader, R.; Velasova, M.; Madec, J.-Y.; Granier, S.A.; Perrin-Guyomard, A.; Norstrom, M.; Kaspar, H.; Grobbel, M.; Jouy, E.; et al. Comparison of Phenotypical Antimicrobial Resistance between Clinical and Non-Clinical E. coli Isolates from Broilers, Turkeys and Calves in Four European Countries. Microorganisms 2021, 9, 678. https://doi.org/10.3390/microorganisms9040678
Mesa-Varona O, Mader R, Velasova M, Madec J-Y, Granier SA, Perrin-Guyomard A, Norstrom M, Kaspar H, Grobbel M, Jouy E, et al. Comparison of Phenotypical Antimicrobial Resistance between Clinical and Non-Clinical E. coli Isolates from Broilers, Turkeys and Calves in Four European Countries. Microorganisms. 2021; 9(4):678. https://doi.org/10.3390/microorganisms9040678
Chicago/Turabian StyleMesa-Varona, Octavio, Rodolphe Mader, Martina Velasova, Jean-Yves Madec, Sophie A. Granier, Agnes Perrin-Guyomard, Madelaine Norstrom, Heike Kaspar, Mirjam Grobbel, Eric Jouy, and et al. 2021. "Comparison of Phenotypical Antimicrobial Resistance between Clinical and Non-Clinical E. coli Isolates from Broilers, Turkeys and Calves in Four European Countries" Microorganisms 9, no. 4: 678. https://doi.org/10.3390/microorganisms9040678
APA StyleMesa-Varona, O., Mader, R., Velasova, M., Madec, J. -Y., Granier, S. A., Perrin-Guyomard, A., Norstrom, M., Kaspar, H., Grobbel, M., Jouy, E., Anjum, M. F., & Tenhagen, B. -A. (2021). Comparison of Phenotypical Antimicrobial Resistance between Clinical and Non-Clinical E. coli Isolates from Broilers, Turkeys and Calves in Four European Countries. Microorganisms, 9(4), 678. https://doi.org/10.3390/microorganisms9040678