Genome-Wide Analysis of the Temporal Genetic Changes in Streptococcus pneumoniae Isolates of Genotype ST320 and Serotype 19A from South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and In Vitro Induction of Tigecycline-Resistant Mutants
2.2. Serotyping and Genotyping
2.3. Antimicrobial Susceptibility Test
2.4. Genome Sequencing and Assembly
2.5. Prediction of Recombination Sites via Phylogenetic Analysis
3. Results
3.1. WGS Statistics
3.2. SNPs
3.3. Phylogenetic Analyses and Prediction of Recombination Sites
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geno, K.A.; Gilbert, G.L.; Song, J.Y.; Skovsted, I.C.; Klugman, K.P.; Jones, C.; Konradsen, H.B.; Nahm, M.H. Pneumococcal Capsules and Their Types: Past, Present, and Future. Clin. Microbiol. Rev. 2015, 28, 871–899. [Google Scholar] [CrossRef] [Green Version]
- Song, J.H.; Dagan, R.; Klugman, K.P.; Fritzell, B. The relationship between pneumococcal serotypes and antibiotic resistance. Vaccine 2012, 30, 2728–2737. [Google Scholar] [CrossRef]
- Alicino, C.; Paganino, C.; Orsi, A.; Astengo, M.; Trucchi, C.; Icardi, G.; Ansaldi, F. The impact of 10-valent and 13-valent pneumococcal conjugate vaccines on hospitalization for pneumonia in children: A systematic review and meta-analysis. Vaccine 2017, 35, 5776–5785. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.R.; Link-Gelles, R.; Schaffner, W.; Lynfield, R.; Holtzman, C.; Harrison, L.H.; Zansky, S.M.; Rosen, J.B.; Reingold, A.; Scherzinger, K.; et al. Effectiveness of 13-valent pneumococcal conjugate vaccine for prevention of invasive pneumococcal disease in children in the USA: A matched case-control study. Lancet. Respir. Med. 2016, 4, 399–406. [Google Scholar] [CrossRef]
- Hicks, L.A.; Harrison, L.H.; Flannery, B.; Hadler, J.L.; Schaffner, W.; Craig, A.S.; Jackson, D.; Thomas, A.; Beall, B.; Lynfield, R.; et al. Incidence of pneumococcal disease due to non-pneumococcal conjugate vaccine (PCV7) serotypes in the United States during the era of widespread PCV7 vaccination, 1998–2004. J. Infect. Dis. 2007, 196, 1346–1354. [Google Scholar] [CrossRef]
- Croucher, N.J.; Harris, S.R.; Fraser, C.; Quail, M.A.; Burton, J.; van der Linden, M.; McGee, L.; von Gottberg, A.; Song, J.H.; Ko, K.S.; et al. Rapid pneumococcal evolution in response to clinical interventions. Science 2011, 331, 430–434. [Google Scholar] [CrossRef] [Green Version]
- Pillai, D.R.; Shahinas, D.; Buzina, A.; Pollock, R.A.; Lau, R.; Khairnar, K.; Wong, A.; Farrell, D.J.; Green, K.; McGeer, A.; et al. Genome-wide dissection of globally emergent multi-drug resistant serotype 19A Streptococcus pneumoniae. BMC Genom. 2009, 10, 642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.H.; Chung, D.R.; Song, J.H.; Baek, J.Y.; Thamlikitkul, V.; Wang, H.; Carlos, C.; Ahmad, N.; Arushothy, R.; Tan, S.H.; et al. Asian Network for Surveillance of Resistant Pathogens (ANSORP). Changes in serotype distribution and antimicrobial resistance of Streptococcus pneumoniae isolates from adult patients in Asia: Emergence of drug-resistant non-vaccine serotypes. Vaccine 2020, 38, 6065–6073. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Baek, J.Y.; Kim, S.H.; Song, J.H.; Ko, K.S. Predominance of ST320 among Streptococcus pneumoniae serotype 19A isolates from 10 Asian countries. J. Antimicrob. Chemothe. 2011, 66, 1001–1004. [Google Scholar] [CrossRef]
- Donati, C.; Hiller, N.L.; Tettelin, H.; Muzzi, A.; Croucher, N.J.; Angiuoli, S.V.; Oggioni, M.; Dunning Hotopp, J.C.; Hu, F.Z.; Riley, D.R.; et al. Structure and dynamics of the pan-genome of Streptococcus pneumoniae and closely related species. Genome Biol. 2010, 11, R107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chewapreecha, C.; Marttinen, P.; Croucher, N.J.; Salter, S.J.; Harris, S.R.; Mather, A.E.; Hanage, W.P.; Goldblatt, D.; Nosten, F.H.; Turner, C.; et al. Comprehensive identification of single nucleotide polymorphisms associated with beta-lactam resistance within pneumococcal mosaic genes. PLoS Genet. 2014, 10, e1004547. [Google Scholar] [CrossRef] [Green Version]
- Nakano, S.; Fujisawa, T.; Ito, Y.; Chang, B.; Matsumura, Y.; Yamamoto, M.; Suga, S.; Ohnishi, M.; Nagao, M. Penicillin-binding protein typing, antibiotic resistance gene identification, and molecular phylogenetic analysis of meropenem-resistant Streptococcus pneumoniae serotype 19A-CC3111 strains in Japan. Antimicrob. Agents Chemother. 2019, 63, e00711-19. [Google Scholar] [CrossRef] [Green Version]
- Enright, M.C.; Spratt, B.G. A multilocus sequence typing scheme for Streptococcus pneumoniae: Identification of clones associated with serious invasive disease. Microbiology 1998, 144, 3049–3060. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing: Twenty-Ninth Informational Supplement M100-S29; CLSI: Wayne, PA, USA, 2019. [Google Scholar]
- Gladstone, R.A.; Lo, S.W.; Goater, R.; Yeats, C.; Taylor, B.; Hadfield, J.; Lees, J.A.; Croucher, N.J.; van Tonder, A.J.; Bentley, L.J.; et al. The Global Pneumococcal Sequencing Consortium. Visualizing variation within Global Pneumococcal Sequence Clusters (GPSCs) and country population snapshots to contextualize pneumococcal isolates. Microb. Genom. 2020, 6, e000357. [Google Scholar]
- Stamataks, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinfomatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Croucher, N.J.; Page, A.J.; Connor, T.R.; Delaney, A.J.; Keane, J.A.; Bentley, S.D.; Parkhill, J.; Harris, S.R. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 2015, 43, e15. [Google Scholar] [CrossRef] [Green Version]
- Hadfield, J.; Croucher, N.J.; Goater, R.J.; Abudahab, K.; Aanensen, D.M.; Harris, S.R. Phandango: An interactive viewer for bacterial population genomics. Bioinformatics 2018, 34, 292–293. [Google Scholar] [CrossRef]
- Donner, J.; Bunk, B.; Schober, I.; Spröer, C.; Bergmann, S.; Jarek, M.; Overmann, J.; Wagner-Döbler, I. Complete genome sequences of three multidrug-resistant clinical isolates of Streptococcus pneumoniae serotype 19A with different susceptibilities to the myxobacterial metabolite carolacton. Genome Annouc. 2017, 5, e01641-16. [Google Scholar] [CrossRef] [Green Version]
- Chewapreecha, C.; Harris, S.R.; Croucher, N.J.; Turner, C.; Marttinen, P.; Cheng, L.; Pessia, A.; Aanensen, D.M.; Mather, A.E.; Page, A.J.; et al. Dense genomic sampling identifies highways of pneumococcal recombination. Nat. Genet. 2014, 46, 305–309. [Google Scholar] [CrossRef] [Green Version]
- Mostowy, R.; Croucher, N.J.; Hanage, W.P.; Harris, S.R.; Bentley, S.; Fraser, C. Heterogeneity in the frequency and characteristics of homologous recombination in pneumococcal evolution. PLoS Genet. 2014, 10, e1004300. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Morar, M.; Ealick, S.E. Structural biology of the purine biosynthetic pathway. Cell Mol. Life Sci. 2008, 65, 3699–3724. [Google Scholar] [CrossRef] [Green Version]
- Armengod, M.E.; Moukadiri, I.; Prado, S.; Ruiz-Partida, R.; Benítez-Páez, A.; Villarroya, M.; Lomas, R.; Garzón, M.J.; Martínez-Zamora, A.; Meseguer, S.; et al. Enzymology of tRNA modification in the bacterial MnmEG pathway. Biochimie 2012, 94, 1510–1520. [Google Scholar] [CrossRef]
- Dippel, R.; Boos, W. The maltodextrin system of Escherichia coli: Metabolism and transport. J. Bacteriol. 2005, 187, 8322–8331. [Google Scholar] [CrossRef] [Green Version]
- Bortolotti, A.; Vazquez, D.B.; Almada, J.C.; Inda, M.E.; Drusin, S.I.; Villalba, J.M.; Moreno, D.M.; Ruysschaert, J.M.; Cybulski, L.E. A Transmembrane Histidine Kinase Functions as a pH Sensor. Biomolecules 2020, 10, 1183. [Google Scholar] [CrossRef]
- Kloosterman, T.G.; Hendriksen, W.T.; Bijlsma, J.J.; Bootsma, H.J.; van Hijum, S.A.; Kok, J.; Hermans, P.W.; Kuipers, O.P. Regulation of glutamine and glutamate metabolism by GlnR and GlnA in Streptococcus pneumoniae. J. Biol. Chem. 2006, 281, 25097–25109. [Google Scholar] [CrossRef] [Green Version]
- Gosink, K.K.; Mann, E.R.; Guglielmo, C.; Tuomanen, E.I.; Masure, H.R. Role of novel choline binding proteins in virulence of Streptococcus pneumoniae. Infect Immun. 2000, 68, 5690–5695. [Google Scholar] [CrossRef] [Green Version]
- Dalia, A.B.; Standish, A.J.; Weiser, J.N. Three surface exoglycosidases from Streptococcus pneumoniae, NanA, BgaA, and StrH, promote resistance to opotonophagocytic killing by human neutrophils. Infect. Immun. 2010, 78, 2108–2116. [Google Scholar] [CrossRef] [Green Version]
- Maskell, J.P.; Sefton, A.M.; Hall, L.M. Mechanism of sulfonamide resistance in clinical isolates of Streptococcus pneumoniae. Antimicrob. Agents Chemother. 1997, 41, 2121–2126. [Google Scholar] [CrossRef] [Green Version]
- Miyachiro, M.M.; Granato, D.; Trindade, D.M.; Ebel, C.; Paes Leme, A.F.; Dessen, A. Complex formation between Mur enzymes from Streptococcus pneumoniae. Biochemistry 2019, 58, 3314–3324. [Google Scholar] [CrossRef]
- Howden, B.P.; Stinear, T.P.; Allen, D.L.; Johnson, P.D.; Ward, P.B.; Davies, J.K. Genomic analysis reveals a point mutation in the two-component sensor gene graS that leads to intermediate vancomycin resistance in clinical Staphylococcus aureus. Antimicrob. Agents Chemother. 2008, 52, 3755–3762. [Google Scholar] [CrossRef] [Green Version]
- Zapun, A.; Contreras-Martel, C.; Vernet, T. Penicillin-binding proteins and β-lactam resistance. FEMS Microbiol. Rev. 2008, 32, 361–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Isolate No. | Isolation Year | Specimen | MIC (mg/L) a | No of SNPs b | No of INDELs b | Putative Recombination Events | r/m c | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
PEN | CRO | LEV | MFX | GFX | |||||||
99-176 | 1999 | Sputum | 2 | 1 | 1 | 0.12 | <0.03 | - | - | - | - |
99-192 | 1999 | Sputum | 4 | 1 | 1 | 0.12 | <0.03 | 7 | 1 | 0 | 0 |
04-041 | 2004 | Nasopharynx | 2 | 2 | 1 | 0.12 | <0.03 | 34 | 6 | 0 | 0 |
04-177 | 2004 | Blood | 4 | 1 | 1 | 0.12 | <0.03 | 53 | 11 | 1 | 0.86 |
05-384 | 2005 | Sputum | 4 | 2 | 1 | 0.12 | <0.03 | 615 | 17 | 4 | 25.56 |
05-404 | 2005 | Tracheal aspirate | 8 | 8 | 1 | 0.12 | <0.03 | 44 | 7 | 0 | 0 |
06-101 | 2006 | Sputum | 4 | 1 | 1 | 0.12 | <0.03 | 37 | 7 | 0 | 0 |
06-300 | 2006 | Sputum | 2 | 2 | 1 | 0.12 | <0.03 | 101 | 3 | 0 | 0 |
07-028 | 2007 | Sputum | 4 | 1 | 1 | 0.12 | <0.03 | 190 | 11 | 0 | 0 |
07-093 | 2007 | Pus | 4 | 4 | 0.5 | 0.06 | <0.03 | 2764 | 26 | 11 | 58.33 |
08-087 | 2008 | Ear | 4 | 1 | 1 | 0.12 | <0.03 | 44 | 5 | 0 | 0 |
08-114 | 2008 | Sputum | 4 | 2 | 1 | 0.12 | <0.03 | 54 | 10 | 0 | 0 |
09-125 | 2009 | Nasopharynx | 4 | 2 | 1 | 0.12 | <0.03 | 479 | 13 | 11 | 12.98 |
09-145 | 2009 | Sputum | 2 | 1 | 1 | 0.12 | <0.03 | 44 | 8 | 0 | 0 |
10-058 | 2010 | Sputum | 4 | 2 | 1 | 0.12 | <0.03 | 51 | 10 | 0 | 0 |
10-287 | 2010 | Sputum | 4 | 2 | 1 | 0.12 | <0.03 | 42 | 5 | 0 | 0 |
11-138 | 2011 | Nasopharynx | 4 | 1 | 1 | 0.12 | <0.03 | 76 | 9 | 1 | 0.43 |
11-194 | 2011 | Tracheal aspirate | 4 | 1 | 0.5 | 0.06 | <0.03 | 748 | 23 | 3 | 37.50 |
12-039 | 2012 | Blood | 4 | 2 | 0.5 | 0.12 | <0.03 | 78 | 9 | 2 | 0.30 |
12-102 | 2012 | Ear | 4 | 2 | 1 | 0.12 | <0.03 | 67 | 7 | 0 | 0 |
13-075 | 2013 | Pleural fluid | 2 | 1 | 1 | 0.12 | <0.03 | 62 | 9 | 0 | 0 |
13-103 | 2013 | Blood | 2 | 1 | 1 | 0.12 | <0.03 | 103 | 14 | 2 | 0.43 |
14-109 | 2014 | Sputum | 4 | 1 | 1 | 0.12 | <0.03 | 2002 | 49 | 9 | 34.77 |
14-212 | 2014 | Sputum | 4 | 1 | 1 | 0.12 | <0.03 | 68 | 14 | 1 | 0.16 |
15-123 | 2015 | Others | 2 | 1 | 1 | 0.12 | <0.03 | 86 | 13 | 2 | 0.19 |
15-019 | 2015 | Blood | 2 | 1 | 1 | 0.12 | <0.03 | 11,542 | 90 | 1 | ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baek, J.Y.; Kim, S.J.; Shin, J.; Chung, Y.-J.; Kang, C.-I.; Chung, D.R.; Song, J.-H.; Ko, K.S. Genome-Wide Analysis of the Temporal Genetic Changes in Streptococcus pneumoniae Isolates of Genotype ST320 and Serotype 19A from South Korea. Microorganisms 2021, 9, 795. https://doi.org/10.3390/microorganisms9040795
Baek JY, Kim SJ, Shin J, Chung Y-J, Kang C-I, Chung DR, Song J-H, Ko KS. Genome-Wide Analysis of the Temporal Genetic Changes in Streptococcus pneumoniae Isolates of Genotype ST320 and Serotype 19A from South Korea. Microorganisms. 2021; 9(4):795. https://doi.org/10.3390/microorganisms9040795
Chicago/Turabian StyleBaek, Jin Yang, Sun Ju Kim, Juyoun Shin, Yeun-Jun Chung, Cheol-In Kang, Doo Ryeon Chung, Jae-Hoon Song, and Kwan Soo Ko. 2021. "Genome-Wide Analysis of the Temporal Genetic Changes in Streptococcus pneumoniae Isolates of Genotype ST320 and Serotype 19A from South Korea" Microorganisms 9, no. 4: 795. https://doi.org/10.3390/microorganisms9040795
APA StyleBaek, J. Y., Kim, S. J., Shin, J., Chung, Y. -J., Kang, C. -I., Chung, D. R., Song, J. -H., & Ko, K. S. (2021). Genome-Wide Analysis of the Temporal Genetic Changes in Streptococcus pneumoniae Isolates of Genotype ST320 and Serotype 19A from South Korea. Microorganisms, 9(4), 795. https://doi.org/10.3390/microorganisms9040795