Evaluation of Thymol-β-d-Glucopyranoside as a Potential Prebiotic Intervention to Reduce Carriage of Zoonotic Pathogens in Weaned and Feeder Pigs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals, Challenge Salmonella, and Thymol-β-d-Glucopyranoside
2.2. In Vivo Study Designs
2.3. Bacterial Enumerations
2.4. Phenotypic Antibiotic Susceptibility
2.5. Statistical Analysis
3. Results and Discussion
3.1. In Vivo Pig Studies
3.2. Antimicrobial Susceptibilities
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Centers for Disease Control. Antibiotic Resistance Threats in the United States. Centers for Disease Control and Prevention; U.S. Department of Health and Human Services: Atlanta, GA, USA, 2019. [CrossRef] [Green Version]
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.; Roy, S.L.; Jones, J.J.; Griffin, P.M. Foodborne illness acquired in the United States-major pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. [Google Scholar] [CrossRef]
- Angulo, F.G.; Nunnery, J.A.; Bair, H.D. Antimicrobial resistance in zoonotic enteric pathogens. Rev. Sci. Tech. 2004, 23, 485–496. [Google Scholar] [CrossRef]
- Mith, H.; Duré, R.; Delcenserie, V.; Zhiri, A.; Daube, G.; Clinquart, A. Antimicrobial activities of commercial essential oils and their components against food-borne pathogens and food spoilage bacteria. Food Sci. Nutr. 2014, 2, 403–416. [Google Scholar] [CrossRef] [Green Version]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods–A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Varel, V.H.; Miller, D.N. Effect of antimicrobial agents on livestock waste emissions. Curr. Microbiol. 2000, 40, 392–397. [Google Scholar] [CrossRef] [Green Version]
- Gómez-García, M.; Argüello, H.; Puente, H.; Mencía-Ares, Ó.; González, S.; Miranda, R.; Rubio, P.; Carvajal, A. In-depth in vitro evaluation of the activity and mechanisms of action of organic acids and essential oils against swine enteropathogenic bacteria. Front. Vet. Sci. 2020, 7, 572947. [Google Scholar] [CrossRef]
- Fairbrother, J.M.; Nadeau, E.; Gyles, C.L. Escherichia coli in postweaning diarrhea in pigs: An update on bacterial types, pathogenesis, and prevention strategies. Anim. Health Res. Rev. 2005, 6, 17–39. [Google Scholar] [CrossRef] [Green Version]
- Anderson, R.C.; Krueger, N.A.; Byrd, J.A.; Harvey, R.B.; Callaway, T.R.; Edrington, T.S.; Nisbet, D.J. Effects of thymol and diphenyliodonium chloride against Campylobacter spp. during pure and mixed culture in vitro. J. Appl. Microbiol. 2009, 107, 1258–1268. [Google Scholar] [CrossRef]
- Johny, A.K.; Hoagland, T.; Venkitanarayanan, K. Effect of subinhibitory concentrations of plant-derived molecules in increasing the sensitivity of multidrug-resistant Salmonella enterica Serovar Typhimurium DT104 to antibiotics. Foodborne Path. Dis. 2010, 7, 1165–1170. [Google Scholar] [CrossRef]
- Palaniappan, K.; Holley, R.A. Use of natural antimicrobials to increase antibiotic susceptibility of drug resistant bacteria. Inter. J. Food Microbiol. 2010, 140, 164–168. [Google Scholar] [CrossRef]
- Miladinović, D.L.; Ilić, B.S.; Kocić, B.D.; Marković, M.S.; Miladinović, L.C. In Vitro trials of Dittrichia graveolens essential oil combined with antibiotics. Nat. Prod. Comm. 2016, 11, 865–868. [Google Scholar] [CrossRef] [Green Version]
- Anderson, R.C.; Krueger, N.A.; Genovese, K.J.; Stanton, T.B.; MacKinnon, K.M.; Harvey, R.B.; Edrington, T.S.; Callaway, T.R.; Nisbet, D.J. Effect of thymol or diphenyliodonium chloride on performance, gut fermentation characteristics, and Campylobacter colonization in growing swine. J. Food Prot. 2012, 75, 758–761. [Google Scholar] [CrossRef] [Green Version]
- Michiels, J.; Missotten, J.; Dierick, N.; Fremaut, D.; Maene, P.; De Smet, S. In vitro degradation and in vivo passage kinetics of carvacrol, thymol, eugenol and trans-cinnamaldehyde along the gastrointestinal tract of piglets. J. Sci. Food Agric. 2008, 88, 2371–2378. [Google Scholar] [CrossRef]
- Michiels, J.; Missotten, J.; Van Hoorick, A.; Ovyn, A.; Fremaut, D.; De Smet, S.; Dierick, N. Effects of dose and formulation of carvacrol and thymol on bacteria and some functional traits of the gut in piglets after weaning. Arch. Anim. Nutr. 2010, 64, 136–154. [Google Scholar] [CrossRef]
- Epps, S.V.R.; Harvey, R.B.; Byrd, J.A.; Petrujkić, B.T.; Sedej, I.; Beier, R.C.; Phillips, T.D.; Hume, M.E.; Anderson, R.C.; Nisbet, D.J. Comparative effect of thymol or its glucose conjugate, thymol-β-d-glucopyranoside, on Campylobacter in avian gut contents. J. Environ. Sci. Health B 2015, 50, 55–61. [Google Scholar] [CrossRef]
- Epps, S.V.R.; Petrujkić, B.T.; Sedej, I.; Krueger, N.A.; Harvey, R.B.; Beier, R.C.; Stanton, T.B.; Phillips, T.D.; Anderson, R.C.; Nisbet, D.J. Comparison of anti-Campylobacter activity of free thymol and thymol-β-d-glucopyranoside in absence or presence of β-glycoside-hydrolysing gut bacteria. Food Chem. 2015, 173, 92–98. [Google Scholar] [CrossRef]
- Levent, G.; Harvey, R.B.; Ciftcioglu, G.; Beier, R.C.; Genovese, K.J.; He, H.L.; Anderson, R.C.; Nisbet, D.J. In Vitro effects of thymol-β-d-glucopyranoside on Salmonella enterica serovar Typhimurium and Escherichia coli K88. J. Food Prot. 2016, 79, 299–303. [Google Scholar] [CrossRef]
- Petrujkić, B.T.; Sedej, I.; Beier, R.C.; Anderson, R.C.; Harvey, R.B.; Epps, S.V.R.; Stipanovic, R.D.; Krueger, N.A.; Nisbet, D.J. Ex vivo absorption of thymol and thymol-β-d-glucopyranoside in piglet everted jejunal segments. J. Agric. Food Chem. 2013, 61, 3757–3762. [Google Scholar] [CrossRef]
- Flint, H.; Bayer, E.; Rincon, M.; Lamed, R.; White, B.A. Polysaccharide utilization by gut bacteria: Potential for new insights from genomic analysis. Nat. Rev. Microbiol. 2008, 6, 121–131. [Google Scholar] [CrossRef]
- Hamakar, B.R.; Tuncil, Y.E. A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota. J. Mol. Biol. 2014, 426, 3838–3850. [Google Scholar] [CrossRef]
- Anderson, R.C.; Genovese, K.J.; Harvey, R.B.; Stanker, L.H.; DeLoach, J.R.; Nisbet, D.J. Assessment of the long-term shedding pattern of Salmonella serovar choleraesuis following experimental infection of neonatal piglets. J. Vet. Diagn. Investig. 2000, 12, 257–260. [Google Scholar] [CrossRef]
- Stern, N.J.; Wojton, B.; Kwiate, K. A differential selective medium, and dry-ice generated atmosphere for recovery of Campylobacter jejuni. J. Food Prot. 1992, 55, 514–517. [Google Scholar] [CrossRef]
- Anderson, R.C.; Jung, Y.S.; Oliver, C.E.; Horrocks, S.M.; Genovese, K.J.; Harvey, R.B.; Callaway, T.R.; Edrington, T.S.; Nisbet, D.J. Effects of nitrate or nitro supplementation, with or without added chlorate, on Salmonella enterica serovar Typhimurium and Escherichia coli in swine feces. J. Food Prot. 2007, 70, 308–315. [Google Scholar] [CrossRef] [Green Version]
- Zhoa, S.; McDermott, P.F.; White, D.G.; Qaiyumi, S.; Friedman, S.L.; Abbott, J.W.; Glenn, A.; Ayers, S.L.; Post, K.W.; Fales, W.H.; et al. Characterization of multidrug resistant Salmonella recovered from diseased animals. Vet. Microbiol. 2007, 123, 122–132. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. M07 Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 11th ed.; Wayne, P.A., Ed.; Clinical Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 4th ed.; CLSI Document VET08; Wayne, P.A., Ed.; Clinical Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Levant, G.; Ciftcioglu, G.; Anderson, R.C.; Beier, R.C.; Nisbet, D.J. Anti-Salmonella effect of thymol-β-d-glucopyranoside in porcine jejunal, cecal, and rectal gut contents. In Proceedings of the Abstracts of the 2015 Congress on Gastrointestinal Function, Chicago, IL, USA, 13–15 April 2015; pp. 54–55. [Google Scholar]
- Van Noten, N.; Van Liefferinge, E.; Degroote, J.; De Smet, S.; Desmet, T.; Michiels, J. Fate of thymol and its monoglucosides in the gastrointestinal tract of piglets. ACS Omega 2020, 5, 5241–5248. [Google Scholar] [CrossRef]
- Beier, R.C.; Petrujkić, B.T.; Sedej, I.J.; Anderson, R.C.; Nedeljković, T.J.; Nisbet, D.J. Thymol depletion in the pig stomach. In Proceedings of the Abstracts at the 6th Central European Food Congress (CEFOOD 2012), Novi Sad, Serbia, 23–26 May 2012; p. 49. [Google Scholar]
- Petrujkić, B.; Nisbet, D.J.; Levent, G.; He, H.; Genovese, K.J.; Anderson, R.C.; Beier, R.C.; Harvey, R.B. Lipid-caused antagonism of the bactericidal activity of thymol and thymol-β-d-glucopyranoside is not overcome by emulsifiers. Safe Pork 2019, 13, 127–128. Available online: https://www.iastatedigitalpress.com/safepork/article/id/11221/ (accessed on 28 February 2021).
- Wilfart, A.; Montagne, L.; Simmins, H.; Noblet, J.; van Milgen, J. Digesta transit in different segments of the gastrointestinal tract of pigs as affected by insoluble fibre supplied by wheat bran. Br. J. Nutr. 2007, 98, 54–62. [Google Scholar] [CrossRef] [Green Version]
Thymol-β-d-Glucopyranoside Treatment (mg/kg Live Body Weight) | p Values | |||||
---|---|---|---|---|---|---|
None | 6 | 18 | Linear | Quadratic | SEM | |
S. TyphimuriumNovr-Nalr (log10 CFU/g gut contents) a | ||||||
Cecal | 3.67 a | 3.26 a | 1.92 b | 0.0272 | 0.8004 | 0.528 |
Rectal | 3.50 | 2.98 | 2.84 | 0.4671 | 0.6896 | 0.578 |
Escherichia colib (log10 CFU/g gut contents) a | ||||||
Cecal | 6.89 | 6.86 | 7.17 | 0.3976 | 0.6879 | 0.252 |
Rectal | 6.72 | 7.10 | 7.25 | 0.1913 | 0.5381 | 0.257 |
Thymol-β-d-Glucopyranoside Treatment a | |||||||||
---|---|---|---|---|---|---|---|---|---|
Treatment Level (mg/kg Live Body Weight) | Hours Post Treatment | Main Effect (p Values) | |||||||
None | 18 | 54 | 16 | 24 | Treatment | Time | Interaction | SEM | |
S. TyphimuriumNovr-Nalr (log10 CFU/g) a | |||||||||
Cecal | 2.70 | 2.77 | 2.64 | 2.20 e | 3.21 d | 0.9599 | 0.0291 | 0.8778 | 0.539 |
Rectal | 2.10 | 2.10 | 1.37 | 2.00 | 1.72 | 0.2692 | 0.4537 | 0.7558 | 0.482 |
Escherichia coli (log10 CFU/g) | |||||||||
Cecal | 5.29 | 5.88 | 5.37 | 5.26 | 5.77 | 0.2300 | 0.2479 | 0.8596 | 0.549 |
Rectal | 4.73 b,c | 5.54 b | 4.35 c | 5.01 | 4.73 | 0.0100 | 0.3833 | 0.6126 | 0.398 |
Campylobacter species (log10 CFU/g) | |||||||||
Cecal | 4.04 | 4.13 | 3.52 | 3.67 | 4.13 | 0.2139 | 0.1235 | 0.2652 | 0.368 |
Rectal | 3.48 | 3.76 | 3.57 | 3.23 e | 3.98 d | 0.8090 | 0.0150 | 0.3263 | 0.352 |
Presumptive E. coli Isolates Recovered Before (Pre-) and 16 h After (Post-) Treatment | Presumptive E. coli Isolates Recovered Before (Pre-) and 24 h After (Post-) Treatment | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Pen 1 | Pen 3 | Pen 14 | Pen 1 | Pen 3 | Pen 14 | ||||||
Antibiotic a | Pre- Exposure | Post- Exposure | Pre- Exposure | Post- Exposure | Pre- Exposure | Pre- Exposure | Post- Exposure | Pre- Exposure | Post- Exposure | Pre- Exposure | Post- Exposure |
AMP | 4 | 2 | 1 | 2 | 4 | 4 | 4 | 1 | 4 b | 2 | 2 |
XNL | ≤0.25 | ≤0.25 | ≤0.25 | 1 b | 0.5 | 0.5 | 0.5 | ≤0.25 | 0.5 c | ≤0.25 | 0.5 c |
CTET | >8 | >8 | >8 | >8 | >8 | >8 | >8 | >8 | >8 | >8 | >8 |
DANO | ≤0.12 | ≤0.12 | ≤0.12 | ≤0.12 | ≤0.12 | ≤0.12 | ≤0.12 | ≤0.12 | ≤0.12 | ≤0.12 | ≤0.12 |
ENRO | ≤0.12 | ≤0.12 | ≤0.12 | ≤0.12 | ≤0.12 | ≤0.12 | ≤0.12 | ≤0.12 | ≤0.12 | ≤0.12 | ≤0.12 |
FFN | 4 | 8 | 8 | 8 | 4 | 4 | 4 | 8 | 4 | 4 | 8 |
NEO | ≤4 | ≤4 | ≤4 | ≤4 | ≤4 | ≤4 | ≤4 | ≤4 | ≤4 | ≤4 | ≤4 |
OXY | >8 | >8 | >8 | >8 | >8 | >8 | >8 | >8 | >8 | >8 | > 8 |
PEN | >8 | >8 | >8 | >8 | >8 | >8 | >8 | 8 | >8 | >8 | >8 |
SPE | 32 | >64 | 16 | >64 | 16 | 16 | 16 | 16 | 16 | 16 | 16 |
SDM | ≤256 | >256 c | >256 | >256 | ≤256 | ≤256 | >256 c | >256 | ≤256 c | <256 | ≤256 c |
TIL | 64 | 64 | 64 | 64 | 64 | >64 | 64 | 32 | 64 | 64 | 64 |
TUL | 4 | 4 | 4 | 8 | 8 | 8 | 4 | 2 | 4 | 4 | 4 |
Presumptive E. coli Isolates Recovered Before (Pre-) and 16 h After (Post-) Treatment | Presumptive E. coli Isolates Recovered Before (Pre-) and 24 h After (Post-) Treatment | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pen 5 | Pen 8 | Pen 10 | Pen 5 | Pen 8 | Pen 10 | |||||||
Antibiotic a | Pre- Exposure | Post- Exposure | Pre- Exposure | Post- Exposure | Pre- Exposure | Post- Exposure | Pre- Exposure | Post- Exposure | Pre- Exposure | Post- Exposure | Pre- Exposure | Post- Exposure |
AMP | 4 | 4 | 4 | >16 b | 4 | 2 | 4 | 2 | 2 | 1 | 2 | 8 b |
XNL | 0.5 | 0.5 | 0.5 | ≤0.25 c | 0.5 | ≤0.25 c | 0.5 | ≤0.25 c | 0.5 | 1 | ≤0.25 | 8 b |
CTET | >8 | >8 | >8 | >8 | >8 | >8 | >8 | >8 | >8 | 4 | >8 | 4 |
DANO | ≤0.12 | ≤0.12 | ≤0.12 | ≤0.12 | ≤0.12 | ≤0.12 | ≤0.12 | ≤0.12 | ≤0.12 | 0.5 b | ≤0.12 | ≤0.12 |
ENRO | ≤0.12 | ≤0.12 | ≤0.12 | ≤0.12 | ≤0.12 | ≤0.12 | ≤0.12 | ≤0.12 | ≤0.12 | 0.5 b | ≤0.12 | ≤0.12 |
FFN | 4 | 4 | 4 | 4 | 4 | 8 | 4 | 4 | 8 | 4 | 8 | 4 |
NEO | ≤4 | ≤4 | ≤4 | ≤4 | 32 | ≤4 b | ≤4 | ≤4 | ≤4 | ≤4 | ≤4 | ≤4 |
OXY | >8 | >8 | >8 | >8 | >8 | >8 | >8 | >8 | >8 | 2 b | >8 | 2 b |
PEN | >8 | >8 | >8 | >8 | >8 | >8 | >8 | >8 | >8 | 8 | >8 | >8 |
SPE | 16 | 16 | 16 | 16 | 16 | >64 b | 16 | 16 | >64 | 64 | >64 | 16 b |
SDM | ≤256 | >256 c | ≤256 | ≤256 | >256 | >256 | >256 | ≤256 | >256 | >256 | >256 | ≤256 c |
TIL | 64 | 64 | 64 | 64 | >64 | 64 | 64 | 64 | 64 | >64 | 64 | >64 c |
TUL | 4 | 4 | 4 | 4 | 16 | 4d | 4 | 4 | 8 | 8 | 4 | 16 b |
Salmonella enterica Serovar Before (Pre-) and After (Post-) Repeated Exposure to 0.5 mM of Thymol | ||||||
---|---|---|---|---|---|---|
Pre-Exposure | Post-Exposure | Pre-Exposure | Post-Exposure | Pre-Exposure | Post-Exposure | |
Antibiotic a | Give 24349 | Give 24349 | Typhimurium 22544 | Typhimurium 22544 | Typhimurium 20731 | Typhimurium 20731 |
AMP | 1 | 1 | >16 | >16 | >16 | >16 |
XNL | 0.5 | 0.5 | 1 | 0.5 | >8 | >8 |
CTET | >8 | >8 | >8 | >8 | >8 | >8 |
DANO | ≤0.12 | ≤0.12 | ≤0.12 | ≤0.12 | ≤0.12 | ≤0.12 |
ENRO | ≤0.12 | ≤0.12 | ≤0.12 | ≤0.12 | ≤0.12 | ≤0.12 |
FFN | 2 | 2 | 4 | 4 | 8 | 8 |
NEO | ≤4 | ≤4 | ≤4 | ≤4 | 32 | 32 |
OXY | >8 | >8 | >8 | >8 | >8 | >8 |
PEN | 8 | 8 | >8 | >8 | >8 | >8 |
SPE | 32 | 32 | 32 | 32 | >64 | >64 |
SDM | >256 | >256 | >256 | >256 | >256 | >256 |
TIL | >64 | >64 | >64 | >64 | >64 | >64 |
SXT | ≤2 | ≤2 | ≤2 | >2 b | ≤2 | ≤2 |
TUL | 4 | 8 | 64 | 64 | 16 | 16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Levent, G.; Anderson, R.C.; Petrujkić, B.; Poole, T.L.; He, H.; Genovese, K.J.; Hume, M.E.; Beier, R.C.; Harvey, R.B.; Nisbet, D.J. Evaluation of Thymol-β-d-Glucopyranoside as a Potential Prebiotic Intervention to Reduce Carriage of Zoonotic Pathogens in Weaned and Feeder Pigs. Microorganisms 2021, 9, 860. https://doi.org/10.3390/microorganisms9040860
Levent G, Anderson RC, Petrujkić B, Poole TL, He H, Genovese KJ, Hume ME, Beier RC, Harvey RB, Nisbet DJ. Evaluation of Thymol-β-d-Glucopyranoside as a Potential Prebiotic Intervention to Reduce Carriage of Zoonotic Pathogens in Weaned and Feeder Pigs. Microorganisms. 2021; 9(4):860. https://doi.org/10.3390/microorganisms9040860
Chicago/Turabian StyleLevent, Gizem, Robin C. Anderson, Branko Petrujkić, Toni L. Poole, Haiqi He, Kenneth J. Genovese, Michael E. Hume, Ross C. Beier, Roger B. Harvey, and David J. Nisbet. 2021. "Evaluation of Thymol-β-d-Glucopyranoside as a Potential Prebiotic Intervention to Reduce Carriage of Zoonotic Pathogens in Weaned and Feeder Pigs" Microorganisms 9, no. 4: 860. https://doi.org/10.3390/microorganisms9040860
APA StyleLevent, G., Anderson, R. C., Petrujkić, B., Poole, T. L., He, H., Genovese, K. J., Hume, M. E., Beier, R. C., Harvey, R. B., & Nisbet, D. J. (2021). Evaluation of Thymol-β-d-Glucopyranoside as a Potential Prebiotic Intervention to Reduce Carriage of Zoonotic Pathogens in Weaned and Feeder Pigs. Microorganisms, 9(4), 860. https://doi.org/10.3390/microorganisms9040860