A Single-Pass Type I Membrane Protein from the Apicomplexan Parasite Cryptosporidium parvum with Nanomolar Binding Affinity to Host Cell Surface
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification of Cytoplasmic Membrane Proteins from C. parvum
2.2. The Parasite and In Vitro Cell Culture
2.3. Quantitative RT-PCR (qRT-PCR) Analysis of the CpTIPH Gene Expression
2.4. Expression of an N-Terminal Fragment of CpTIPH as a Recombinant Protein for Host Cell-Binding Assays
2.5. Antibody Production and Affinit Purification
2.6. Western Blot Analysis
2.7. Indirect Immunofluorescence Assay (IFA) Labeling of CpTIPH
2.8. In Vitro CpTIPH Binding Assays
2.9. In Vitro Invasion Assay
2.10. Statistical Analysis
3. Results
3.1. CpTIPH Is a Type I Transmembrane Protein with Homology to T-Cell Immunomodulatory Proteins
3.2. CpTIPH Is a Surface Membrane Protein in C. parvum Sporozoites and Expressed during the Parasite Life Cycle
3.3. CpTIPH Is Capable of Binding to Host Cell Surface with Nanomolar Binding Affinity
3.4. Anti-CpTIPH Antibody Partially Blocked the C. parvum Infection
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bouzid, M.; Hunter, P.R.; Chalmers, R.M.; Tyler, K.M. Cryptosporidium pathogenicity and virulence. Clin. Microbiol. Rev. 2013, 26, 115–134. [Google Scholar] [CrossRef] [Green Version]
- Zhu, G.; Yin, J.; Cuny, G.D. Current status and challenges in drug discovery against the globally important zoonotic cryptosporidiosis. Anim. Dis. 2021, 1, 3. [Google Scholar] [CrossRef]
- Innes, E.A.; Chalmers, R.M.; Wells, B.; Pawlowic, M.C. A One Health Approach to Tackle Cryptosporidiosis. Trends Parasitol. 2020, 36, 290–303. [Google Scholar] [CrossRef] [Green Version]
- Ryan, U.; Zahedi, A.; Paparini, A. Cryptosporidium in humans and animals-a one health approach to prophylaxis. Parasite Immunol. 2016, 38, 535–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prystajecky, N.; Huck, P.M.; Schreier, H.; Isaac-Renton, J.L. Assessment of Giardia and Cryptosporidium spp. as a microbial source tracking tool for surface water: Application in a mixed-use watershed. Appl. Environ. Microbiol. 2014, 80, 2328–2336. [Google Scholar] [CrossRef] [Green Version]
- Deng, M.; Templeton, T.J.; London, N.R.; Bauer, C.; Schroeder, A.A.; Abrahamsen, M.S. Cryptosporidium parvum genes containing thrombospondin type 1 domains. Infect. Immun. 2002, 70, 6987–6995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lendner, M.; Daugschies, A. Cryptosporidium infections: Molecular advances. Parasitology 2014, 141, 1511–1532. [Google Scholar] [CrossRef] [PubMed]
- Pinto, D.J.; Vinayak, S. Cryptosporidium: Host-Parasite Interactions and Pathogenesis. Curr. Clin. Microbiol. Rep. 2021, 1–6. [Google Scholar] [CrossRef]
- Truong, Q.; Ferrari, B.C. Quantitative and qualitative comparisons of Cryptosporidium faecal purification procedures for the isolation of oocysts suitable for proteomic analysis. Int. J. Parasitol. 2006, 36, 811–819. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, F.; Zhu, G. Involvement of host cell integrin alpha2 in Cryptosporidium parvum infection. Infect. Immun. 2012, 80, 1753–1758. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhu, G. Quantitative RT-PCR assay for high-throughput screening (HTS) of drugs against the growth of Cryptosporidium parvum in vitro. Front. Microbiol. 2015, 6, 991. [Google Scholar] [CrossRef] [Green Version]
- Mauzy, M.J.; Enomoto, S.; Lancto, C.A.; Abrahamsen, M.S.; Rutherford, M.S. The Cryptosporidium parvum transcriptome during in vitro development. PLoS ONE 2012, 7, e31715. [Google Scholar] [CrossRef] [Green Version]
- Guo, F.; Zhang, H.; Payne, H.R.; Zhu, G. Differential Gene Expression and Protein Localization of Cryptosporidium parvum Fatty Acyl-CoA Synthetase Isoforms. J. Eukaryot. Microbiol. 2016, 63, 233–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadavi, R.; Zarnani, A.H.; Ahmadvand, N.; Mahmoudi, A.R.; Bayat, A.A.; Mahmoudian, J.; Sadeghi, M.R.; Soltanghoraee, H.; Akhondi, M.M.; Tarahomi, M.; et al. Production of Monoclonal Antibody against Human Nestin. Avicenna J. Med. Biotechnol. 2010, 2, 69–77. [Google Scholar] [PubMed]
- Zhang, H.L.; Guo, F.G.; Zhu, G. Cryptosporidium Lactate Dehydrogenase Is Associated with the Parasitophorous Vacuole Membrane and Is a Potential Target for Developing Therapeutics. PLoS Pathog. 2015, 11, e1005250. [Google Scholar] [CrossRef] [PubMed]
- Kurien, B.T. Affinity purification of autoantibodies from an antigen strip excised from a nitrocellulose protein blot. Methods Mol. Biol. 2009, 536, 201–211. [Google Scholar] [CrossRef]
- Ludington, J.G.; Ward, H.D. The Cryptosporidium parvum C-Type Lectin CpClec Mediates Infection of Intestinal Epithelial Cells via Interactions with Sulfated Proteoglycans. Infect. Immun. 2016, 84, 1593–1602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhat, N.; Joe, A.; PereiraPerrin, M.; Ward, H.D. Cryptosporidium p30, a galactose/N-acetylgalactosamine-specific lectin, mediates infection in vitro. J. Biol. Chem. 2007, 282, 34877–34887. [Google Scholar] [CrossRef] [Green Version]
- Inomata, A.; Murakoshi, F.; Ishiwa, A.; Takano, R.; Takemae, H.; Sugi, T.; Cagayat Recuenco, F.; Horimoto, T.; Kato, K. Heparin interacts with elongation factor 1alpha of Cryptosporidium parvum and inhibits invasion. Sci. Rep. 2015, 5, 11599. [Google Scholar] [CrossRef] [Green Version]
- Cevallos, A.M.; Bhat, N.; Verdon, R.; Hamer, D.H.; Stein, B.; Tzipori, S.; Pereira, M.E.; Keusch, G.T.; Ward, H.D. Mediation of Cryptosporidium parvum infection in vitro by mucin-like glycoproteins defined by a neutralizing monoclonal antibody. Infect. Immun. 2000, 68, 5167–5175. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Guo, F.; Zhou, H.; Zhu, G. Transcriptome analysis reveals unique metabolic features in the Cryptosporidium parvum oocysts associated with environmental survival and stresses. BMC Genom. 2012, 13, 647. [Google Scholar] [CrossRef] [Green Version]
- Sanderson, S.J.; Xia, D.; Prieto, H.; Yates, J.; Heiges, M.; Kissinger, J.C.; Bromley, E.; Lal, K.; Sinden, R.E.; Tomley, F.; et al. Determining the protein repertoire of Cryptosporidium parvum sporozoites. Proteomics 2008, 8, 1398–1414. [Google Scholar] [CrossRef] [Green Version]
- Roth, D.; Lynes, E.; Riemer, J.; Hansen, H.G.; Althaus, N.; Simmen, T.; Ellgaard, L. A di-arginine motif contributes to the ER localization of the type I transmembrane ER oxidoreductase TMX4. Biochem. J. 2009, 425, 195–205. [Google Scholar] [CrossRef] [Green Version]
- Fiscella, M.; Perry, J.W.; Teng, B.; Bloom, M.; Zhang, C.; Leung, K.; Pukac, L.; Florence, K.; Concepcion, A.; Liu, B.; et al. TIP, a T-cell factor identified using high-throughput screening increases survival in a graft-versus-host disease model. Nat. Biotechnol. 2003, 21, 302–307. [Google Scholar] [CrossRef]
- Liu, X.; Huang, Y.; Liang, J.; Wang, J.; Shen, Y.; Li, Y.; Zhao, Y. Characterization of the malaria parasite protein PfTip, a novel invasion-related protein. Mol. Med. Rep. 2016, 13, 3303–3310. [Google Scholar] [CrossRef]
- Kaczanowski, S.; Zielenkiewicz, P. A TIP on malaria (genomics). Nat. Biotechnol. 2003, 21, 733. [Google Scholar] [CrossRef] [PubMed]
- Vance, T.D.R.; Ye, Q.; Conroy, B.; Davies, P.L. Essential role of calcium in extending RTX adhesins to their target. J. Struct. Biol. X 2020, 4, 100036. [Google Scholar] [CrossRef] [PubMed]
- Yuda, M.; Yano, K.; Tsuboi, T.; Torii, M.; Chinzei, Y. von Willebrand Factor A domain-related protein, a novel microneme protein of the malaria ookinete highly conserved throughout Plasmodium parasites. Mol. Biochem. Parasitol. 2001, 116, 65–72. [Google Scholar] [CrossRef]
- Harper, J.M.; Hoff, E.F.; Carruthers, V.B. Multimerization of the Toxoplasma gondii MIC2 integrin-like A-domain is required for binding to heparin and human cells. Mol. Biochem. Parasitol. 2004, 134, 201–212. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Gao, X.; Wang, D.; Zhao, J.; Zhang, N.; Li, Q.; Zhu, G.; Yin, J. A Single-Pass Type I Membrane Protein from the Apicomplexan Parasite Cryptosporidium parvum with Nanomolar Binding Affinity to Host Cell Surface. Microorganisms 2021, 9, 1015. https://doi.org/10.3390/microorganisms9051015
Zhang T, Gao X, Wang D, Zhao J, Zhang N, Li Q, Zhu G, Yin J. A Single-Pass Type I Membrane Protein from the Apicomplexan Parasite Cryptosporidium parvum with Nanomolar Binding Affinity to Host Cell Surface. Microorganisms. 2021; 9(5):1015. https://doi.org/10.3390/microorganisms9051015
Chicago/Turabian StyleZhang, Tianyu, Xin Gao, Dongqiang Wang, Jixue Zhao, Nan Zhang, Qiushi Li, Guan Zhu, and Jigang Yin. 2021. "A Single-Pass Type I Membrane Protein from the Apicomplexan Parasite Cryptosporidium parvum with Nanomolar Binding Affinity to Host Cell Surface" Microorganisms 9, no. 5: 1015. https://doi.org/10.3390/microorganisms9051015