Evaluation of the European Committee on Antimicrobial Susceptibility Testing Guidelines for Rapid Antimicrobial Susceptibility Testing of Bacillus anthracis-, Yersinia pestis- and Francisella tularensis-Positive Blood Cultures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Growth Conditions and Colony Forming Unit Determination
2.2. Antibiotics
2.3. Antimicrobial Susceptibility Testing
2.4. MIC and Inhibition Zone Diameter Determination
3. Results
3.1. Bacillus anthracis
3.1.1. Early Reading of AST Results
3.1.2. Characterization of B. anthracis Growth in Human Blood Culture Vials
3.1.3. RAST Directly from Positive Blood Culture Vials
3.2. Yersinia pestis
3.2.1. Early Reading of AST Results
3.2.2. Characterization of Y. pestis Growth in Human Blood Cultures
3.2.3. RAST Directly from Positive Blood Culture Vials
3.3. Francisella tularensis
3.3.1. Early Determination of AST Results
3.3.2. Characterization of F. tularensis Growth in Human Blood Culture
3.3.3. RAST Directly from Positive Blood Culture Vials
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- CDC. Bioterrorism Agents/Diseases. Available online: https://emergency.cdc.gov/agent/agentlist-category.asp (accessed on 12 May 2021).
- Inglesby, T.V.; Dennis, D.T.; Henderson, D.A.; Bartlett, J.G.; Ascher, M.S.; Eitzen, E.; Fine, A.D.; Friedlander, A.M.; Hauer, J.; Koerner, J.F.; et al. Plague as a biological weapon: Medical and public health management. Working Group on Civilian Biodefense. JAMA 2000, 283, 2281–2290. [Google Scholar] [CrossRef] [PubMed]
- Dennis, D.T.; Inglesby, T.V.; Henderson, D.A.; Bartlett, J.G.; Ascher, M.S.; Eitzen, E.; Fine, A.D.; Friedlander, A.M.; Hauer, J.; Layton, M.; et al. Tularemia as a biological weapon: Medical and public health management. JAMA 2001, 285, 2763–2773. [Google Scholar] [CrossRef]
- Inglesby, T.V.; O’Toole, T.; Henderson, D.A.; Bartlett, J.G.; Ascher, M.S.; Eitzen, E.; Friedlander, A.M.; Gerberding, J.; Hauer, J.; Hughes, J.; et al. Anthrax as a biological weapon, 2002: Updated recommendations for management. JAMA 2002, 287, 2236–2252. [Google Scholar] [CrossRef]
- Adalja, A.A.; Toner, E.; Inglesby, T.V. Clinical management of potential bioterrorism-related conditions. N Engl J. Med. 2015, 372, 954–962. [Google Scholar] [CrossRef] [PubMed]
- Weiss, S.; Kobiler, D.; Levy, H.; Pass, A.; Ophir, Y.; Rothschild, N.; Tal, A.; Schlomovitz, J.; Altboum, Z. Antibiotics cure anthrax in animal models. Antimicrob. Agents Chemother. 2011, 55, 1533–1542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutera, V.; Levert, M.; Burmeister, W.P.; Schneider, D.; Maurin, M. Evolution toward high-level fluoroquinolone resistance in Francisella species. J. Antimicrob. Chemother. 2014, 69, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Galimand, M.; Carniel, E.; Courvalin, P. Resistance of Yersinia pestis to antimicrobial agents. Antimicrob. Agents Chemother. 2006, 50, 3233–3236. [Google Scholar] [CrossRef] [Green Version]
- Pomerantsev, A.P.; Shishkova, N.A.; Marinin, L.I. Comparison of therapeutic effects of antibiotics of the tetracycline group in the treatment of anthrax caused by a strain inheriting tet-gene of plasmid pBC16. Antibiot. Khimioter. 1992, 37, 31–34. [Google Scholar]
- Stepanov, A.V.; Marinin, L.I.; Pomerantsev, A.P.; Staritsin, N.A. Development of novel vaccines against anthrax in man. J. Biotechnol. 1996, 44, 155–160. [Google Scholar] [CrossRef]
- Cabanel, N.; Bouchier, C.; Rajerison, M.; Carniel, E. Plasmid-mediated doxycycline resistance in a Yersinia pestis strain isolated from a rat. Int. J. Antimicrob. Agents 2018, 51, 249–254. [Google Scholar] [CrossRef]
- Siebert, C.; Lindgren, H.; Ferre, S.; Villers, C.; Boisset, S.; Perard, J.; Sjostedt, A.; Maurin, M.; Brochier-Armanet, C.; Coute, Y.; et al. Francisella tularensis: FupA mutation contributes to fluoroquinolone resistance by increasing vesicle secretion and biofilm formation. Emerg. Microbes Infect. 2019, 8, 808–822. [Google Scholar] [CrossRef]
- Karlsson, E.; Golovliov, I.; Larkeryd, A.; Granberg, M.; Larsson, E.; Ohrman, C.; Niemcewicz, M.; Birdsell, D.; Wagner, D.M.; Forsman, M.; et al. Clonality of erythromycin resistance in Francisella tularensis. J. Antimicrob. Chemother. 2016, 71, 2815–2823. [Google Scholar] [CrossRef] [Green Version]
- Sutera, V.; Hoarau, G.; Renesto, P.; Caspar, Y.; Maurin, M. In vitro and in vivo evaluation of fluoroquinolone resistance associated with DNA gyrase mutations in Francisella tularensis, including in tularaemia patients with treatment failure. Int. J. Antimicrob. Agents 2017, 50, 377–383. [Google Scholar] [CrossRef]
- Fang, H.; Wang, H.; Cai, L.; Yu, Y. Prevalence of antibiotic resistance genes and bacterial pathogens in long-term manured greenhouse soils as revealed by metagenomic survey. Environ. Sci. Technol. 2015, 49, 1095–1104. [Google Scholar] [CrossRef]
- Pilmis, B.; Thy, M.; Diep, J.; Krob, S.; Perillaud, C.; Couzigou, C.; Vidal, B.; Mizrahi, A.; Lourtet-Hascoet, J.; Le Monnier, A.; et al. Clinical impact of rapid susceptibility testing on MHR-SIR directly from blood cultures. J. Antimicrob. Chemother. 2019, 74, 3063–3068. [Google Scholar] [CrossRef]
- Galar, A.; Yuste, J.R.; Espinosa, M.; Guillen-Grima, F.; Hernaez-Crespo, S.; Leiva, J. Clinical and economic impact of rapid reporting of bacterial identification and antimicrobial susceptibility results of the most frequently processed specimen types. Eur, J. Clin. Microbiol. Infect. Dis 2012, 31, 2445–2452. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Principles and Procedures for Blood Cultures, 1st ed.; Approved Guideline. CLSI standard M47-A; Clinical and Laboratories Standard Institute: Wayne, PA, USA, 2007. [Google Scholar]
- Maugeri, G.; Lychko, I.; Sobral, R.; Roque, A.C.A. Identification and Antibiotic-Susceptibility Profiling of Infectious Bacterial Agents: A Review of Current and Future Trends. Biotechnol J. 2019, 14, e1700750. [Google Scholar] [CrossRef] [PubMed]
- Idelevich, E.A.; Becker, K. How to accelerate antimicrobial susceptibility testing. Clin. Microbiol. Infect. 2019, 25, 1347–1355. [Google Scholar] [CrossRef]
- Aloni-Grinstein, R.; Schuster, O.; Yitzhaki, S.; Aftalion, M.; Maoz, S.; Steinberger-Levy, I.; Ber, R. Isolation of Francisella tularensis and Yersinia pestis from Blood Cultures by Plasma Purification and Immunomagnetic Separation Accelerates Antibiotic Susceptibility Determination. Front. Microbiol. 2017, 8, 312. [Google Scholar] [CrossRef] [Green Version]
- Steinberger-Levy, I.; Zahavy, E.; Cohen, S.; Flashner, Y.; Mamroud, E.; Aftalion, M.; Gur, D.; Ber, R. Enrichment of Yersinia pestis from blood cultures enables rapid antimicrobial susceptibility determination by flow cytometry. Adv. Exp. Med. Biol. 2007, 603, 339–350. [Google Scholar] [CrossRef]
- Stokkou, S.; Geginat, G.; Schluter, D.; Tammer, I. Direct disk diffusion test using European Clinical Antimicrobial Susceptibility Testing breakpoints provides reliable results compared with the standard method. Eur. J. Microbiol. Immunol. 2015, 5, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Jonasson, E.; Matuschek, E.; Kahlmeter, G. The EUCAST rapid disc diffusion method for antimicrobial susceptibility testing directly from positive blood culture bottles. J. Antimicrob. Chemother. 2020, 75, 968–978. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekaran, S.; Abbott, A.; Campeau, S.; Zimmer, B.L.; Weinstein, M.; Thrupp, L.; Hejna, J.; Walker, L.; Ammann, T.; Kirn, T.; et al. Direct-from-Blood-Culture Disk Diffusion To Determine Antimicrobial Susceptibility of Gram-Negative Bacteria: Preliminary Report from the Clinical and Laboratory Standards Institute Methods Development and Standardization Working Group. J. Clin. Microbiol. 2018, 56, e01678-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EUCAST. Rapid AST directly from blood culture bottles. Available online: https://www.eucast.org/rapid_ast_in_blood_cultures/ (accessed on 12 May 2021).
- Coyle, M.B.; McGonagle, L.A.; Plorde, J.J.; Clausen, C.R.; Schoenknecht, F.D. Rapid antimicrobial susceptibility testing of isolates from blood cultures by direct inoculation and early reading of disk diffusion tests. J. Clin. Microbiol. 1984, 20, 473–477. [Google Scholar] [CrossRef] [Green Version]
- Tan, T.Y.; Ng, L.S.; Kwang, L.L. Evaluation of disc susceptibility tests performed directly from positive blood cultures. J. Clin. Pathol. 2008, 61, 343–346. [Google Scholar] [CrossRef]
- Doern, G.V.; Scott, D.R.; Rashad, A.L.; Kim, K.S. Evaluation of a direct blood culture disk diffusion antimicrobial susceptibility test. Antimicrob. Agents Chemother. 1981, 20, 696–698. [Google Scholar] [CrossRef] [Green Version]
- Weme, E.T. Rapid antimicrobial susceptibility testing of positive blood cultures by direct inoculation and reading of disc diffusion tests after 3–4 hours. APMIS 2018, 126, 870–876. [Google Scholar] [CrossRef]
- Perillaud, C.; Pilmis, B.; Diep, J.; Pean de Ponfilly, G.; Vidal, B.; Couzigou, C.; Mizrahi, A.; Lourtet-Hascoet, J.; Le Monnier, A.; Nguyen Van, J.C. Prospective evaluation of rapid antimicrobial susceptibility testing by disk diffusion on Mueller-Hinton rapid-SIR directly on blood cultures. Diagn. Microbiol. Infect. Dis. 2019, 93, 14–21. [Google Scholar] [CrossRef]
- Rajshekar, D.; Chaudhari, K.V.; Bhat, P.; Prakash, S.S.; Raghvan, R.; Vasanth, S.; Jayakar, S.; Sugumaran, R.; Kannambath, R.; Chowdury, S.; et al. Evaluation of performance of direct disk diffusion test from positively flagged blood culture broth: A large scale study from South India. J. Lab. Physicians 2019, 11, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Froding, I.; Vondracek, M.; Giske, C.G. Rapid EUCAST disc diffusion testing of MDR Escherichia coli and Klebsiella pneumoniae: Inhibition zones for extended-spectrum cephalosporins can be reliably read after 6 h of incubation. J. Antimicrob. Chemother. 2017, 72, 1094–1102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bianco, G.; Iannaccone, M.; Boattini, M.; Cavallo, R.; Costa, C. Assessment of rapid direct E-test on positive blood culture for same-day antimicrobial susceptibility. Braz J. Microbiol 2019, 50, 953–959. [Google Scholar] [CrossRef] [PubMed]
- Levy, H.; Weiss, S.; Altboum, Z.; Schlomovitz, J.; Glinert, I.; Sittner, A.; Shafferman, A.; Kobiler, D. Differential contribution of Bacillus anthracis toxins to pathogenicity in two animal models. Infect. Immun 2012, 80, 2623–2631. [Google Scholar] [CrossRef] [Green Version]
- Anonymous. Common buffers, media, and stock solutions. Curr. Protoc. Hum. Genet. 2001. [Google Scholar] [CrossRef]
- Ben-Gurion, R.; Hertman, I. Bacteriocin-like material produced by Pasteurella pestis. J. Gen. Microbiol. 1958, 19, 289–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CLSI. Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria, 3rd ed.; CLSI standard M45, CLSI standard M45 ed.; Clinical and Laboratories Standard Institute: Wayne, PA, USA, 2015. [Google Scholar]
- Caspar, Y.; Maurin, M. Francisella tularensis Susceptibility to Antibiotics: A Comprehensive Review of the Data Obtained In Vitro and in Animal Models. Front. Cell Infect. Microbiol. 2017, 7, 122. [Google Scholar] [CrossRef] [Green Version]
- Khan, Z.A.; Siddiqui, M.F.; Park, S. Current and Emerging Methods of Antibiotic Susceptibility Testing. Diagnostics 2019, 9, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinberger-Levy, I.; Shifman, O.; Zvi, A.; Ariel, N.; Beth-Din, A.; Israeli, O.; Gur, D.; Aftalion, M.; Maoz, S.; Ber, R. A Rapid Molecular Test for Determining Yersinia pestis Susceptibility to Ciprofloxacin by the Quantification of Differentially Expressed Marker Genes. Front. Microbiol. 2016, 7, 763. [Google Scholar] [CrossRef] [PubMed]
- Shifman, O.; Steinberger-Levy, I.; Aloni-Grinstein, R.; Gur, D.; Aftalion, M.; Ron, I.; Mamroud, E.; Ber, R.; Rotem, S. A rapid antimicrobial susceptibility test for determining Yersinia pestis susceptibility to doxycycline by RT-PCR quantification of RNA markers. Front. Microbiol. 2019, 10, 754. [Google Scholar] [CrossRef] [Green Version]
- Aloni-Grinstein, R.; Shifman, O.; Lazar, S.; Steinberger-Levy, I.; Maoz, S.; Ber, R. A rapid real-time quantitative PCR assay to determine the minimal inhibitory extracellular concentration of antibiotics against an intracellular Francisella tularensis Live Vaccine Strain. Front. Microbiol. 2015, 6, 1213. [Google Scholar] [CrossRef] [Green Version]
Antibiotics | Etest Concentration Range (µg/mL) | Cat # | Disc Concentration (µg) | Cat # |
---|---|---|---|---|
Ciprofloxacin (CIP) | 0.002–32 | 412311 | 5 | 231657 a |
Doxycycline (DOX) | 0.016–256 | 412328 | - | - |
Tetracycline (TET) | - | - | 30 | 230998 a |
Chloramphenicol (CHL) | 0.016–256 | 412309 | 30 | CT0013B b |
Gentamicin (GEN) | 0.016–256 | 412368 | 10 | 231227 a |
Streptomycin (STR) | 0.064–1024 | 526800 | - | - |
Trimethoprim–Sulfamethoxazole (TRS) | 0.002–32 | 412481 | 1.25/23.75 | CT0052B b |
Amoxicillin–Clavulanic acid (AMC) | - | - | 20/10 | 231628 a |
Ampicillin (AMP) | 0.016–256 | 412253 | - | - |
Clarithromycin (CLA) | 0.016–256 | 412313 | - | - |
Clindamycin (CLI) | 0.016–256 | 412315 | - | - |
Imipenem (IMI) | 0.002–32 | 412374 | 10 | 231644 a |
Levofloxacin (LEV) | - | - | 5 | 231705 a |
Linezolid (LIN) | - | - | 30 | 231761 a |
Moxifloxacin (MOX) | - | - | 5 | 231757 a |
Penicillin G (BEN) | - | - | 1 Unit | CT0152B b |
Rifampicin (RIF) | 0.002–32 | 412450 | - | - |
Vancomycin (VAN) | 0.016–256 | 412488 | - | - |
Incubation Duration (h) | Inhibition Zone Diameter (mm) | |||||||
---|---|---|---|---|---|---|---|---|
CIP | TET | BEN | AMC | LIN | MOX | LEV | IMI | |
6 | 21 | 25–26 | 19–20 | 28 | 21 | 17 | 17 | 31 |
8 | 22–25 | 27–28 | 20 | 30 | 30 | 17 | 23 | 34 |
16 | 26 | 30 | 21 | 31 | 28 | 23 | 25 | 38 |
18 | 26 | 30 | 21 | 32 | 28 | 23 | 26 | 39 |
20 | 26 | 30 | 21 | 33 | 28 | 23 | 26 | 39 |
23 | 24–26 | 29–30 | 20–21 | 30–33 | 28–30 | 23 | 26 | 39–40 |
Incubation Duration (h) | MIC (µg/mL) | |||||||
---|---|---|---|---|---|---|---|---|
CIP | DOX | AMP | CHL | CLI | CLA | VAN | RIF | |
6 | 0.06 | <0.016 | 0.03-0.06 | 4–8 | 0.125–0.5 | 0.25–0.5 | 0.125 | 0.03–0.06 |
8 | 0.06 | ≤0.016 | 0.03–0.06 | 4–8 | 0.125–0.5 | 0.25–0.5 | 0.25 | 0.03–0.125 |
10 | 0.06 | ≤0.016 | 0.06 | 4–8 | 0.25 | 0.25 | 0.25 | 0.06 |
16 | 0.06 | 0.016–0.06 | 0.06–0.125 | 4 | 0.25–0.5 | 0.25 | 1 | 0.25–0.5 |
18 | 0.06 | 0.016–0.125 | 0.06–0.125 | 4–8 | 0.25–0.5 | 0.25 | 1–2 | 0.25–0.5 |
20 | 0.06 | 0.06–0.125 | 0.06–0.125 | 4–8 | 0.25–0.5 | 0.25 | 1–2 | 0.5 |
23 | 0.06 | 0.06–0.125 | 0.06–0.125 | 8 | 0.25–0.5 | 0.25–0.5 | 1–2 | 0.25–0.5 |
Initial Concentration in Blood (CFU/mL) | Incubation Duration until the Alert (hh: mm) | Concentration at the Alert (CFU/mL) | Concentration, 18 h after the Alert, Incubation in the Device (CFU/mL) | Concentration, 3 h after the Alert, at Room Temperature (CFU/mL) |
---|---|---|---|---|
1.0 × 105 | 4:30 to 6:30 | 8.7 × 106 to 2.9 × 107 | 2.0 × 107 to 7.0 × 107 | 2.3 × 107 to 5.0 × 107 |
1.0 × 104 | 6:30 to 7:50 | 8.0 × 106 to 1.5 × 107 | ||
1.0 × 103 | 7:50 to 9:40 | 6.0 × 106 to 2.4 × 107 | ||
1.0 × 102 | 9:40 to 10:30 | |||
1.0 × 101 | 10:50 to 11:50 | 3.8 × 106 to 1.8 × 107 |
Inhibition Zone Diameter (mm) | ||||
---|---|---|---|---|
Incubation Duration (h) | Standard Culture a | At the Alert | 18 h after the Alert, Incubation in the Device | 3 h after the Alert, at Room Temperature |
6 | 21 | 20–21 | 20–21 | 18–21 |
8 | 22–25 | 23–25 | 22–24 | 20–22 |
16 | 26 | 23–26 | ND | ND |
18 | 26 | 23–26 | ND | ND |
20 | 26 | 23–26 | ND | ND |
23 | 24–26 | 23–26 | 22–25 | 21–24 |
MIC (µg/mL) | ||||
---|---|---|---|---|
Incubation Duration (h) | Standard Culture a | At the Alert | 18 h after the Alert, Incubation in the Device | 3 h after the Alert, at Room Temperature |
6 | 0.06 | 0.06 | 0.03–0.06 | 0.06 |
8 | 0.06 | 0.06 | 0.03–0.06 | 0.06 |
16 | 0.06 | 0.03–0.06 | ND | ND |
18 | 0.06 | 0.03–0.06 | ND | ND |
20 | 0.06 | 0.03–0.125 | ND | ND |
23 | 0.06 | 0.06–0.125 | 0.06 | 0.06 |
Inhibition Zone | Inhibition Zone Diameter (mm) | ||||
---|---|---|---|---|---|
Incubation Duration (h) | CIP | TET | GEN | CHL | TRS |
18 | 35–40 | 28 | 27–28 | 31–36 | 40–42 |
20 | 36–40 | 29–30 | 28–30 | 30–35 | 40–42 |
22 | 39–41 | 30 | 28–29 | 31–36 | 40–42 |
24 | 39–42 | 30–32 | 28–30 | 30–35 | 39–42 |
MIC (µg/mL) | ||||||
---|---|---|---|---|---|---|
Incubation Duration (h) | CIP | DOX | GEN | CHL | TRS | STR |
18 | 0.016 | 1–2 | 0.25–1 | 2–4 | 0.016–0.03 | 1–2 |
20 | 0.016 | 1–2 | 0.25–1 | 2–4 | 0.016–0.03 | 1–2 |
22 | 0.016–0.03 | 1–2 | 0.25–1 | 2–4 | 0.016–0.03 | 1–2 |
24 | 0.016–0.03 | 1–2 | 0.25–1 | 2–4 | 0.016–0.03 | 1–2 |
Initial Concentration in Blood (CFU/mL) | Incubation Duration until Alert (hh: mm) | Concentration at the Alert (CFU/mL) | Concentration, 18 h after the Alert, Incubation in the Device (CFU/mL) | Concentration, 3 h after the Alert, at Room Temperature (CFU/mL) |
---|---|---|---|---|
1.0 × 103 to 2.7 × 103 | 20:00 to 22:40 | 2.4 × 107 to 3.0 × 107 | 2.5 × 108 to 3.2 × 108 | 6.0 × 107 to 8.0 × 107 |
1.0 × 102 to 2.3 × 102 | 23:10 to 30:50 | 1.6 × 107 to 5.6 × 107 | ||
1.4 × 101 to 5.9 × 101 | 24:40 to 29:10 | 1.0 × 107 to 1.3 × 107 |
Inhibition Zone Diameter (mm) | ||||
---|---|---|---|---|
Incubation Duration (h) | Standard Conditions a | At the Alert | 18 h after the Alert, Incubation in the Device | 3 h after the Alert, at Room Temperature |
18 | 35–40 | 35–40 | 37–39 | 40–42 |
20 | 36–40 | 36–40 | 37–42 | 38–42 |
22 | 39–41 | 36–42 | 37–42 | 42 |
24 | 39–42 | 42 | 37–43 | 43–45 |
MIC (µg/mL) | ||||
---|---|---|---|---|
Incubation Duration (h) | Standard Culture a | At the Alert | 18 h after the Alert, Incubation in the Device | 3 h after the Alert, at Room Temperature |
18 | 0.016 | 0.016–0.03 | 0.016 | 0.016 |
20 | 0.016 | 0.016–0.03 | 0.016–0.03 | 0.016–0.03 |
22 | 0.016–0.03 | 0.016–0.03 | 0.016–0.03 | 0.016 |
24 | 0.016–0.03 | 0.016 | 0.016–0.03 | 0.016 |
Inhibition Zone Diameter (mm) | ||||
---|---|---|---|---|
Incubation Duration (h) | CIP | TET | CHL | GEN |
24 | 40–42 | 39–40 | 40–41 | 23–25 |
30–40 | 42–44 | 40–41 | 41–43 | 26–27 |
48 | 43–44 | 40–42 | 40–43 | 27–28 |
MIC (µg/mL) | |||||
---|---|---|---|---|---|
Incubation Duration (h) | CIP | DOX | CHL | GEN | STR |
24 | 0.016 | 0.25 | 0.5–1 | 0.5–1 | 2–4 |
30–40 | 0.008–0.016 | 0.25–0.5 | 0.5–1 | 0.5–1 | 2–4 |
48 | 0.008–0.016 | 0.25–0.5 | 0.5 | 0.5–1 | 2–4 |
Initial Concentration in Blood (CFU/mL) | Incubation Duration until the Alert (dd: hh: mm) | Concentration at the Alert (CFU/mL) | Concentration, 18 h after the Alert, Incubation in the Device (CFU/mL) | Concentration, 3 h after the Alert, at Room Temperature (CFU/mL) |
---|---|---|---|---|
2.6 × 106 to 2.9 × 106 | 0:19:00 to 0:23:30 | 1.5 × 107 to 3.0 × 108 | 3.6 × 108 to 2.3 × 109 | ND |
1.0 × 105 to 3.3 × 105 | 1:09:00 to 2:06:30 | |||
2.6 × 104 to 2.8 × 104 | 2:07:30 to 2:14:30 | |||
2.6 × 103 to 4.9 × 103 | 3:23:00 to 4:17:00 | 1.4 × 107 to 9.0 × 107 | 1.4 × 108 to 8.0 × 108 | ND |
2.0 × 102 to 4.8 × 102 | 4:22:00 to 8:01:30 | 1.6 × 107 to 3.6 × 108 | 1.8 × 108 to 1.6 × 109 | 5.0 × 107 to 5.6 × 108 |
2.0 × 101 to 4.3 × 101 | 6:13:00 to 12:04:00 |
Inhibition Zone Diameter (mm) | ||||
---|---|---|---|---|
Incubation Duration (h) | Standard Culture a | At the Alert | 18 h after the Alert, Incubation in the Device | 3 h after the Alert, at Room Temperature |
24 | 40–42 | 40 | 40 | 40 |
30–40 | 42–44 | 43–44 | 42–43 | 43 |
48 | 43–44 | 44 | 43–44 | 44 |
MIC (µg/mL) | ||||
---|---|---|---|---|
Incubation Duration (h) | Standard Culture a | At the Alert | 18 h after the alert, Incubation in the Device | 3 h after the Alert, at Room Temperature |
24 | 0.016 | 0.008–0.016 | 0.016 | 0.016 |
30–40 | 0.008–0.016 | 0.008–0.016 | 0.008–0.016 | 0.008–0.016 |
48 | 0.008–0.016 | 0.008–0.016 | 0.008–0.016 | 0.008–0.016 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shifman, O.; Aminov, T.; Aftalion, M.; Gur, D.; Cohen, H.; Bar-David, E.; Cohen, O.; Mamroud, E.; Levy, H.; Aloni-Grinstein, R.; et al. Evaluation of the European Committee on Antimicrobial Susceptibility Testing Guidelines for Rapid Antimicrobial Susceptibility Testing of Bacillus anthracis-, Yersinia pestis- and Francisella tularensis-Positive Blood Cultures. Microorganisms 2021, 9, 1055. https://doi.org/10.3390/microorganisms9051055
Shifman O, Aminov T, Aftalion M, Gur D, Cohen H, Bar-David E, Cohen O, Mamroud E, Levy H, Aloni-Grinstein R, et al. Evaluation of the European Committee on Antimicrobial Susceptibility Testing Guidelines for Rapid Antimicrobial Susceptibility Testing of Bacillus anthracis-, Yersinia pestis- and Francisella tularensis-Positive Blood Cultures. Microorganisms. 2021; 9(5):1055. https://doi.org/10.3390/microorganisms9051055
Chicago/Turabian StyleShifman, Ohad, Tamar Aminov, Moshe Aftalion, David Gur, Hila Cohen, Elad Bar-David, Ofer Cohen, Emanuelle Mamroud, Haim Levy, Ronit Aloni-Grinstein, and et al. 2021. "Evaluation of the European Committee on Antimicrobial Susceptibility Testing Guidelines for Rapid Antimicrobial Susceptibility Testing of Bacillus anthracis-, Yersinia pestis- and Francisella tularensis-Positive Blood Cultures" Microorganisms 9, no. 5: 1055. https://doi.org/10.3390/microorganisms9051055
APA StyleShifman, O., Aminov, T., Aftalion, M., Gur, D., Cohen, H., Bar-David, E., Cohen, O., Mamroud, E., Levy, H., Aloni-Grinstein, R., Steinberger-Levy, I., & Rotem, S. (2021). Evaluation of the European Committee on Antimicrobial Susceptibility Testing Guidelines for Rapid Antimicrobial Susceptibility Testing of Bacillus anthracis-, Yersinia pestis- and Francisella tularensis-Positive Blood Cultures. Microorganisms, 9(5), 1055. https://doi.org/10.3390/microorganisms9051055