Discovery of Siderophore and Metallophore Production in the Aerobic Anoxygenic Phototrophs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Growth Conditions
2.2. Iron Chelating Chromeazurol S Assay
2.3. Variant Cation Chromeazurol S Assay
2.4. Phylogeny
2.5. Siderophore Isolation and Concentration from C. halotolerans
2.6. Purification and Fe-Chelation of Siderophore from C. halotolerans
3. Results
3.1. Bacterial Growth and Fe-CAS-Plate Reactions
3.2. Substitute Cation CAS Assays
3.3. Phylogenetic Diversity of Siderophore Producing AAP
3.4. C. halotolerans Pigment Purification and Identification
4. Discussion
4.1. Siderophore Production Revealed by CAS-Assay
4.2. Environmental Distribution of Siderophore Producers
4.3. Phylogenetic Diversity of Fe-Chelating AAP
4.4. Analysis of the Brown-Coloured Siderophore
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Environment | Strain | Medium | Most Related Type Species | Accession # |
---|---|---|---|---|
Hot spring, Kamchatka island | KR99T | RO | Erythromonas ursincola | NR_119243.1 |
Warm temperature spring, Bikal Lake, Russia | E1 | RO | 99.6% Porphyrobacter colymbi | MW970346 |
E4(1) | RO | 99.7% Porphyrobacter donghaensis | MW970347 | |
E5T | RO | Erythromicrobium ramosum | NR_041891.1 | |
RB3T | RO | Roseococcus thiosulfatophilus | NR_026114.1 | |
RB16-17T | RO | Sandaracinobacter sibiricus | NR_026382.1 | |
T4T | RO-NaCl | Erythrobacter litoralis | NR_119016.1 | |
Deep Ocean, Juan DeFuco Ridge, Pacific Ocean | JF1T | RO-NaCl | Citromicrobium bathyomarinum | Y16267.1 |
C6 | RO-NaCl | 98.1% Citromicrobium bathyomarinum | MW970348 | |
C7 | RO-NaCl | 99.8%Citromicrobium bathyomarinum | MW970349 | |
C8 | RO-NaCl | 99.9%Citromicrobium bathyomarinum | MW970350 | |
C14 | RO-NaCl | 99.6% Citromicrobium bathyomarinum | MW970351 | |
C23 | RO-NaCl | 99.7% Citromicrobium bathyomarinum | MW970352 | |
C26 | RO-NaCl | 99.8% Citromicrobium bathyomarinum | MW970353 | |
N25 | RO-NaCl | 99.7% Citromicrobium bathyomarinum | MW970354 | |
N34 | RO-NaCl | 99.7% Citromicrobium bathyomarinum | MW970355 | |
N48 | RO-NaCl | 99.8% Citromicrobium bathyomarinum | MW970356 | |
N56 | RO-NaCl | 99.9% Citromicrobium bathyomarinum | MW970357 | |
N78 | RO-NaCl | 99.6% Citromicrobium bathyomarinum | MW970358 | |
Rag Beach sediment, BC, Canada | 23-SB | RO-NaCl | 99.7% Porphyrobacter donghaensis | MW970359 |
15-SB | RO-NaCl | 99.8% Porphyrobacter donghaensis | MW970360 | |
Central Gold Mine, MB, Canada | C4 | RO | 99.4% Porphyrobacter colymbi | KX148515 |
C9 | RO | 99.1% Brevundimonas variabilis | KX148516 | |
C11 | RO | 98.6% Brevundimonas bacteroides | KX148517 | |
NM4.16 | RO | 99.7% Porphyrobacter colymbi | KX148518 | |
NM4.18 | RO | 99.3% Blastomonas fulva | KX148519 | |
Lake Winnipeg, MB, Canada | AJ 72 | RO | 99.7% Sphingorhabdus lacus | MW970361 |
AM 19 | RO | 99.7% Erythromicrobium ramosum | MW970362 | |
AM 27 | RO | 99.6% Erythromicrobium ramosum | MW970363 | |
CK 182 | RO | 93.4% Porphyrobacter donghaensis | MW970364 | |
BL 67 | RO | 98.9% Sandarakinorhabdus cyanobacteriorum | MW970365 | |
BK 61 | RO | 99.1% Blastomonas fulva | MW970366 | |
BE 100 | RO | 99.4% Porphyrobacter colymbi | MW970367 | |
AM 91 | RO | 98.5% Porphyrobacter sanguineus | MW970368 | |
CK 155 | RO | 98.1% Roseomonas sediminicola | MW970369 | |
CL 63 | RO | 100% Methylorubrum extorquens | MW970370 | |
BA 23 | RO | 96.2% Methylobacterium indicum | MW970371 | |
BC100 | RO | 96.6% Sphingomonas yantingensis | MW970372 | |
CN8 | RO | 99.2% Porphyrobacter neustonensis | MW970373 | |
GM14 | RO | 99.2% Erythromonas ursincola | MW970374 | |
Zebra mussels, Lake Winnipeg, MB, Canada | Z1 | RO | 99.1% Porphyrobacter colymbi | MN987006 |
Z2 | RO | 99.4% Porphyrobacter tepidarius | MN987007 | |
Z5 | RO | 99.6% Porphyrobacter tepidarius | MN987008 | |
Z6 | RO | 99.3% Porphyrobacter neustonensis | MN987009 | |
Z7 | RO | 99.6% Erythromicrobium ramosum | MN987010 | |
Z24 | RO | 98.7% Porphyrobacter sanguineus | MN987011 | |
Z27 | RO | 99.4% Porphyrobacter neustonensis | MN987012 | |
Z39 | RO | 98.9% Porphyrobacter sanguineus | MN987013 | |
Z59 | RO | 99.5% Porphyrobacter neustonensis | MN987014 | |
Z68 | RO | 99.4% Porphyrobacter neustonensis | MN987015 |
Environment | Strain | Medium | Most Related Type Species | Accession # |
---|---|---|---|---|
Mahoney Lake, BC, Canada | ML1 | N1 | 98.4% Erythromicrobium ramosum | MW970375 |
ML3 | N1 | 99.4% Porphyrobacter sanguineus | MW970376 | |
ML4T | N1 | Porphyrobacter meromictius | NR_115007.1 | |
ML6T | N1 | Roseicyclus mahoneyensis | NR_042080.1 | |
ML10 | N1 | 97.9% Salinarimonas ramus | MW970377 | |
ML14 | N1 | 98.9% Erythromicrobium ramosum | MW970378 | |
ML19 | N1 | 96.9% Porphyrobacter meromiticus | MW970379 | |
ML20 | N1 | 99.3% Blastomonas fulva | MW970380 | |
ML21 | N1 | 98.5% Erythromicrobium ramosum | MW970381 | |
ML22 | N1 | 99.8% Porphyrobacter sanguineus | MW970382 | |
ML30 | N1 | 98.8% Seohaeicola saemankumensis | MW970383 | |
ML35 | N1 | 99.4% Blastomonas fulva | MW970384 | |
ML36 | N1 | 97.1% Porphyrobacter sanguineus | MW970385 | |
ML37 | N1 | 95.4% Glycocaulis profundi | MW970386 | |
ML42 | N1 | 98.0% Roseicyclus marinus | MW970387 | |
ML45 | N1 | 94.7% Ruegeria intermedia | MW970388 | |
Blue Lake, BC, Canada | BL1 | BLM | 98.1% Roseicyclus marinus | MW970389 |
BL4 | BLM | 99.3% Porphyrobacter sanguineus | MW970390 | |
BL5 | BLM | 99.2% Seohaeicola saemankumensis | MW970391 | |
BL7 | BLM | 95.6% Glycocaulis profundi | MW970392 | |
BL8 | BLM | 98.1% Roseicyclus marinus | MW970393 | |
BL9 | BLM | 98.0% Roseicyclus marinus | MW970394 | |
BL11 | BLM | 95.8% Glycocaulis profundi | MW970395 | |
BL14 | BLM | 95.6% Glycocaulis profundi | MW970396 | |
BL17 | BLM | 95.1% Glycocaulis profundi | MW970397 | |
BL22 | BLM | 95.0% Glycocaulis profundi | MW970398 | |
East German Creek System, MB, Canada | EG1 | MA | 95.2% Roseovarius pacificus | AM691094 |
EG2 | MA | 94.4% Roseovarius bejariae | AM691093 | |
EG3 | MA | 97.3% Yoonia vestfoldensis | AM691092 | |
EG4 | MA | 98.8% Erythrobacter longus | AM691105 | |
EG5 | MA | 95.7% Roseovarius pacificus | AM691095 | |
EG6 | MA | 98.4% Porphyrobacter meromictius | AM691106 | |
EG7 | MA | 97.3% Roseovarius nitratireducens | AM691097 | |
EG8 | MA | 99.0% Roseovarius tolerans | AM691101 | |
EG9 | MA | 97.3% Roseovarius nitratireducens | AM691098 | |
EG10 | MA | 98.2% Roseovarius tibetensis | AM691100 | |
EG11 | MA | 97.7% Roseovarius nitratireducens | AM691099 | |
EG13 | MA | 99.0% Roseovarius tolerans | AM691102 | |
EG15 | MA | 98.9% Erythrobacter aquimaris | AM691107 | |
EG17T | MA | Charonomicrobium ambiphototrophicum | AM691091 | |
EG19T | MA | Chromocurvus halotolerans | AM691088 | |
Sandy Lands Forest Soil Crust, MB, Canada | SS56 | BSCA | 99.6% Methylobacterium brachiatum | MW970399 |
SS63 | BSCA | 99.1% Bosea lupini | MW970400 | |
SS335 | BSCA | 98.3% Bosea lupini | MW970401 | |
Spruce Woods National Park Soil Crust, MB, Canada | J01 | BSCA | 98.4% Belnapia moabensis | MW970402 |
J05 | BSCA | 96.6% Sphingomonas pruni | MW970403 | |
P4 | BSCB | 99.6% Methylobacterium phyllosphaerae | MW970404 | |
P13 | BSCB | 98.7% Bosea lupini | MW970405 | |
P40 | BSCB | 99.9% Belnapia soli | MW970406 | |
P132 | BSCB | 99.6% Methylobacterium brachiatum | MW970407 | |
P233 | BSCB | 99.8% Methylobacterium tardum | MW970408 |
References
- Granger, J.; Price, N.M. The importance of siderophores in iron nutrition of heterotrophic marine bacteria. Limnol. Oceanogr. 1999, 44, 541–555. [Google Scholar] [CrossRef]
- Challis, G.L. A widely distributed bacterial pathway for siderophore biosynthesis independent of nonribosomal peptide synthetases. ChemBioChem 2005, 6, 601–611. [Google Scholar] [CrossRef] [PubMed]
- Schalk, I.J.; Hannauer, M.; Braud, A. New roles for bacterial siderophores in metal transport and tolerance. Environ. Microbiol. 2011, 13, 2844–2854. [Google Scholar] [CrossRef] [PubMed]
- Yurkov, V.V.; van Gemerden, H. Impact of light/dark regimen on growth rate, biomass formation and bacteriochlorophyll synthesis in Erythromicrobium hydrolyticum. Arch. Microbiol. 1993, 159, 84–89. [Google Scholar] [CrossRef]
- Yurkov, V.; Hughes, E. Aerobic Anoxygenic Phototrophs: Four Decades of Mystery. In Modern Topics in the Phototrophic Prokaryotes: Environmental and Applied Aspects; Hallenbeck, P.C., Ed.; Springer: Cham, Switzerland, 2017; pp. 193–217. [Google Scholar]
- Faraldo-Gómez, J.D.; Sansom, M.S.P. Acquisition of siderophores in gram-negative bacteria. Nat. Rev. Mol. Cell Biol. 2003, 4, 105–116. [Google Scholar] [CrossRef]
- Lankford, C.E. Bacterial assimilation of iron. Crit. Rev. Microbiol. 1973, 2, 273–331. [Google Scholar] [CrossRef]
- Reid, R.T.; Livet, D.H.; Faulkner, D.J.; Butler, A. A siderophore from a marine bacterium with an exceptional ferric ion affinity constant. Nature 1993, 366, 455–458. [Google Scholar] [CrossRef]
- Wandersman, C.; Delepelaire, P. Bacterial iron sources: From siderophores to hemophores. Annu. Rev. Microbiol. 2004, 58, 611–647. [Google Scholar] [CrossRef]
- Grobelak, A.; Hiller, J. Bacterial siderophores promote plant growth: Screening of catechol and hydroxamate siderophores. Int. J. Phytoremed. 2017, 19, 825–833. [Google Scholar] [CrossRef]
- Crosa, J.H.; Walsh, C.T. Genetics and Assembly Line Enzymology of Siderophore Biosynthesis in Bacteria. Microbiol. Mol. Biol. Rev. 2002, 66, 223–249. [Google Scholar] [CrossRef] [Green Version]
- Lamont, I.L.; Beare, P.A.; Ochsner, U.; Vasil, A.I.; Vasil, M.L. Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 2002, 99, 7072–7077. [Google Scholar] [CrossRef] [Green Version]
- Adler, C.; Corbalán, N.S.; Seyedsayamdost, M.R.; Pomares, M.F.; de Cristóbal, R.E.; Clardy, J.; Kolter, R.; Vincent, P.A. Catecholate Siderophores Protect Bacteria from Pyochelin Toxicity. PLoS ONE 2012, 7, e46754. [Google Scholar] [CrossRef] [Green Version]
- Ghssein, G.; Brutesco, C.; Ouerdane, L.; Fojcik, C.; Izaute, A.; Wang, S.; Hajjar, C.; Lobinski, R.; Lemaire, D.; Richaud, P.; et al. Biosynthesis of a broad-spectrum nicotianamine-like metallophore in Staphylococcus aureus. Science 2016, 352, 1105–1109. [Google Scholar] [CrossRef]
- Kim, H.J.; Graham, D.W.; DiSpirito, A.A.; Alterman, M.A.; Galeva, N.; Larive, C.K.; Asunskis, D.; Sherwood, P.M.A. Methanobactin, a copper-acquisition compound from methane-oxidizing bacteria. Science 2004, 305, 1612–1615. [Google Scholar] [CrossRef] [Green Version]
- Morey, J.R.; Kehl-Fie, T.E. Bioinformatic Mapping of Opine-Like Zincophore Biosynthesis in Bacteria. mSystems 2020, 5, 1–16. [Google Scholar] [CrossRef]
- Welch, R.M.; Shuman, L. Micronutrient Nutrition of Plants. CRC Crit. Rev. Plant Sci. 1995, 14, 49–82. [Google Scholar] [CrossRef]
- Pedler, J.F.; Parker, D.R.; Crowley, D.E. Zinc deficiency-induced phytosiderophore release by the Triticaceae is not consistently expressed in solution culture. Planta 2000, 211, 120–126. [Google Scholar] [CrossRef]
- Nies, D.H. Heavy metal-resistant bacteria as extremophiles: Molecular physiology and biotechnological use of Ralstonia sp. CH34. Extremophiles 2000, 4, 77–82. [Google Scholar] [CrossRef]
- Rothschild, L.J.; Mancinelli, R.L. Life in extreme environments. Nature 2001, 409, 1092–1101. [Google Scholar] [CrossRef]
- Csotonyi, J.T.; Maltman, C.; Yurkov, V. Influence of tellurite on synthesis of bacteriochlorophyll and carotenoids in aerobic anoxygenic phototrophic bacteria. Res. Trends Photochem. Photobiol. 2014, 16, 1–17. [Google Scholar]
- Maltman, C.; Yurkov, V. The Effect of Tellurite on Highly Resistant Freshwater Aerobic Anoxygenic Phototrophs and Their Strategies for Reduction. Microorganisms 2015, 3, 826–838. [Google Scholar] [CrossRef] [Green Version]
- Csotonyi, J.T.; Swiderski, J.; Stackebrandt, E.; Yurkov, V.V. Novel halophilic aerobic anoxygenic phototrophs from a Canadian hypersaline spring system. Extremophiles 2008, 12, 529–539. [Google Scholar] [CrossRef]
- Csotonyi, J.T.; Stackebrandt, E.; Swiderski, J.; Schumann, P.; Yurkov, V. Chromocurvus halotolerans gen. nov., sp. nov., a gammaproteobacterial obligately aerobic anoxygenic phototroph, isolated from a Canadian hypersaline spring. Arch. Microbiol. 2011, 193, 573–582. [Google Scholar] [CrossRef]
- Drechsel, H.; Jung, G. Peptide siderophores. J. Pept. Sci. 1998, 4, 147–181. [Google Scholar] [CrossRef]
- Yurkov, V. Aerobic Phototrophic Proteobacteria. In The Prokaryotes; Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., Stackebrandt, E., Eds.; Springer: New York, NY, USA, 2006; pp. 562–584. [Google Scholar]
- Csotonyi, J.T.; Swiderski, J.; Stackebrandt, E.; Yurkov, V. A new environment for aerobic anoxygenic phototrophic bacteria: Biological soil crusts. Environ. Microbiol. Rep. 2010, 2, 651–656. [Google Scholar] [CrossRef]
- Yurkova, N.; Rathgeber, C.; Swiderski, J.; Stackebrandt, E.; Beatty, J.T.; Hall, K.J.; Yurkov, V. Diversity, distribution and physiology of the aerobic phototrophic bacteria in the mixolimnion of a meromictic lake. FEMS Microbiol. Ecol. 2002, 40, 191–204. [Google Scholar] [CrossRef]
- Kuzyk, S.B.; Pritchard, A.O.; Plouffe, J.; Sorensen, J.L.; Yurkov, V. Psychrotrophic violacein-producing bacteria isolated from Lake Winnipeg, Canada. J. Great Lakes Res. 2020. [Google Scholar] [CrossRef]
- Kuzyk, S.B.; Wiens, K.; Ma, X.; Yurkov, V. Association of aerobic anoxygenic phototrophs and zebra mussels, Dreissena polymorpha, within the littoral zone of Lake Winnipeg. J. Great Lakes Res. 2020. [Google Scholar] [CrossRef]
- Schwyn, B.; Neilands, J.B. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 1987, 160, 47–56. [Google Scholar] [CrossRef]
- Rainey, F.A.; Ward-Rainey, N.; Kroppenstedt, R.M.; Stackebrandt, E. The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: Proposal of Nocardiopsaceae fam. nov. Int. J. Syst. Bacteriol. 1996, 46, 1088–1092. [Google Scholar] [CrossRef]
- Sanger, F.; Coulson, A.R. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J. Mol. Biol. 1975, 94, 441–448. [Google Scholar] [CrossRef]
- Madden, T. The BLAST Sequence Analysis Tool. In The NCBI Handbook [Internet]; McEntyre, J., Ostell, J., Eds.; National Center for Biotechnology Information (US): Bethesda, MD, USA, 2002; pp. 1–15. [Google Scholar]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Felsenstein, J. Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Nei, M.; Kumar, S. Molecular Evolution and Phylogenetics; Oxford University Press: New York, NY, USA, 2000. [Google Scholar]
- Barker, R.; Boden, N.; Cayley, G.; Charlton, S.C.; Henson, R.; Holmes, M.C.; Kelly, I.D.; Knowles, P.F. Properties of cupric ions in benzylamine oxidase from pig plasma as studied by magnetic-resonance and kinetic methods. Biochem. J. 1979, 177, 289–302. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, S.; Okujo, N.; Sakakibara, Y. Isolation and structure elucidation of acinetobactin., a novel siderophore from Acinetobacter baumannii. Arch. Microbiol. 1994, 162, 249–254. [Google Scholar]
- Schägger, H.; von Jagow, G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 1987, 166, 368–379. [Google Scholar] [CrossRef]
- Arora, N.K.; Verma, M. Modified microplate method for rapid and efficient estimation of siderophore produced by bacteria. 3 Biotech 2017, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Ames-Gottfred, N.P.; Christie, B.R.; Jordan, D.C. Use of the Chrome Azurol S Agar Plate Technique to Differentiate Strains and Field Isolates of Rhizobium leguminosarum biovar trifolii. Appl. Environ. Microbiol. 1989, 55, 707–710. [Google Scholar] [CrossRef] [Green Version]
- Amaro, C.; Aznar, R.; Alcaide, E.; Lemos, M.L. Iron-binding compounds and related outer membrane proteins in Vibrio cholerae non-O1 strains from aquatic environments. Appl. Environ. Microbiol. 1990, 56, 2410–2416. [Google Scholar] [CrossRef] [Green Version]
- Patel, P.R.; Shaikh, S.S.; Sayyed, R.Z. Modified chrome azurol S method for detection and estimation of siderophores having affinity for metal ions other than iron. Environ. Sustain. 2018, 1, 81–87. [Google Scholar] [CrossRef]
- Rensing, C.; Ghosh, M.; Rosen, B.P. Families of Soft-Metal-Ion-Transporting ATPases. J. Bacteriol. 1999, 181, 5891–5897. [Google Scholar] [CrossRef] [Green Version]
- Idris, R.; Trifonova, R.; Puschenreiter, M.; Wenzel, W.W.; Sessitsch, A. Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl. Environ. Microbiol. 2004, 70, 2667–2677. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.N.; Zhang, Y.F.; He, L.Y.; Chen, Z.J.; Wang, Q.Y.; Qian, M.; Sheng, X.F. Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper-tolerant plant species on copper mine wasteland. Bioresour. Technol. 2010, 101, 501–509. [Google Scholar] [CrossRef]
- Maltman, C.; Donald, L.; Yurkov, V. Tellurite and Tellurate Reduction by the Aerobic Anoxygenic Phototroph Erythromonas ursincola, Strain KR99 Is Carried out by a Novel Membrane Associated Enzyme. Microorganisms 2017, 5, 20. [Google Scholar] [CrossRef] [Green Version]
- Atkin, C.L.; Neilands, J.B. Rhodotorulic Acid, a Diketopiperazine Dihydroxamic Acid with Growth-Factor Activity. I. Isolation and Characterization. Biochemistry 1968, 7, 3734–3739. [Google Scholar] [CrossRef]
- Andersen, D.; Renshaw, J.C.; Wiebe, M.G. Rhodotorulic acid production by Rhodotorula mucilaginosa. Mycol. Res. 2003, 107, 949–956. [Google Scholar] [CrossRef]
- Carson, K.C.; Meyer, J.M.; Dilworth, M.J. Hydroxamate siderophores of root nodule bacteria. Soil Biol. Biochem. 2000, 32, 11–21. [Google Scholar] [CrossRef]
- Holinsworth, B.; Martin, J.D. Siderophore production by marine-derived fungi. BioMetals 2009, 22, 625–632. [Google Scholar] [CrossRef] [Green Version]
- Mihara, K.; Tanabe, T.; Yamakawa, Y.; Funahashi, T.; Nakao, H.; Narimatsu, S.; Yamamoto, S. Identification and transcriptional organization of a gene cluster involved in biosynthesis and transport of acinetobactin, a siderophore produced by Acinetobacter baumannii ATCC 19606T. Microbiology 2004, 150, 2587–2597. [Google Scholar] [CrossRef] [Green Version]
- Goeker, M. The One Thousand Microbial Genomes Phase 4 Project (KMG-4) Sequencing the Most Valuable Type-Strain Genomes for Metagenomic Binning, Comparative Biology and Taxonomic Classification; DOE Joint Genome Institute: Oak Ridge, TN, USA, 2016. [CrossRef]
Environment | Strain | Medium | Mg | V | Mn | Fe | Co | Ni | Cu | Zn | Se | Te |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Hot spring, Kamchatka Isl. | KR99T | RO | ++ | +++ | ++ | +++ | ++ | ++ | ++ | +++ | ++ | +++ |
Warm temperature spring, Baikal Lake, Russia | E1 | RO | − | − | + | ++ | + | + | − | − | − | − |
E4(1) | RO | − | − | − | ++ | − | − | − | − | − | + | |
E5T | RO | − | − | − | + | − | − | − | − | − | + | |
RB3T | RO | − | − | ++ | ++ | − | ++ | + | + | + | + | |
RB16-17T | RO | − | − | − | + | − | − | + | − | − | − | |
T4T | RO-NaCl | + | + | + | − | + | + | − | − | + | + | |
Deep Ocean, Juan De Fuca Ridge, Pacific Ocean | JF1T | RO-NaCl | + | + | + | + | + | + | + | + | + | + |
C6 | RO-NaCl | + | + | + | + | + | + | + | + | + | + | |
C7 | RO-NaCl | + | + | + | + | − | + | + | + | + | + | |
C8 | RO-NaCl | + | + | + | + | − | + | + | + | + | + | |
C14 | RO-NaCl | + | + | + | + | − | + | + | + | + | + | |
C23 | RO-NaCl | − | + | + | + | + | + | + | + | + | + | |
C26 | RO-NaCl | + | + | + | + | + | + | + | + | + | + | |
N25 | RO-NaCl | + | + | + | + | + | + | + | + | + | + | |
N34 | RO-NaCl | + | + | + | + | + | + | + | + | + | + | |
N48 | RO-NaCl | + | + | + | + | + | + | + | + | + | + | |
N56 | RO-NaCl | + | + | + | + | + | + | + | + | + | + | |
N78 | RO-NaCl | + | + | + | + | + | + | + | + | + | + | |
Rag Beach sediment, BC, Canada | 15-SB | RO-NaCl | + | − | + | + | − | − | + | + | + | + |
23-SB | RO-NaCl | + | − | + | + | + | + | − | + | − | − | |
Central Gold Mine, MB, Canada | C4 | RO | − | + | + | + | + | + | + | + | − | + |
C9 | RO | − | + | − | + | + | − | + | + | − | + | |
C11 | RO | − | + | − | + | − | − | + | + | − | − | |
NM4.16 | RO | − | + | + | ++ | + | + | + | + | − | + | |
NM4.18 | RO | ++ | + | + | ++ | ++ | ++ | ++ | + | ++ | ++ | |
Lake Winnipeg, MB, Canada | AJ 72 | RO | − | + | + | +++ | + | + | + | ++ | − | + |
AM 19 | RO | − | + | − | +++ | − | − | − | ++ | − | − | |
AM 27 | RO | − | − | − | ++ | − | − | − | + | − | − | |
AM 91 | RO | − | − | − | - | − | − | − | − | − | − | |
BA 23 | RO | + | ++ | ++ | ++ | ++ | + | ++ | ++ | ++ | ++ | |
BC 100 | RO | − | − | − | ++ | + | − | − | − | − | − | |
BE 100 | RO | ++ | ++ | ++ | +++ | ++ | ++ | ++ | ++ | ++ | + | |
BK 61 | RO | + | + | + | +++ | + | − | + | ++ | + | − | |
BL 67 | RO | − | − | − | − | + | − | − | − | − | − | |
CK 155 | RO | − | − | − | ++ | − | − | − | − | − | − | |
CK 182 | RO | − | − | − | − | − | − | − | − | − | − | |
CL 63 | RO | + | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | |
CN8 | RO | + | ++ | + | ++ | + | + | − | ++ | ++ | + | |
GM14 | RO | ++ | ++ | ++ | +++ | ++ | + | − | ++ | ++ | + | |
Zebra mussels, Lake Winnipeg, MB, Canada | Z1 | RO | − | − | − | + | − | − | − | − | − | − |
Z2 | RO | − | − | − | − | − | − | − | − | − | − | |
Z5 | RO | − | − | − | − | − | − | − | − | − | − | |
Z6 | RO | + | − | + | − | + | + | − | − | + | − | |
Z7 | RO | + | − | − | − | − | − | − | − | − | − | |
Z24 | RO | − | − | − | ++ | − | − | − | + | - | − | |
Z27 | RO | + | + | + | ++ | − | − | − | ++ | + | ++ | |
Z39 | RO | − | − | + | ++ | + | − | − | + | − | − | |
Z59 | RO | + | − | + | + | − | + | − | − | + | − | |
Z68 | RO | − | ++ | − | ++ | − | + | − | ++ | − | + |
Environment | Strain | Medium | Mg | V | Mn | Fe | Co | Ni | Cu | Zn | Se | Te |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mahoney Lake, BC, Canada | ML1 | N1 | − | + | − | + | − | − | + | + | − | + |
ML3 | N1 | − | + | − | + | − | − | + | + | − | + | |
ML4T | N1 | − | + | − | + | − | − | + | + | − | + | |
ML6T | N1 | + | + | + | + | − | − | + | + | − | + | |
ML10 | N1 | − | + | − | + | − | − | + | + | − | + | |
ML14 | N1 | − | + | − | + | − | − | + | + | − | + | |
ML19 | N1 | + | + | + | + | + | − | + | + | + | + | |
ML20 | N1 | − | + | − | + | − | − | + | + | − | + | |
ML21 | N1 | − | + | − | + | − | − | + | + | − | + | |
ML22 | N1 | − | + | + | + | − | − | + | + | − | + | |
ML30 | N1 | + | + | − | + | − | − | + | + | + | + | |
ML35 | N1 | − | + | − | + | − | − | + | + | − | + | |
ML36 | N1 | + | + | + | + | + | − | + | + | + | + | |
ML37 | N1 | − | + | + | + | − | − | + | + | − | + | |
ML42 | N1 | + | + | + | + | + | + | + | + | + | + | |
ML45 | N1 | + | + | + | + | − | + | + | + | + | + | |
Blue Lake, BC, Canada | BL1 | BLM | + | + | + | + | + | + | + | + | + | + |
BL4 | BLM | − | + | − | + | − | − | + | + | − | + | |
BL5 | BLM | + | + | + | + | + | + | + | + | + | + | |
BL7 | BLM | + | + | + | − | + | + | + | − | + | + | |
BL8 | BLM | + | + | + | + | + | + | + | + | + | + | |
BL9 | BLM | + | + | + | + | + | + | + | + | + | + | |
BL11 | BLM | + | + | + | − | + | + | + | + | + | + | |
BL14 | BLM | + | + | + | − | + | + | + | + | + | + | |
BL17 | BLM | + | + | + | + | + | + | + | + | + | + | |
BL22 | BLM | + | − | + | − | + | + | + | − | + | + | |
East German Creek System, MB, Canada | EG1 | MA | − | + | − | + | − | − | + | + | − | + |
EG2 | MA | + | + | + | + | − | − | + | + | − | + | |
EG3 | MA | − | - | − | + | − | − | − | − | − | − | |
EG4 | MA | − | + | − | + | − | − | + | + | − | + | |
EG5 | MA | − | + | + | + | − | − | + | + | − | + | |
EG6 | MA | − | + | − | + | − | − | + | + | − | + | |
EG7 | MA | − | + | + | + | − | − | + | + | − | + | |
EG8 | MA | − | + | − | + | + | − | + | + | + | + | |
EG9 | MA | − | + | − | + | − | − | + | + | − | + | |
EG10 | MA | − | + | − | + | − | − | + | + | + | + | |
EG11 | MA | − | + | − | + | − | − | + | + | − | + | |
EG13 | MA | − | + | − | + | − | − | + | + | − | + | |
EG15 | MA | − | + | − | + | + | − | + | + | − | + | |
EG17T | MA | + | + | + | + | + | + | + | + | − | + | |
EG19T | MA | + | + | + | ++ | − | + | + | ++ | + | + | |
Sandy Lands Forest soil crust, MB, Canada | SS56 | BSCA | ++ | ++ | ++ | + | ++ | ++ | ++ | ++ | ++ | ++ |
SS63 | BSCA | ++ | +++ | ++ | +++ | ++ | +++ | +++ | +++ | +++ | +++ | |
SS335 | BSCA | +++ | +++ | +++ | +++ | ++ | ++ | +++ | ++ | ++ | +++ | |
Spruce Woods National Park soil crust, MB, Canada | J01 | BSCA | +++ | ++ | +++ | +++ | + | ++ | ++ | ++ | + | ++ |
J05 | BSCA | + | + | + | ++ | − | − | + | + | − | + | |
P4 | BSCB | ++ | ++ | ++ | + | + | + | ++ | ++ | ++ | ++ | |
P13 | BSCB | +++ | +++ | +++ | +++ | ++ | +++ | +++ | +++ | ++ | ++ | |
P40 | BSCB | ++ | ++ | ++ | ++ | + | ++ | ++ | ++ | + | + | |
P132 | BSCB | ++ | ++ | ++ | +++ | ++ | ++ | ++ | ++ | ++ | ++ | |
P233 | BSCB | − | ++ | ++ | +++ | ++ | ++ | ++ | ++ | ++ | ++ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuzyk, S.B.; Hughes, E.; Yurkov, V. Discovery of Siderophore and Metallophore Production in the Aerobic Anoxygenic Phototrophs. Microorganisms 2021, 9, 959. https://doi.org/10.3390/microorganisms9050959
Kuzyk SB, Hughes E, Yurkov V. Discovery of Siderophore and Metallophore Production in the Aerobic Anoxygenic Phototrophs. Microorganisms. 2021; 9(5):959. https://doi.org/10.3390/microorganisms9050959
Chicago/Turabian StyleKuzyk, Steven B., Elizabeth Hughes, and Vladimir Yurkov. 2021. "Discovery of Siderophore and Metallophore Production in the Aerobic Anoxygenic Phototrophs" Microorganisms 9, no. 5: 959. https://doi.org/10.3390/microorganisms9050959
APA StyleKuzyk, S. B., Hughes, E., & Yurkov, V. (2021). Discovery of Siderophore and Metallophore Production in the Aerobic Anoxygenic Phototrophs. Microorganisms, 9(5), 959. https://doi.org/10.3390/microorganisms9050959