Subclinical Mastitis in Selected Bovine Dairy Herds in North Upper Egypt: Assessment of Prevalence, Causative Bacterial Pathogens, Antimicrobial Resistance and Virulence-Associated Genes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Milk Samples Collection
2.2. California Mastitis Test (CMT)
2.3. Somatic Cell Count (SCC)
2.4. Milk Scanning Using a Milk Scanner Analyzer
2.5. Bacteriological Examination of Milk Samples
2.6. Identification of Bacterial Isolates
2.7. Antimicrobial Susceptibility Testing
2.8. Polymerase Chain Reaction
2.9. Statistical Analysis
3. Results
3.1. Prevalence of SCM Based on CMT and SCC
3.2. Distribution of CMT Score and Milk Composition
3.3. Prevalence of Bacterial Agents Isolated from Subclinically Mastitic QMSs
3.4. Distribution of Bacterial Pathogens in Correspondence to the SCC and CMT
3.5. Antimicrobial Susceptibility Testing of Bacterial Isolates
3.6. Detection of Resistance and Virulence-Associated Genes in MDR Isolates by PCR
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Kovačević, Z.; Radinović, M.; Čabarkapa, I.; Kladar, N.; Božin, B. Natural Agents against Bovine Mastitis Pathogens. Antibiotics 2021, 10, 205. [Google Scholar] [CrossRef]
- Abebe, R.; Hatiya, H.; Abera, M.; Megersa, B.; Asmare, K. Bovine mastitis: Prevalence, risk factors and isolation of Staphylococcus aureus in dairy herds at Hawassa milk shed, South Ethiopia. BMC Vet. Res. 2016, 12, 270. [Google Scholar] [CrossRef] [Green Version]
- Abed, A.H.; Al Sayed, R.A.; Atia, A.A. Genotyping of β-lactams resistant staphylococci isolated from bovine subclinical mastitis. Beni-Suef Univ. J. Basic Appl. Sci. 2018, 7, 499–504. [Google Scholar] [CrossRef]
- Brennecke, J.; Falkenberg, U.; Wente, N.; Krömker, V. Are severe mastitis cases in dairy cows associated with bacteremia? Animals 2021, 11, 410. [Google Scholar] [CrossRef] [PubMed]
- Hoque, M.N.; Das, Z.C.; Talukder, A.K.; Alam, M.S.; Rahman, A.N.M.A. Different screening tests and milk somatic cell count for the prevalence of subclinical bovine mastitis in Bangladesh. Trop. Anim. Health Prod. 2015, 47, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Constable, P.D.; Hinchcliff, K.W.; Done, S.H.; Grünberg, W. Veterinary Medicine-e-Book: A Textbook of the Diseases of Cattle, Horses, Sheep, Pigs and Goats, 11th ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 220–465. [Google Scholar]
- Mungube, E.O.; Tenhagen, B.A.; Regassa, F.; Kyule, M.N.; Shiferaw, Y.; Kassa, T.; Baumann, M.P.O. Reduced milk production in udder quarters with subclinical mastitis and associated economic losses in cross-bred dairy cows in Ethiopia. Trop. Anim. Health 2005, 37, 503–512. [Google Scholar] [CrossRef]
- Cheng, J.; Qu, W.; Barkema, H.W.; Nobrega, D.B.; Gao, J.; Liu, G.; De Buck, J.; Kastelic, J.P.; Sun, H.; Han, B. Antimicrobial resistance profiles of 5 common bovine mastitis pathogens in large Chinese dairy herds. J. Dairy Sci. 2019, 102, 2416–2426. [Google Scholar] [CrossRef] [Green Version]
- Oliver, S.P.; Murinda, S.E. Antimicrobial resistance of mastitis pathogens. Vet. Clin. North. Am. Food Anim. Pract. 2012, 28, 165–185. [Google Scholar] [CrossRef]
- Mousa, W.S.; Abdeen, E.E.; Hegazy, Y.M. Chronic incurable mastitis in sheep: Prevalence, identification of predisposing factors, and genotyping of fungal causative species using PCR-RFLP. Trop. Anim. Health Prod. 2021, 53, 268. [Google Scholar] [CrossRef] [PubMed]
- Ewida, R.M.; Al-Hosary, A.A.T. Prevalence of enterotoxins and other virulence genes of Staphylococcus aureus caused subclinical mastitis in dairy cows. Vet. World 2020, 13, 1193–1198. [Google Scholar] [CrossRef] [PubMed]
- Saed, H.; Ibrahim, H.M.M. Antimicrobial profile of multidrug-resistant Streptococcus spp. isolated from dairy cows with clinical mastitis. J. Adv. Vet. Anim. Res. 2020, 7, 186–197. [Google Scholar] [CrossRef]
- Ombarak, R.A.; Zayda, M.G.; Hinenoya, A.; Yamasaki, S. Serotypes, pathogenic potential and antimicrobial resistance of Escherichia coli isolated from subclinical bovine mastitis milk samples in Egypt. Jpn. J. Infect. Dis. 2019, 72, 337–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jabbar, A.; Saleem, M.H.; Iqbal, M.Z.; Qasim, M.; Ashraf, M.; Tolba, M.M.; Nasser, H.A.; Sajjad, H.; Hassan, A.; Imran, M.; et al. Epidemiology and antibiogram of common mastitis-causing bacteria in Beetal goats. Vet. World 2020, 13, 2596–2607. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, W.; Neubauer, H.; Tomaso, H.; El Hofy, F.I.; Monecke, S.; Abd El-Tawab, A.A.; Hotzel, H. Characterization of enterococci- and ESBL-Producing Escherichia coli isolated from milk of bovides with mastitis in Egypt. Pathogens 2021, 10, 97. [Google Scholar] [CrossRef] [PubMed]
- Algammal, A.M.; Enany, M.E.; El-Tarabili, R.M.; Ghobashy, M.O.I.; Helmy, Y.A. Prevalence, antimicrobial resistance profiles, virulence and enterotoxin-determinant genes of MRSA isolated from subclinical bovine mastitis samples in Egypt. Pathogens 2020, 9, 362. [Google Scholar] [CrossRef] [PubMed]
- El-Ashker, M.; Gwida, M.; Monecke, S.; Ehricht, R.; Elsayed, M.; El-Gohary, F.; Reißig, A.; Müller, E.; Paul, A.; Igbinosa, E.O.; et al. Microarray-based detection of resistance genes in coagulase-negative staphylococci isolated from cattle and buffalo with mastitis in Egypt. Trop. Anim. Health Prod. 2020, 52, 3855–3862. [Google Scholar] [CrossRef]
- Mohammed, A.N.; Radi, A.M.; Khaled, R.; Abo El-Ela, F.I.; Kotp, A.A. Exploitation of new approach to control of environmental pathogenic bacteria causing bovine clinical mastitis using novel anti-biofilm nanocomposite. Environ. Sci. Pollut. Res. Int. 2020, 27, 42791–42805. [Google Scholar] [CrossRef]
- Zecconi, A.; Piccinini, R.; Casirani, G.; Binda, E.; Migliorati, L. Effects of automatic milking system on teat tissues, intramammary infections and somatic cell counts. Ital. J. Anim. Sci. 2003, 2, 275–282. [Google Scholar] [CrossRef] [Green Version]
- Romero, J.; Benavides, E.; Meza, C. Assessing financial impacts of subclinical mastitis on Colombian dairy farms. Front. Vet. Sci. 2018, 5, 273. [Google Scholar] [CrossRef] [Green Version]
- Quinn, P.J.; Markey, B.K.; Leonard, F.C.; Hartigan, P.; Fanning, S.; Fitzpatrick, E. Veterinary Microbiology and Microbial Disease, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011; p. 893. ISBN 14051582399781405158237. [Google Scholar]
- NMC. Laboratory Handbook on Bovine Mastitis, 3rd ed.; National Mastitis Council Inc.: Madison, WI, USA, 2017; p. 147. [Google Scholar]
- Waller, K.P.; Aspán, A.; Nyman, A.; Persson, Y.; Andersson, U.G. CNS species and antimicrobial resistance in clinical and subclinical bovine mastitis. Vet. Microbiol. 2011, 152, 112–116. [Google Scholar] [CrossRef] [Green Version]
- CLSI (Clinical and Laboratory Standards Institute). Performance Standards for Antimicrobial Susceptibility Testing, 28th ed.; Clinical and Laboratory Standards Institute.M100: Wayne, PA, USA, 2018. [Google Scholar]
- Chandran, A.; Hatha, A.A.M.; Varghese, S.; Sheeja, K.M. Prevalence of multiple drug-resistant Escherichia coli serotypes in a tropical estuary, India. Microbes Environ. 2008, 23, 153–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McClure, J.A.; Conly, J.M.; Lau, V.; Elsayed, S.; Louie, T.; Hutchins, W.; Zhang, K. Novel multiplex PCR assay for detection of the staphylococcal virulence marker Panton-Valentine leukocidin genes and simultaneous discrimination of methicillin-susceptible from-resistant staphylococci. J. Clin. Microbiol. 2006, 44, 1141–1144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duran, N.; Ozer, B.; Duran, G.G.; Onlen, Y.; Demir, C. Antibiotic resistance genes & susceptibility patterns in staphylococci. Indian J. Med Res. 2012, 135, 389. [Google Scholar]
- Anand Kumar, P. Evaluation of PCR test for detecting major pathogens of bubaline mastitis directly from mastitic milk samples of buffaloes. Trop. Anim. Health Prod. 2009, 41, 1643–1651. [Google Scholar] [CrossRef] [PubMed]
- Ciftci, A.; Findik, A.; Onuk, E.E.; Savasan, S. Detection of methicillin resistance and slime factor production of Staphylococcus aureus in bovine mastitis. Braz. J. Microbiol. 2009, 40, 254–261. [Google Scholar] [CrossRef] [Green Version]
- Vakulenko, S.B.; Donabedian, S.M.; Voskresenskiy, A.M.; Zervos, M.J.; Lerner, S.A.; Chow, J.W. Multiplex PCR for detection of aminoglycoside resistance genes in enterococci. Antimicrob. Agents Chemother. 2003, 47, 1423–1426. [Google Scholar] [CrossRef] [Green Version]
- Navarro, F.; Courvalin, P. Analysis of genes encoding D-alanine-D-alanine ligase-related enzymes in Enterococcus casseliflavus and Enterococcus flavescens. Antimicrob. Agents Chemother. 1994, 38, 1788–1793. [Google Scholar] [CrossRef] [Green Version]
- Vankerckhoven, V.; Van Autgaerden, T.; Vael, C.; Lammens, C.; Chapelle, S.; Rossi, R.; Jabes, D.; Goossens, H. Development of a multiplex PCR for the detection of asa1, gelE, cylA, esp, and hyl genes in enterococci and survey for virulence determinants among European hospital isolates of Enterococcus faecium. J. Clin. Microbiol. 2004, 42, 4473–4479. [Google Scholar] [CrossRef] [Green Version]
- Abbas, H.H. Screening of group B Streptococcus agalactiae virulence factors (scpB, sip, cfb) in Iraqi pregnant women. Plant. Arch. 2020, 20, 282–287. [Google Scholar]
- Randall, L.P.; Cooles, S.W.; Osborn, M.K.; Piddock, L.J.V.; Woodward, M.J. Antibiotic resistance genes, integrons and multiple antibiotic resistance in thirty-five serotypes of Salmonella enterica isolated from humans and animals in the UK. J. Antimicrob. Chemother. 2004, 53, 208–216. [Google Scholar] [CrossRef] [Green Version]
- Ibekwe, A.M.; Murinda, S.E.; Graves, A.K. Genetic diversity and antimicrobial resistance of Escherichia coli from human and animal sources uncovers multiple resistances from human sources. PLoS ONE 2011, 6, e20819. [Google Scholar] [CrossRef] [Green Version]
- Ghanbarpour, R.; Salehi, M. Determination of adhesin encoding genes in Escherichia coli isolates from omphalitis of chicks. Am. J. Anim. Vet. Sci. 2010, 5, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Delicato, E.R.; de Brito, B.G.; Gaziri, L.C.J.; Vidotto, M.C. Virulence-associated genes in Escherichia coli isolates from poultry with colibacillosis. Vet. Microbiol. 2003, 94, 97–103. [Google Scholar] [CrossRef]
- Ahmed, H.F.; Straubinger, R.K.; Hegazy, Y.M.; Ibrahim, S. Subclinical mastitis in dairy cattle and buffaloes among small holders in Egypt: Prevalence and evidence of virulence of Escherichia coli causative agent. Trop. Biomed. 2018, 35, 321–329. [Google Scholar]
- Azooz, M.F.; El-Wakeel, S.A.; Yousef, H.M. Financial and economic analyses of the impact of cattle mastitis on the profitability of Egyptian dairy farms. Vet. World 2020, 13, 1750–1759. [Google Scholar] [CrossRef]
- Gussmann, M.; Steeneveld, W.; Kirkeby, C.; Hogeveen, H.; Farre, M.; Halasa, T. Economic and epidemiological impact of different intervention strategies for subclinical and clinical mastitis. Prev. Vet. Med. 2019, 166, 78–85. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Ma, S.; Lei, L.; He, J.; Li, X.; Tao, J.; Wang, X.; Song, S.; Wang, Y.; Wang, Y.; et al. Prevalence, etiology, and economic impact of clinical mastitis on large dairy farms in China. Vet. Microbiol. 2020, 242, 108570. [Google Scholar] [CrossRef] [PubMed]
- Rowe, S.M.; Nydam, D.V.; Godden, S.M.; Gorden, P.J.; Lago, A.; Vasquez, A.K.; Royster, E.; Timmerman, J.; Thomas, M.J.; Lynch, R.A. Partial budget analysis of culture-and algorithm-guided selective dry cow therapy. J. Dairy Sci. 2021, 104, 5652–5664. [Google Scholar] [CrossRef] [PubMed]
- Busanello, M.; Rossi, R.S.; Cassoli, L.D.; Pantoja, J.C.F.; Machado, P.F. Estimation of prevalence and incidence of subclinical mastitis in a large population of Brazilian dairy herds. J. Dairy Sci. 2017, 100, 6545–6553. [Google Scholar] [CrossRef]
- Olivares-Pérez, J.; Kholif, A.E.; Rojas-Hernández, S.; Elghandour, M.M.M.Y.; Salem, A.Z.M.; Bastida, A.Z.; Velázquez-Reynoso, D.; Cipriano-Salazar, M.; Camacho-Díaz, L.M..; Uxúa Alonso-Fresán, M. Prevalence of bovine subclinical mastitis, its etiology and diagnosis of antibiotic resistance of dairy farms in four municipalities of a tropical region of Mexico. Trop. Anim. Health Prod 1497, 47, 1497–1504. [Google Scholar] [CrossRef]
- Samuel, T.M.; De Castro, C.A.; Dubascoux, S.; Affolter, M.; Giuffrida, F.; Billeaud, C.; Picaud, J.-C.; Agosti, M.; Al-Jashi, I.; Pereira, A.B.; et al. Subclinical mastitis in a European multicenter cohort: Prevalence, impact on human milk (HM) composition, and association with infant HM intake and growth. Nutrients 2020, 12, 105. [Google Scholar] [CrossRef] [Green Version]
- Rahularaj, R.; Deshapriya, R.M.C.; Ranasinghe, R. Influence of bovine sub-clinical mastitis and associated risk factors on calving interval in a population of cross-bred lactating cows in Sri Lanka. Trop. Anim. Health Prod. 2019, 51, 2413–2419. [Google Scholar] [CrossRef]
- Sharma, N.; Singh, N.K.; Bhadwal, M.S. Relationship of somatic cell count and mastitis: An overview. Asian Australas. J. Anim. Sci. 2011, 24, 429–438. [Google Scholar] [CrossRef]
- Dos Reis, C.B.M.; Barreiro, J.R.; Mestieri, L.; de Felício Porcionato, M.; dos Santos, M.V. Effect of somatic cell count and mastitis pathogens on milk composition in Gyr cows. BMC Vet. Res. 2013, 9, 67. [Google Scholar] [CrossRef] [Green Version]
- Batavani, R.A.; Asri, S.; Naebzadeh, H. The effect of subclinical mastitis on milk composition in dairy cows. Iran. J. Vet. Res. Univ. Shiraz. 2007, 8, 205–211. [Google Scholar] [CrossRef]
- Shereen, S.I. Lactate Dehydrogenase Activity and Other Factors in Milk as Markers for Bovine Mastitis: Correlation with the Associated Bacterial Pathogens. Master’s Thesis, Cairo University, Cairo, Egipt, 2009. [Google Scholar]
- Zeinhom, M.M.A.; Abed, A.H.; Hashem, K.S. A contribution towards milk enzymes, somatic cell count and bacterial pathogens associated with subclinical mastitis cows milk. Assiut. Vet. Med. J. 2013, 59, 38–48. [Google Scholar]
- Birhanu, M.; Leta, S.; Mamo, G.; Tesfaye, S. Prevalence of bovine subclinical mastitis and isolation of its major causes in Bishoftu Town, Ethiopia. BMC Res. Notes 2017, 10, 767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bihon, A.; Syoum, A.; Assefa, A. Assessment of risk factors and isolation of Staphylococcus aureus and Escherichia coli from bovine subclinical mastitic milk in and around Gondar, Northwest Ethiopia. Trop. Anim. Health Prod. 2019, 51, 939–948. [Google Scholar] [CrossRef]
- Khan, A.Z.; Muhammad, G. Quarter-wise comparative prevalence of mastitis in buffaloes and cross-bred cows. Pak. Vet. J. 2005, 25, 9–12. [Google Scholar]
- Awad, A.; Ramadan, H.; Nasr, S.; Ateya, A.; Atwa, S. Genetic characterization, antimicrobial resistance patterns and virulence determinants of Staphylococcus aureus isolated from bovine mastitis. Pak. J. Biol. Sci. 2017, 20, 298–305. [Google Scholar] [CrossRef] [Green Version]
- Karimuribo, E.D.; Fitzpatrick, J.L.; Swai, E.S.; Bell, C.; Bryant, M.J.; Ogden, N.H.; Kambarage, D.M.; French, N.P. Prevalence of subclinical mastitis and associated risk factors in smallholder dairy cows in Tanzania. Vet. Rec. 2008, 163, 16–21. [Google Scholar] [CrossRef]
- Gürler, H.; Findik, A.; Gültiken, N.; Ay, S.S.; Çiftçi, A.; Koldaş, E.; Arslan, S.; Findik, M. Investigation on the etiology of subclinical mastitis in Jersey and hybrid Jersey dairy cows. Acta Vet. 2015, 65, 358–370. [Google Scholar] [CrossRef] [Green Version]
- Alekish, M.O.; Al-Qudah, K.M.; Al-Saleh, A. Prevalence of antimicrobial resistance among bacterial pathogens isolated from bovine mastitis in northern Jordan. Rev. Med. Vet. 2013, 164, 319–326. [Google Scholar]
- Sztachańska, M.; Barański, W.; Janowski, T.; Pogorzelska, J.; Zduńczyk, S. Prevalence and etiological agents of subclinical mastitis at the end of lactation in nine dairy herds in North-East Poland. Pol. J. Vet. Sci. 2016, 19, 119–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mekonnen, S.A.; Koop, G.; Melkie, S.T.; Getahun, C.D.; Hogeveen, H.; Lam, T.J.G.M. Prevalence of subclinical mastitis and associated risk factors at cow and herd level in dairy farms in North-West Ethiopia. Prev. Vet. Med. 2017, 145, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Ndahetuye, J.B.; Persson, Y.; Nyman, A.K.; Tukei, M.; Ongol, M.P.; Båge, R. Aetiology and prevalence of subclinical mastitis in dairy herds in peri-urban areas of Kigali in Rwanda. Trop. Anim. Health Prod. 2019, 51, 2037–2044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abrahmsén, M.; Persson, Y.; Kanyima, B.M.; Båge, R. Prevalence of subclinical mastitis in dairy farms in urban and peri-urban areas of Kampala, Uganda. Trop. Anim. Health Prod. 2014, 46, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Duguma, A.; Tolosa, T.; Yohannes, A. Prevalence of clinical and sub-clinical mastitis on cross-bred dairy cows at Holleta Agricultural Research Center, Central Ethiopia. J. Vet. Med. Anim. Health. 2014, 6, 13–17. [Google Scholar] [CrossRef] [Green Version]
- Bobbo, T.; Ruegg, P.L.; Stocco, G.; Fiore, E.; Gianesella, M.; Morgante, M.; Pasotto, D.; Bittante, G.; Cecchinato, A. Associations between pathogen-specific cases of subclinical mastitis and milk yield, quality, protein composition, and cheese-making traits in dairy cows. J. Dairy Sci. 2017, 100, 4868–4883. [Google Scholar] [CrossRef] [Green Version]
- Frey, Y.; Rodriguez, J.P.; Thomann, A.; Schwendener, S.; Perreten, V. Genetic characterization of antimicrobial resistance in coagulase-negative staphylococci from bovine mastitis milk. J. Dairy Sci. 2013, 96, 2247–2257. [Google Scholar] [CrossRef] [Green Version]
- Tremblay, Y.D.N.; Lamarche, D.; Chever, P.; Haine, D.; Messier, S.; Jacques, M. Characterization of the ability of coagulase-negative staphylococci isolated from the milk of Canadian farms to form biofilms. J. Dairy Sci. 2013, 96, 234–246. [Google Scholar] [CrossRef] [Green Version]
- Supré, K.; Haesebrouck, F.; Zadoks, R.N.; Vaneechoutte, M.; Piepers, S.; De Vliegher, S. Some coagulase-negative Staphylococcus species affect udder health more than others. J. Dairy Sci. 2011, 94, 2329–2340. [Google Scholar] [CrossRef] [Green Version]
- Kayesh, M.E.H.; Talukder, M.; Anower, A. Prevalence of subclinical mastitis and its association with bacteria and risk factors in lactating cows of Barisal district in Bangladesh. Int. J. Biol. Res. 2014, 2, 35–38. [Google Scholar] [CrossRef] [Green Version]
- Sanotharan, N.; Pagthinathan, M.; Nafees, M.S.M. Prevalence of bovine subclinical mastitis and its association with bacteria and risk factors in milking cows of Batticaloa District in Sri Lanka. Int. J. Sci. Res. Innov. Technol. 2016, 3, 2313–3759. [Google Scholar]
- Acar, G.; Yılmaz, E.; Solmaz, H.; Cantekin, Z. The isolation of streptococcal agents from cattle with subclinical mastitis in Hatay region and detection of their susceptibilities against some antibiotics. AVKAE Derg. 2012, 2, 1–5. [Google Scholar]
- Nam, H.M.; Lim, S.K.; Moon, J.S.; Kang, H.M.; Kim, J.M.; Jang, K.C.; Kim, J.M.; Kang, M.I.; Joo, Y.S.; Jung, S.C. Antimicrobial resistance of enterococci isolated from mastitic bovine milk samples in Korea. Zoonoses Public Health 2010, 57, e59–e64. [Google Scholar] [CrossRef] [PubMed]
- Smulski, S.; Malinowski, E.; Kaczmarowski, M.; Lassa, H. Occurrence, forms and etiologic agents of mastitis in Poland depending on size of farm. Med. Weter. 2011, 67, 190–193. [Google Scholar]
- Gomes, F.; Saavedra, M.J.; Henriques, M. Bovine mastitis disease/pathogenicity: Evidence of the potential role of microbial biofilms. Pathog. Dis. 2016, 74, ftw006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, Q.; Liao, G.; Wu, Z.; Lv, J.; Chen, W. Prevalence and characterization of Staphylococcus aureus isolates from subclinical bovine mastitis in southern Xinjiang, China. J. Dairy Sci. 2020, 103, 3368–3380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srednik, M.E.; Tremblay, Y.D.N.; Labrie, J.; Archambault, M.; Jacques, M.; Alicia, F.C.; Gentilini, E.R. Biofilm formation and antimicrobial resistance genes of coagulase-negative staphylococci isolated from cows with mastitis in Argentina. FEMS Microbiol. Lett. 2017, 364. [Google Scholar] [CrossRef] [PubMed]
- Youssif, N.H.; Hafiz, N.M.; Halawa, M.A.; Aziz, H.M. Genes conferring antimicrobial resistance in cattle with subclinical mastitis. Bulg. J. Vet. Med. 2019, 1–19. [Google Scholar] [CrossRef]
- Verma, H.; Rawat, S.; Sharma, N.; Jaiswal, V.; Singh, R.; Harshit, V. Prevalence, bacterial etiology and antibiotic susceptibility pattern of bovine mastitis in Meerut. J. Entomol. Zool. Stud. 2018, 6, 706–709. [Google Scholar]
- Haran, K.P.; Godden, S.M.; Boxrud, D.; Jawahir, S.; Bender, J.B.; Sreevatsan, S. Prevalence and characterization of Staphylococcus aureus, including methicillin-resistant Staphylococcus aureus, isolated from bulk tank milk from Minnesota dairy farms. J. Clin. Microbiol. 2012, 50, 688–695. [Google Scholar] [CrossRef] [Green Version]
- Kreausukon, K.; Fetsch, A.; Kraushaar, B.; Alt, K.; Müller, K.; Krömker, V.; Zessin, K.H.; Käsbohrer, A.; Tenhagen, B.A. Prevalence, antimicrobial resistance, and molecular characterization of methicillin-resistant Staphylococcus aureus from bulk tank milk of dairy herds. J. Dairy Sci. 2012, 95, 4382–4388. [Google Scholar] [CrossRef] [Green Version]
- Osman, K.; Alvarez-Ordóñez, A.; Ruiz, L.; Badr, J.; El-Hofy, F.; Al-Maary, K.S.; Moussa, I.M.I.; Hessain, A.M.; Orabi, A.; Saad, A.; et al. Antimicrobial resistance and virulence characterization of Staphylococcus aureus and coagulase-negative staphylococci from imported beef meat. Ann. Clin. Microbiol. Antimicrob. 2017, 16, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Gajewska, J.; Chajęcka-Wierzchowska, W. Biofilm formation ability and presence of adhesion genes among coagulase-negative and coagulase-positive Staphylococci isolates from raw cow’s milk. Pathogens 2020, 9, 654. [Google Scholar] [CrossRef]
- Osman, K.M.; El-razik, K.A.A.; Marie, H.S.H.; Arafa, A. Relevance of biofilm formation and virulence of different species of coagulase-negative staphylococci to public health. Clin. Microbiol. Infect. Dis. 2015, 34, 2009–2016. [Google Scholar] [CrossRef] [PubMed]
- Burki, S.; Frey, J.; Pilo, P. Virulence, persistence and dissemination of Mycoplasma bovis. Vet. Microbiol. 2015, 179, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Hermeyer, K.; Jacobsen, B.; Spergser, J.; Rosengarten, R.; Hewicker-Trautwein, M. Detection of Mycoplasma bovis by in-situ hybridization and expression of inducible nitric oxide synthase, nitrotyrosine and manganese superoxide dismutase in the lungs of experimentally infected calves. J. Comp. Pathol. 2011, 145, 240–250. [Google Scholar] [CrossRef] [PubMed]
- Morente, E.O.; Fernández-Fuentes, M.A.; Burgos, M.J.G.; Abriouel, H.; Pérez Pulido, R.; Gálvez, A. Biocide tolerance in bacteria. Int. J. Food Microbiol. 2013, 162, 13–25. [Google Scholar] [CrossRef]
- Saleem A, J. High frequency of hemolysin associated genes among Staphylococcus aureus clinical isolates in Iraq. J. Glob. Pharm. Technol. 2017, 12, 308–314. [Google Scholar]
- Moraveji, Z.; Tabatabaei, M.; Shirzad, A.H.; Khoshbakht, R. Characterization of hemolysins of Staphylococcus strains isolated from human and bovine, southern Iran. Iran. J. Vet. Res. 2014, 15, 326–330. [Google Scholar]
- Almeida, L.M.D.; Almeida, M.Z.P.R.B.D.; Mendonça, C.L.D.; Mamizuka, E. Comparative analysis of agr groups and virulence genes among subclinical and clinical mastitis Staphylococcus aureus isolates from sheep flocks of the northeast of Brazil. Braz. J. Microbiol. 2013, 44, 493–498. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Tawab, A.A.; Maarouf, A.A.A.; El-Hofy, F.I.; Abbas, S.A.H. Molecular detection of some virulence genes of S. aureus isolated from mastitic Cows by PCR. Benha Vet. Med J. 2016, 30, 238–245. [Google Scholar] [CrossRef]
- Ding, Y.; Zhao, J.; He, X.; Li, M.; Guan, H.; Zhang, Z.; Li, P. Antimicrobial resistance and virulence-related genes of Streptococcus obtained from dairy cows with mastitis in Inner Mongolia, China. Pharm. Biol. 2016, 54, 162–167. [Google Scholar] [CrossRef]
- Gase, K.; Ferretti, J.J.; Primeaux, C.; McShan, W.M. Identification, cloning, and expression of the CAMP factor gene (cfa) of group A streptococci. Infect. Immun. 1999, 67, 4725–4731. [Google Scholar] [CrossRef] [Green Version]
- Abd EL-Tawab, A.A.; Abou El-roos, N.A.; El-Hofy, F.I.; Abdullah, H.E. Molecular studies regarding to virulence factors of Streptococcus species isolated from raw milk. Benha Vet. Med J. 2017, 32, 145–152. [Google Scholar]
- Hassan, W.H.; Abd El-Latif, M.A.A.; Abed, A.H. Bacteriological and molecular studies on E. coli isolated from broiler chickens. Assiut Vet. Med. J. 2020, 66, 34–47. [Google Scholar]
- Gomis, S.M.; Riddell, C.; Potter, A.A.; Allan, B.J. Phenotypic and genotypic characterization of virulence factors of Escherichia coli isolated from broiler chickens with simultaneous occurrence of cellulites and other colibacillosis lesions. Can. J. Vet. Res. 2001, 65, 1–6. [Google Scholar]
- Nakazato, G.; de Campos, T.A.; Stehling, E.G.; Brocchi, M.; da Silveira, W.D. Virulence factors of avian pathogenic Escherichia coli (APEC). Pesq Vet. Bras. 2009, 29, 479–486. [Google Scholar] [CrossRef] [Green Version]
- Vandekerchove, D.; De Herdt, P.; Leavens, H.; Butayel, P.; Meulemans, G.; Pasmans, F. Significance of interactions between Escherichia coli and respiratory pathogens in layer hen flocks suffering from colibacillosis -associated mortality. Avian Pathol. 2004, 33, 298–302. [Google Scholar] [CrossRef] [Green Version]
- Hojati, Z.; Zamanzad, B.; Hashemzadeh, M.; Molaie, R.; Gholipour, A. The fimH gene in uropathogenic Escherichia coli strains isolated from patients with urinary tract infection. Jundishapur J. Microbiol. 2015, 8, e17520. [Google Scholar] [CrossRef] [Green Version]
- Rosengren, L.B.; Waldner, C.L.; Reid-Smith, R.J. Associations between antimicrobial resistance phenotypes, antimicrobial resistance genes, and virulence genes of fecal Escherichia coli isolates from healthy grow-finish pigs. Appl. Environ. Microbiol. 2009, 75, 1373–1380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdolmaleki, Z.; Mashak, Z.; Dehkord, F.S. Phenotypic and genotypic characterization of antibiotic resistance in the methicillin-resistant Staphylococcus aureus strains isolated from hospital cockroaches. Antimicrob Resist Infect Control. 2019, 8, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shivakumaraswamy, S.K.; Deekshit, V.K.; Vittal, R.; Akhila, D.S.; Mundanda, D.M.; Raj, J.R.M.; Chakraborty, A.; Karunasagar, I. Phenotypic & genotypic study of antimicrobial profile of bacteria isolates from environmental samples. Indian J. Med. Res. 2019, 149, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Jaja, I.F.; Oguttu, J.; Jaja, C.-J.I.; Green, E. Prevalence and distribution of antimicrobial resistance determinants of Escherichia coli isolates obtained frommeat in South Africa. PLoS ONE 2020, 15, e0216914. [Google Scholar] [CrossRef]
- Van, C.N.; Zhang, L.; Thanh, T.V.T.; Son, H.P.H.; Ngoc, T.T.; Huang, Q.; Zhou, R. Association between the phenotypes and genotypes of antimicrobial resistance in Haemophilus parasuis isolates from swine in Quang Binh and Thua Thien Hue Provinces, Vietnam. Engineering. 2020, 6, 40–48. [Google Scholar] [CrossRef]
- Urmi, U.L.; Nahar, S.; Rana, M.; Sultana, F.; Jahan, N.; Hossain, B.; Alam, M.S.; Mosaddek, A.S.M.; McKimm, J.; Rahman, N.A.A.; et al. Genotypic to phenotypic resistance discrepancies identified involving β-lactamase genes, blaKPC, blaIMP, blaNDM-1, and blaVIM in uropathogenic Klebsiella pneumoniae. Infect. Drug Resist. 2021, 13, 2863–2875. [Google Scholar] [CrossRef]
- Boerlin, P.; Travis, R.; Gyles, C.L.; Reid-Smith, R.; Janecko, N.; Lim, H.; Nicholson, V.; McEwen, S.A.; Friendship, R.; Archambault, M. Antimicrobial resistance and virulence genes of Escherichia coli isolates from swine in Ontario. Appl. Environ. Microbiol. 2005, 71, 6753–6761. [Google Scholar] [CrossRef] [Green Version]
Primers | Primers Sequences | Amplified Product | Primary Denaturation | Amplification (35 cycles) | Final Extension | References | |||
---|---|---|---|---|---|---|---|---|---|
2ry Denaturation | Annealing | Extension | |||||||
Staphylococci | mecA | GTAGAAATGACTGAACGTCCGATAA CCAATTCCACATTGTTTCGGTCTAA | 310 bp | 94 °C 5 min | 94 °C 30 s | 50 °C 30 s | 72 °C 30 s | 72 °C 7 min | [26] |
blaZ | ACTTCAACACCTGCTGCTTTC TGACCACTTTTATCAGCAACC | 173 bp | 94 °C 5 min | 94 °C 30 s | 54 °C 30 s | 72 °C 30 s | 72 °C 7 min | [27] | |
hlg | GCCAATCCGTTATTAGAAAATGC CCATAGACGTAGCAACGGAT | 937 bp | 94 °C 5 min | 94 °C 30 s | 55 °C 40 s | 72 °C 50 s | 72 °C 10 min | [28] | |
icaD | AAACGTAAGAGAGGTGG GGCAATATGATCAAGATA | 381 bp | 94 °C 5 min | 94 °C 30 s | 49 °C 45 s | 72 °C 45 s | 72 °C 10 min | [29] | |
Streptococci | aph(3’)-IIIa | GGCTAAAATGAGAATATCACCGG CTTTAAAAAATCATACAGCTCGCG | 523 bp | 94 °C 3 min | 94 °C 30 s | 55 °C 30 s | 72 °C 1 min | 72 °C 5 min | [30] |
vanC−2/3 as | GATTTGTTCTTGCTGGTTGG CAATCGAAGCACTCCAATCATCTCCCT | 427 bp | 94 °C 3min | 94 °C 30 s | 56 °C 30 s | 72 °C 1 min | 72 °C 5 min | [31] | |
hyl | ACAGAAGAGCTGCAGGAAATG GACTGACGTCCAAGTTTCCAA | 276 bp | 94 °C 3 min | 94 °C 30 s | 56 °C 30 s | 72 °C 1 min | 72 °C 5 min | [32] | |
cfb | TTTCACCAGCTGTATTAGA GTTCCCTGAACATTATCTT | 154 bp | 96 °C 5 min | 94 °C 30 s | 56 °C 30 s | 72 °C 1 min | 72 °C 5 min | [33] | |
E. coli | tetA | GGTTCACTCGAACGACGTCA CTGTCCGACAAGTTGCATGA | 576 bp | 94 °C 5 min | 94 °C 30 s | 50 °C 40 s | 72 °C 45 s | 72 °C 10 min | [34] |
sul1 | CGGCGTGGGCTACCTGAACG GCCGATCGCGTGAAGTTCCG | 433 bp | 94 °C 5 min | 94 °C 30 s | 60 °C 40 s | 72 °C 45 s | 72 °C 10 min | [35] | |
fimH | TGCAGAACGGATAAGCCGTGG GCAGTCACCTGCCCTCCGGTA | 508 bp | 94 °C 5 min | 94 °C 30 s | 50 °C 40 s | 72 °C 40 s | 72 °C 10 min | [36] | |
tsh | GGTGGTGCACTGGAGTGG AGTCCAGCGTGATAGTGG | 620 bp | 94 °C 5 min | 94 °C 30 s | 54 °C 40 s | 72 °C 40 s | 72 °C 10 min | [37] |
SCC (×105 cells/mL) | Negative CMT | Positive CMT 1 | Total QMSs | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 | S2 | S3 | Total | |||||||||
No | % | No | % | No | % | No | % | No | % | No | % | |
< 2.50 | 547 | 51.6 | 30 | 2.8 | 8 | 0.8 | 0 | 0 | 38 | 3.6 | 585 | 55.2 |
2.50: < 5.00 | 25 | 2.4 | 44 | 4.0 | 155 | 14.6 | 13 | 1.2 | 212 | 20 | 237* | 22.4 |
5.00: < 10.00 | 0 | 0 | 6 | 0.6 | 57 | 5.4 | 99 | 9.3 | 162 | 15.3 | 162* | 15.3 |
>10.00 | 0 | 0 | 0 | 0 | 11 | 1.0 | 65 | 6.1 | 76 | 7.2 | 76* | 7.2 |
Total | 572 | 54 | 80 | 7.5 | 231 | 21.8 | 177 | 16.7 | 488 | 46 | 1060 | 100 |
Average SCC 2 (×105 cells/mL) | 1.48 × 105 ± 6.1 × 103a | 2.78 × 105 ± 5.6 × 103b | 4.57 × 105 ± 7.1 × 103c | 8.66 × 105 ± 7.2 × 103d | 4.91 × 105 ± 5.1 × 103 |
CMT Results 1 | Average Milk Compositions (%) 2 | Milk Parameters 2 | ||||||
---|---|---|---|---|---|---|---|---|
Lactose | Fat | SNF | Total Protein | Ash | Salt | Milk Density | Freezing Point | |
Negative | 5.55 ± 0.20 a | 5.34 ± 0.08 a | 8.63 ± 0.24 a | 4.01 ± 0.12 a | 0.60 ± 0.01 a | 0.61 ± 0.02 a | 25.25 ± 0.53 a | −0.502 ± 0.02 a |
S1 | 4.92 ± 0.05 b | 4.33 ± 0.10 b | 8.25 ± 0.16 b | 3.82 ± 0.09 a | 0.64 ± 0.01 a | 0.69 ± 0.01 b | 27.18 ± 0.87 a | −0.528 ± 0.04 b |
S2 | 4.61 ± 0.01 b | 3.81 ± 0.14 c | 7.92 ± 0.17 b | 3.65 ± 0.03 b | 0.69 ± 0.02 b | 0.78 ± 0.01 c | 29.60 ± 0.26 b | −0.566 ± 0.01 c |
S3 | 4.22 ± 0.05 c | 2.64 ± 0.09 d | 7.31 ± 0.07 c | 3.50 ± 0.06 b | 0.76 ± 0.03 c | 0.93 ± 0.02 d | 32.85 ± 0.18 c | −0.601 ± 0.03 d |
Bacterial Isolates | No. of Subclinically Mastitic Quarters | Positive Isolation | |||||
---|---|---|---|---|---|---|---|
Single | Co-Infection | Total | |||||
No | % | No | % | No | % | ||
E. coli | 488 | 25 | 5.1 | 218 | 44.7 | 243 | 49.8 |
S. aureus | 51 | 10.5 | 168 | 34.4 | 219 | 44.9 | |
Streptococcus spp. | 13 | 2.7 | 202 | 41.4 | 215 | 44.1 | |
NAS | 38 | 7.8 | 143 | 29.3 | 181 | 37.1 | |
Enterococcus spp. | 0 | 0 | 29 | 5.9 | 29 | 5.9 |
Bacterial Infection | Total No. (%) | S1 | S2 | S3 | ||||
---|---|---|---|---|---|---|---|---|
No (%) | SCC* | No (%) | SCC* | No (%) | SCC* | |||
Single | S. aureus | 51 (10.5) | 7 (1.4) | 4.40 | 13 (2.7) | 6.06 | 31 (6.4) | 10.10 |
NAS | 38 (7.8) | 21 (4.3) | 2.83 | 13 (2.7) | 4.12 | 4 (0.8) | 9.28 | |
Streptococci | 13 (2.7) | 7 (1.4) | 2.44 | 5 (1) | 4.80 | 1 (0.2) | 8.60 | |
E. coli | 25 (5.1) | 15 (3.1) | 2.33 | 7 (1.4) | 5.44 | 3 (0.6) | 9.68 | |
Total single | 127 (26) | 50 (10.2) | 38 (7.8) | 39 (8) | ||||
Co-infection | S. aureus + E. coli + Streptococci | 60 (12.3) | 3 (0.6) | 2.83 | 31 (6.4) | 5.35 | 26 (5.3) | 11.84 |
NAS + E. coli + Streptococci | 49 (10) | 4 (0.8) | 2.78 | 29 (5.9) | 5.20 | 16 (3.3) | 6.85 | |
NAS + E. coli | 40 (8.2) | 2 (0.4) | 2.82 | 24 (4.9) | 5.15 | 14 (2.9) | 8.19 | |
S. aureus + Streptococci | 31 (6.4) | - | - | 17 (3.5) | 4.52 | 14 (2.9) | 8.31 | |
S. aureus + Enterococci | 11 (2.3) | - | - | 6 (1.2) | 4.56 | 5 (1) | 8.37 | |
S. aureus + E. coli | 43 (8.8) | 2 (0.4) | 5.03 | 30 (6.1) | 6.31 | 11 (2.3) | 11.14 | |
E. coli + Streptococci | 15 (3.1) | - | - | 3 (0.6) | 5.53 | 12 (2.5) | 9.23 | |
E. coli + Enterococci | 11 (2.3) | - | - | 2 (0.4) | 5.51 | 9 (1.8) | 8.92 | |
NAS + Streptococci | 24 (4.9) | - | - | 15 (3.1) | 3.96 | 9 (1.8) | 8.59 | |
NAS + Enterococci | 7 (1.4) | - | - | 3 (0.6) | 3.91 | 4 (0.8) | 8.52 | |
S. aureus + NAS + Streptococci | 23 (4.7) | - | - | 14 (2.9) | 3.68 | 9 (1.8) | 6.13 | |
Total co-infection | 314 (64.3) | 11 (2.3) | 174 (35.7) | 129 (26.4) | ||||
Total bacterial isolation | 441 (90.4) | 61 (12.5) | 212 (43.4) | 168 (34.4) | ||||
Negative bacterial isolation | 47 (9.6) | 19 (3.9) | 2.04 | 19 (3.9) | 4.31 | 9 (1.8) | 6.11 | |
Overall total SCM quarters | 488 (100) | 80 (16.4) | 2.78 | 231(47.3) | 4.57 | 177 (36.3) | 8.66 |
Class | Antimicrobial Agent | Disc Content (µg) | S. aureus | NAS | Streptococci | E. coli | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R | I | S | R | I | S | R | I | S | R | I | S | |||
Penicillins | Ampicillin | 10 | 96 | 0 | 4 | 90 | 2 | 8 | 90 | 4 | 6 | 68 | 10 | 22 |
Amoxicillin-clavulanic A | 30 | 78 | 12 | 10 | 76 | 10 | 14 | 88 | 4 | 8 | 88 | 6 | 6 | |
Cephalosporins | Cefoxitin | 30 | 56 | 18 | 26 | 48 | 22 | 30 | - | - | - | 48 | 14 | 38 |
Cefotaxime sodium | 30 | 46 | 12 | 42 | 42 | 16 | 42 | 52 | 8 | 40 | 72 | 6 | 22 | |
Glycopeptides | Vancomycin | 30 | 16 | 12 | 72 | 14 | 10 | 76 | 36 | 8 | 56 | - | - | - |
Fluoroquinolones | Levofloxacin | 5 | 20 | 12 | 68 | 14 | 8 | 78 | 52 | 14 | 34 | 62 | 12 | 26 |
Ciprofloxacin | 5 | 16 | 10 | 74 | 12 | 6 | 82 | 92 | 4 | 4 | 84 | 10 | 6 | |
Tetracyclines | Doxycycline HCl | 30 | 26 | 20 | 54 | 22 | 14 | 64 | 38 | 12 | 50 | 90 | 4 | 6 |
Lincosamides | Clindamycin | 2 | 28 | 20 | 52 | 30 | 22 | 48 | 46 | 8 | 46 | - | - | - |
Aminoglycosides | Gentamicin | 10 | 24 | 16 | 60 | 18 | 12 | 70 | 96 | 2 | 2 | 72 | 6 | 22 |
Chloramphenicol | Florophenicol | 30 | 24 | 10 | 66 | 14 | 6 | 80 | 36 | 8 | 56 | 84 | 6 | 10 |
Potentiated sulfonamides | Sulfamethoxazole-trimethoprim | 25 | 26 | 14 | 60 | 14 | 10 | 76 | 42 | 18 | 40 | 88 | 6 | 6 |
Polymyxins | Colistin sulphate | 10 | - | - | - | - | - | - | - | - | - | 64 | 16 | 20 |
Bacterial Isolates | Target Genes | Positive | Negative | ||
---|---|---|---|---|---|
No. | % | No. | % | ||
S. aureus (n = 15) | mecA | 9 | 60 | 6 | 40 |
blaZ | 7 | 46.7 | 8 | 53.3 | |
hlg | 0 | 0 | 15 | 100 | |
icaD | 3 | 20 | 12 | 80 | |
NAS (n = 15) | mecA | 4 | 26.7 | 11 | 73.3 |
blaZ | 8 | 53.3 | 7 | 46.7 | |
hlg | 0 | 0 | 15 | 100 | |
icaD | 1 | 6.7 | 14 | 93.3 | |
Streptococcus spp. (n = 15) | aph(3’)-IIIa | 11 | 73.3 | 4 | 26.7 |
vanC−2/3 as | 4 | 26.7 | 11 | 73.3 | |
hyl | 5 | 33.3 | 10 | 66.7 | |
cfb | 11 | 73.3 | 4 | 26.7 | |
E. coli (n = 15) | tetA | 15 | 100 | 0 | 0 |
sul1 | 15 | 100 | 0 | 0 | |
fimH | 12 | 80 | 3 | 20 | |
tsh | 9 | 60 | 6 | 40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abed, A.H.; Menshawy, A.M.S.; Zeinhom, M.M.A.; Hossain, D.; Khalifa, E.; Wareth, G.; Awad, M.F. Subclinical Mastitis in Selected Bovine Dairy Herds in North Upper Egypt: Assessment of Prevalence, Causative Bacterial Pathogens, Antimicrobial Resistance and Virulence-Associated Genes. Microorganisms 2021, 9, 1175. https://doi.org/10.3390/microorganisms9061175
Abed AH, Menshawy AMS, Zeinhom MMA, Hossain D, Khalifa E, Wareth G, Awad MF. Subclinical Mastitis in Selected Bovine Dairy Herds in North Upper Egypt: Assessment of Prevalence, Causative Bacterial Pathogens, Antimicrobial Resistance and Virulence-Associated Genes. Microorganisms. 2021; 9(6):1175. https://doi.org/10.3390/microorganisms9061175
Chicago/Turabian StyleAbed, Ahmed H., Ahmed M. S. Menshawy, Mohamed M. A. Zeinhom, Delower Hossain, Eman Khalifa, Gamal Wareth, and Mohamed F. Awad. 2021. "Subclinical Mastitis in Selected Bovine Dairy Herds in North Upper Egypt: Assessment of Prevalence, Causative Bacterial Pathogens, Antimicrobial Resistance and Virulence-Associated Genes" Microorganisms 9, no. 6: 1175. https://doi.org/10.3390/microorganisms9061175
APA StyleAbed, A. H., Menshawy, A. M. S., Zeinhom, M. M. A., Hossain, D., Khalifa, E., Wareth, G., & Awad, M. F. (2021). Subclinical Mastitis in Selected Bovine Dairy Herds in North Upper Egypt: Assessment of Prevalence, Causative Bacterial Pathogens, Antimicrobial Resistance and Virulence-Associated Genes. Microorganisms, 9(6), 1175. https://doi.org/10.3390/microorganisms9061175