Non-Invasive versus Invasive Samples for Zika Virus Surveillance: A Comparative Study in New Caledonia and French Guiana in 2015–2016
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and RNA Extraction
2.2. One Step RT-qPCR
2.3. Statistical Analysis
2.3.1. Probability of Detection
2.3.2. Signal Precocity
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Musso, D.; Gubler, D.J. Zika virus. Clin. Microbiol. Rev. 2016, 29, 487–524. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Tandel, K.; Dash, P.K.; Parida, M. Zika virus: A public health threat. J. Med. Virol. 2017, 89, 1693–1699. [Google Scholar] [CrossRef] [Green Version]
- Chan, J.F.; Yip, C.C.; Tee, K.M.; Zhu, Z.; Tsang, J.O.; Chik, K.K.; Tsang, T.G.; Chan, C.C.; Poon, V.K.; Sridhar, S.; et al. Improved detection of Zika virus RNA in human and animal specimens by a novel, highly sensitive and specific real-time RT-PCR assay targeting the 5′-untranslated region of Zika virus. Trop. Med. Int. Health 2017, 22, 594–603. [Google Scholar] [CrossRef]
- Lamb, L.E.; Bartolone, S.N.; Tree, M.O.; Conway, M.J.; Rossignol, J.; Smith, C.P.; Chancellor, M.B. Rapid Detection of Zika Virus in Urine Samples and Infected Mosquitos by Reverse Transcription-Loop-Mediated Isothermal Amplification. Sci. Rep. 2018, 8, 3803. [Google Scholar] [CrossRef] [Green Version]
- Barzon, L.; Percivalle, E.; Pacenti, M.; Rovida, F.; Zavattoni, M.; Del Bravo, P.; Cattelan, A.M.; Palù, G.; Baldanti, F. Virus and Antibody Dynamics in Travelers with Acute Zika Virus Infection. Clin. Infect. Dis. 2018, 66, 1173–1180. [Google Scholar] [CrossRef]
- Kazmi, S.S.; Ali, W.; Bibi, N.; Nouroz, F. A review on Zika virus outbreak, epidemiology, transmission and infection dynamics. J. Biol. Res. 2020, 27, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huits, R.; Van Den Bossche, D.; Eggermont, K.; Lotgering, E.; Feyens, A.M.; Potters, I.; Jacobs, J.; Van Esbroeck, M.; Cnops, L.; Bottieau, E. Incidence of Zika virus infection in a prospective cohort of Belgian travellers to the Americas in 2016. Int. J. Infect. Dis. 2019, 78, 39–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.K.; Dhama, K.; Karthik, K.; Tiwari, R.; Khandia, R.; Munjal, A.; Iqbal, H.M.N.; Malik, Y.S.; Bueno-Marí, R. Advances in Diagnosis, Surveillance, and Monitoring of Zika Virus: An Update. Front. Microbiol. 2018, 8, 2677. [Google Scholar] [CrossRef] [Green Version]
- Ölschläger, S.; Enfissi, A.; Zaruba, M.; Kazanji, M.; Rousset, D. Diagnostic Validation of the RealStar® Zika Virus Reverse Transcription Polymerase Chain Reaction Kit for Detection of Zika Virus RNA in Urine and Serum Specimens. Am. J. Trop. Med. Hyg. 2017, 97, 1070–1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, O.; Acket, B.; Forfait, C.; Girault, D.; Gourinat, A.C.; Millon, P.; Daures, M.; Vanhomwegen, J.; Billot, S.; Biron, A.; et al. Zika virus outbreak in New Caledonia and Guillain-Barré syndrome: A case-control study. J. Neurovirol. 2018, 24, 362–368. [Google Scholar] [CrossRef]
- Casale, T.B.; Teng, M.N.; Morano, J.P.; Unnasch, T.; Charles, J.; Lockwood, C.J. Zika virus: An emerging infectious disease with serious perinatal and neurologic complications. J. Allergy Clin. Immunol. 2018, 141, 482–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Wong, G.; Ye, B.; Li, S.; Li, S.; Zheng, H.; Wang, Q.; Liang, M.; Gao, G.F.; Liu, L.; et al. Development of a reverse transcription quantitative polymerase chain reaction-based assay for broad coverage detection of African and Asian Zika virus lineages. Virol. Sin. 2017, 32, 199–206. [Google Scholar] [CrossRef]
- Landry, M.L.; St George, K. Laboratory Diagnosis of Zika Virus Infection. Arch. Pathol. Lab. Med. 2017, 141, 60–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broeders, S.; Garlant, L.; Fraiture, M.A.; Vandermassen, E.; Suin, V.; Vanhomwegen, J.; Dupont-Rouzeyrol, M.; Rousset, D.; Van Gucht, S.; Roosens, N. A new multiplex RT-qPCR method for the simultaneous detection and discrimination of Zika and chikungunya viruses. Int. J. Infect. Dis. 2020, 92, 160–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waggoner, J.J.; Pinsky, B.A. Zika virus: Diagnostics for an emerging pandemic threat. J. Clin. Microbiol. 2016, 54, 860–867. [Google Scholar] [CrossRef] [Green Version]
- Shukla, S.; Hong, S.Y.; Chung, S.H.; Kim, M. Rapid Detection Strategies for the Global Threat of Zika Virus: Current State, New Hypotheses, and Limitations. Front. Microbiol. 2016, 7, 1685. [Google Scholar] [CrossRef] [Green Version]
- Lamb, L.E.; Bartolone, S.N.; Kutluay, S.B.; Robledo, D.; Porras, A.; Plata, M.; Chancellor, M.B. Advantage of urine based molecular diagnosis of Zika virus. Int. Urol. Nephrol. 2016, 48, 1961–1966. [Google Scholar] [CrossRef] [Green Version]
- Munoz-Jordan, J.L. Diagnosis of Zika Virus Infections: Challenges and Opportunities. J. Infect. Dis. 2017, 216, S951–S956. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.J.; Kim, Y.B.; Shin, Y. Advances in Epidemiology, Biology and Laboratory Diagnosis of Zika Virus. J. Bacteriol. Virol. 2017, 47, 1–13. [Google Scholar] [CrossRef] [Green Version]
- de Vasconcelos, Z.F.M.; Azevedo, R.C.; Thompson, N.; Gomes, L.; Guida, L.; Moreira, M.E.L. Challenges for molecular and serological ZIKV infection confirmation. Childs Nerv. Syst. 2018, 34, 79–84. [Google Scholar] [CrossRef]
- Gourinat, A.C.; O’Connor, O.; Calvez, E.; Goarant, C.; Dupont-Rouzeyrol, M. Detection of Zika virus in urine. Emerg. Infect. Dis. 2015, 21, 84–86. [Google Scholar] [CrossRef]
- Tan, S.K.; Sahoo, M.K.; Milligan, S.B.; Taylor, N.; Pinsky, B.A. Stability of Zika virus in urine: Specimen processing considerations and implications for the detection of RNA targets in urine. J. Virol. Methods 2017, 248, 66–70. [Google Scholar] [CrossRef]
- Paz-Bailey, G.; Rosenberg, E.S.; Doyle, K.; Munoz-Jordan, J.; Santiago, G.A.; Klein, L.; Perez-Padilla, J.; Medina, F.A.; Waterman, S.H.; Adams, L.E.; et al. Persistence of Zika virus in body fluids—Final report. N. Engl. J. Med. 2018, 379, 1234–1243. [Google Scholar] [CrossRef]
- Campos, R.M.; Cirne-Santos, C.; Meira, G.L.S.; Santos, L.L.R.; de Meneses, M.D.; Friedrich, J.; Jansen, S.; Ribeiro, M.S.; da Cruz, I.C.; Schmidt-Chanasit, J.; et al. Prolonged detection of Zika virus RNA in urine samples during the ongoing Zika virus epidemic in Brazil. J. Clin. Virol. 2016, 77, 69–70. [Google Scholar] [CrossRef]
- Cordeiro, M.T. Laboratory diagnosis of Zika virus. Top. Magn. Reson. Imaging 2019, 28, 15–17. [Google Scholar] [CrossRef]
- Calvet, G.A.; Kara, E.O.; Landoulsi, S.; Habib, N.; Bôtto-Menezes, C.H.A.; Franca, R.F.O.; Neto, A.M.; Castilho, M.D.C.; Fernandes, T.J.; Pereira, G.F.; et al. Cohort profile: Study on Zika virus infection in Brazil (ZIKABRA study). PLoS ONE 2021, 16, e0244981. [Google Scholar] [CrossRef]
- Goertz, G.P.; Vogels, C.B.F.; Geertsema, C.; Koenraadt, C.J.M.; Pijlman, G.P. Mosquito co-infection with Zika and chikungunya virus allows simultaneous transmission without affecting vector competence of Aedes aegypti. PLoS Negl. Trop. Dis. 2017, 11, e0005654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brito, C.A.A.; Azevedo, F.; Cordeiro, M.T.; Marques, E.T.A., Jr.; Franca, R.F.O. Central and peripheral nervous system involvement caused by Zika and chikungunya coinfection. PLoS Negl. Trop. Dis. 2017, 11, e0005583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sardi, S.I.; Somasekar, S.; Naccache, S.N.; Bandeira, A.C.; Tauro, L.B.; Campos, G.S.; Chiu, C.Y. Coinfections of Zika and chikungunya viruses in Bahia, Brazil, identified by metagenomic next-generation sequencing. J. Clin. Microbiol. 2016, 54, 2348–2353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zambrano, H.; Waggoner, J.J.; Almeida, C.; Rivera, L.; Benjamin, J.Q.; Pinsky, B.A. Zika Virus and Chikungunya Virus CoInfections: A Series of Three Cases from a Single Center in Ecuador. Am. J. Trop. Med. Hyg. 2016, 95, 894–896. [Google Scholar] [CrossRef] [Green Version]
- Manual for the Laboratory Diagnosis of Measles and Rubella Virus Infection. Available online: https://www.malmed-oracol.co.uk/_webedit/uploaded-files/All%20Files/WHO%20instructions%20on%20processing%20Saliva%20samples.pdf (accessed on 1 April 2021).
- Inizan, C.; Tarantola, A.; O’Connor, O.; Mangeas, M.; Pocquet, N.; Forfait, C.; Descloux, E.; Gourinat, A.-C.; Pfannstiel, A.; Klement-Frutos, E.; et al. Dengue in New Caledonia: Knowledge and Gaps. Trop. Med. Infect. Dis. 2019, 4, 95. [Google Scholar] [CrossRef] [Green Version]
- Roth, A.; Mercier, A.; Lepers, C.; Hoy, D.; Duituturaga, S.; Benyon, E.; Guillaumot, L.; Souarès, Y. Concurrent outbreaks of dengue, chikungunya and Zika virus infections—An unprecedented epidemic wave of mosquito-borne viruses in the Pacific 2012–2014. Euro Surveill. 2014, 19, 20929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Pilar Martinez Viedma, M.; Puri, V.; Oldfield, L.M.; Shabman, R.S.; Tan, G.S.; Pickett, B.E. Optimization of qRT-PCR assay for zika virus detection in human serum and urine. Virus Res. 2019, 263, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Venceslau, E.M.; Guida, J.P.S.; Nobrega, G.D.M.; Samogim, A.P.; Parise, P.L.; Japecanga, R.R.; Toledo-Teixeira, D.A.D.; Forato, J.; Antolini-Tavares, A.; Souza, A.; et al. Adequate Placental Sampling for the Diagnosis and Characterization of Placental Infection by Zika Virus. Front. Microbiol. 2020, 11, 112. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, L.M.D.S.; Carvalho, R.H.; Bandeira, A.C.; Sardi, S.I.; Campos, G.S. Oropouche Virus Detection in Febrile Patients’ Saliva and Urine Samples in Salvador, Bahia, Brazil. Jpn. J. Infect. Dis. 2020, 73, 164–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Patient Number | Days Since Onset of Symptoms/Clinical Signs | SERUM | URINE | SALIVA | |||
---|---|---|---|---|---|---|---|
ZIKV (a) | ZIKV (b) | ZIKV (a) | ZIKV (b) | ZIKV (a) | ZIKV (b) | ||
NC-1A | 3 | 34.9 | 37.4 | - | - | 31.4 | 32.8 |
NC-2A | 4 | 37.6 | - | - | - | - | - |
NC-3A | 4 | 35.7 | - | 31.4 | 35.1 | 28.4 | 29.8 |
NC-4A | 3 | - | - | 30.7 | 33.4 | 32.6 | 32.6 |
NC-8A | 3 | - | - | 25.2 | 28.3 | - | - |
NC-9A | 3 | 35.7 | - | 33.0 | 36.2 | 30.9 | 32.3 |
NC-10A | 5 | - | - | 23.8 | 26 | 37.6 | - |
NC-11A | 5 | - | - | 34.1 | 36.6 | - | - |
NC-12A | 1 | 35.9 | - | 25.8 | 28.9 | 29.8 | 31.1 |
NC-13A | 2 | 33.8 | 37 | 34.4 | 35.8 | 31.3 | 34.3 |
NC-14A | 2 | - | - | 28.2 | 29.2 | 30.7 | 31.7 |
NC-15A | 4 | - | - | 32.0 | 33.7 | 37.6 | - |
NC-17A | 2 | - | - | 32.8 | 35.6 | 36.5 | - |
NC-19A | 1 | - | - | 29.7 | 30.6 | 28.3 | 29.4 |
NC-19B | 2 | - | - | 30.0 | 31.40 | 32.2 | 33.8 |
NC-21A | 1 | 31.2 | 34.7 | 37.2 | - | 29 | 31.4 |
NC-23A | 2 | - | - | 31.0 | 33.9 | 30.4 | 32.3 |
NC-23B | 6 | - | - | 30.9 | 32.9 | 37.7 | - |
NC-26A | 2 | 35.8 | - | 37.0 | - | 38 | - |
NC-26B | 6 | 37.4 | - | 37.9 | - | - | - |
GY-1A | 2 | 33.9 | 34.2 | - | - | - | - |
GY-1B | 3 | - | - | 32.0 | 32.4 | 36.7 | 37.6 |
GY-4A | 3 | - | - | 37.8 | 37.1 | - | - |
GY-5A | 4 | - | - | - | - | 32.2 | 33.2 |
GY-6A | 1 | - | - | 31.3 | 31.9 | - | - |
GY-8A | 6 | - | - | 34.2 | 34.5 | - | - |
Compared Samples | Cq Value Difference | p-Value |
---|---|---|
Serum-Saliva | −4.4 | 0.0095 |
Serum-Urine | −1.3 | 0.8998 |
Saliva-Urine | −1.8 | 0.4974 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fraiture, M.-A.; Coucke, W.; Pol, M.; Rousset, D.; Gourinat, A.-C.; Biron, A.; Broeders, S.; Vandermassen, E.; Dupont-Rouzeyrol, M.; Roosens, N.H.C. Non-Invasive versus Invasive Samples for Zika Virus Surveillance: A Comparative Study in New Caledonia and French Guiana in 2015–2016. Microorganisms 2021, 9, 1312. https://doi.org/10.3390/microorganisms9061312
Fraiture M-A, Coucke W, Pol M, Rousset D, Gourinat A-C, Biron A, Broeders S, Vandermassen E, Dupont-Rouzeyrol M, Roosens NHC. Non-Invasive versus Invasive Samples for Zika Virus Surveillance: A Comparative Study in New Caledonia and French Guiana in 2015–2016. Microorganisms. 2021; 9(6):1312. https://doi.org/10.3390/microorganisms9061312
Chicago/Turabian StyleFraiture, Marie-Alice, Wim Coucke, Morgane Pol, Dominique Rousset, Ann-Claire Gourinat, Antoine Biron, Sylvia Broeders, Els Vandermassen, Myrielle Dupont-Rouzeyrol, and Nancy H. C. Roosens. 2021. "Non-Invasive versus Invasive Samples for Zika Virus Surveillance: A Comparative Study in New Caledonia and French Guiana in 2015–2016" Microorganisms 9, no. 6: 1312. https://doi.org/10.3390/microorganisms9061312
APA StyleFraiture, M.-A., Coucke, W., Pol, M., Rousset, D., Gourinat, A.-C., Biron, A., Broeders, S., Vandermassen, E., Dupont-Rouzeyrol, M., & Roosens, N. H. C. (2021). Non-Invasive versus Invasive Samples for Zika Virus Surveillance: A Comparative Study in New Caledonia and French Guiana in 2015–2016. Microorganisms, 9(6), 1312. https://doi.org/10.3390/microorganisms9061312