Beating the Bio-Terror Threat with Rapid Antimicrobial Susceptibility Testing
Abstract
:1. Introduction
2. Bacterial Bioterror Agents—B. anthracis, Y. pestis, and F. tularensis
2.1. Traditional ASTs
2.2. Isolation Procedures
2.2.1. Selective Culturing
B. anthracis
Yersinia pestis
Francisella tularensis
2.2.2. Rapid Bacterial Isolation: Plasma Purification and Immunomagnetic Separation
2.2.3. Rapid Bacterial Isolation by Fluorescent Activated Cell Sorter (FACS)
2.3. New Rapid ASTs
2.3.1. Genotypic-Based Assays—High Throughput Sequencing
2.3.2. Phenotypic Based ASTs
2.3.2.1. Live/Dead Fluorescent Detection
2.3.2.2. Rapid Molecular mRNA-Based AST
2.3.2.3. Optical and Microscopic Screening
2.3.2.4. Phage Based ASTs
2.3.2.5. Micro-Agar-PCR-Test (MAPt)
2.4. Intracellular ASTs
2.5. Avoiding the Latter-ASTs of Environmental Samples
3. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
List of Abbreviations
AI | Artificial Intelligence |
AST | Antibiotic susceptibility test |
BMD | Broth microdilution |
caMHB | cation-adjusted Mueller–Hinton broth |
CDC | Centers of Disease control and presentation |
CHA | Cysteine Heart Agar |
CHAB | CHA with 9% sheep blood |
CHAB | A-CHAB with ampicillin |
CIN | Cefsulodin-irgasan-novobiocin |
CFU | Colony-forming unit |
CLSI | Clinical and Laboratory Standards Institute |
EUCAST | European Committee on Antimicrobial Susceptibility Testing |
FACS | Fluorescent Activated Cell Sorter |
FRET | Fluorescence Resonance Energy Transfer |
HTS | High-throughput Sequencing |
IMS | Immunomagnetic Separation |
LB | Luria-Bertani |
LRN | Laboratory Response Network |
MAPt | Micro-Agar-PCR Test |
MH | Mueller–Hinton |
MIC | Minimal Inhibitory Concentration |
MIEC | Minimal Inhibitory Extracellular Concentration |
PO | per os |
RAST | Rapid Antimicrobial Susceptibility Testing |
RNA | seq-RNA sequencing |
SIR | Spectral Intensity Ratio |
WHO | World Health Organization |
References
- Clemente-Suárez, V.J.; Dalamitros, A.A.; Beltran-Velasco, A.I.; Mielgo-Ayuso, J.; Tornero-Aguilera, J.F. Social and Psychophysiological Consequences of the COVID-19 Pandemic: An Extensive Literature Review. Front. Psychol. 2020, 11, 580225. [Google Scholar] [CrossRef]
- Aloni-Grinstein, R.; Rotem, S. COVID-19 Pandemic: A Lesson for Antibiotic and Antiseptic Stewardship. Am. J. Public Health Res. 2021, 9, 48–51. [Google Scholar] [CrossRef]
- Trevisanato, S.I. The ‘Hittite plague’, an epidemic of tularemia and the first record of biological warfare. Med. Hypotheses 2007, 69, 1371–1374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barras, V.; Greub, G. History of biological warfare and bioterrorism. Clin. Microbiol. Infect. 2014, 20, 497–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CDC. Bioterrorism Agents/Diseases. Available online: https://emergency.cdc.gov/agent/agentlist-category.asp (accessed on 12 February 2021).
- National Academies of Sciences, Engineering, and Medicine. Biodefense in the Age of Synthetic Biology; National Academies Press: Washington, DC, USA, 2018. [Google Scholar]
- Dixon, T.C. Anthrax. N. Engl. J. Med. 1999, 341, 815–826. [Google Scholar] [CrossRef]
- Holty, J.E.C.; Bravata, D.M.; Liu, H.; Olshen, R.A.; McDonald, K.M.; Owens, D.K. Systemic review: A century of inhalational anthrax cases from 1900 to 2005. Ann. Intern. Med. 2006, 21, 270–280. [Google Scholar] [CrossRef]
- Darling, R.G.; Catlett, C.L.; Huebner, K.D.; Jarrett, D.G. Threats in bioterrorism I: CDC category A agents. Emerg. Med. Clin. North Am. 2002, 20, 273–309. [Google Scholar] [CrossRef]
- Goal, A.K. Anthrax: A disease of biowarfare and public health importance. World J. Clin. Cases 2015, 16, 20–23. [Google Scholar] [CrossRef]
- Respicio-Kingry, L.B.; Yockey, B.M.; Acayo, S.; Kaggwa, J.; Apangu, T.; Kugeler, K.J.; Eisen, R.J.; Griffith, K.S.; Mead, P.S.; Schriefer, M.E. Two distinct Yersinia pestis populations causing plague among humans in the West Nile region of Uganda. PLoS Negl. Trop. Dis. 2016, 10, e0004360. [Google Scholar] [CrossRef]
- Andrianaivoarimanana, V.; Piola, P.; Wagner, D.M.; Rakotomanana, F.; Maheriniaina, V.; Andrianalimanana, S.; Chanteau, S.; Rahalison, L.; Ratsitorahina, M.; Rajerison, M. Trends in human plague, Madagascar, 1998–2016. Emerg. Infect. Dis. 2019, 25, 220. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Yang, G.; Zhang, Z.; Xia, L.; Liang, Y.; Tan, H.; He, J.; Xu, J.; Song, Z.; Li, W.; et al. Reemergence of human plague in Yunnan, China in. PLoS ONE 2018, 13, e0198067. [Google Scholar] [CrossRef] [Green Version]
- Inglesby, T.V.; Dennis, D.T.; Henderson, D.A.; Bartlett, J.G.; Ascher, M.S.; Eitzen, E.; Fine, A.D.; Friedlander, A.M.; Hauer, J.; Koerner, J.F.; et al. Plague as a Biological Weapon. JAMA 2000, 283, 2281–2290. [Google Scholar] [CrossRef]
- WHO. Health Aspects of Chemical and Biological Weapons; World Health Organization: Geneva, Switzeland, 1970; pp. 98–109. [Google Scholar]
- CDC. CDC, Plague. Available online: https://www.cdc.gov/plague/index.html (accessed on 15 March 2021).
- Sebbane, F.; Lemaître, N. Antibiotic Therapy of Plague: A Review. Biomolecules 2021, 11, 724. [Google Scholar] [CrossRef]
- Guiyoule, A. Transferable Plasmid-Mediated Resistance to Streptomycin in Clinical Isolate of Yersinia pestis. Emerg. Infect. Dis. 2001, 7, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Galimand, M.; Carniel, E.; Courvalin, P. Resistance of Yersinia pestis to Antimicrobial Agents. Antimicrob. Agents Chemother. 2006, 50, 3233–3236. [Google Scholar] [CrossRef] [Green Version]
- Lindler, L.E.; Fan, W.; Jahan, N. Detection of Ciprofloxacin-Resistant Yersinia pestis by Fluorogenic PCR Using the LightCycler. J. Clin. Microbiol. 2001, 39, 3649–3655. [Google Scholar] [CrossRef] [Green Version]
- Steinberger-Levy, I.; Shifman, O.; Zvi, A.; Ariel, N.; Beth-Din, A.; Israeli, O.; Gur, D.; Aftalion, M.; Maoz, S.; Ber, R. A rapid molecular test for deternining Yersinia pestis susceptibility to ciprofloxacin by the quantification of differntially expressed marker genes. Front. Microbiol. 2016, 7, 763. [Google Scholar] [CrossRef] [PubMed]
- Louie, A.; Heine, H.S.; VanScoy, B.; Eichas, A.; Files, K.; Fikes, S.; Brown, D.L.; Liu, W.; Kinzig-Schippers, M.; Sorgel, F.; et al. Use of an in vitro pharmacodynamic model to derive a moxifloxacin regimen that optimizes kill of Yersinia pestis and prevents emergence of resistance. Antimicrob. Agents Chemother. 2011, 55, 822–830. [Google Scholar] [CrossRef] [Green Version]
- Louie, A.; Deziel, M.R.; Liu, W.; Drusano, G.L. Impact of Resistance Selection and Mutant Growth Fitness on the Relative Efficacies of Streptomycin and Levofloxacin for Plague Therapy. Antimicrob. Agents Chemother. 2007, 51, 2661–2667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shifman, O.; Steinberger-Levy, I.; Aloni-Grinstein, R.; Gur, D.; Aftalion, M.; Ron, I.; Mamroud, E.; Ber, R.; Rotem, S. A Rapid Antimicrobial Susceptibility Test for Determining Yersinia pestis Susceptibility to Doxycycline by RT-PCR Quantification of RNA Markers. Front. Microbiol. 2019, 10, 754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLendon, M.K.; Apicella, M.A.; Allen, L.A. Francisella tularensis: Taxonomy, genetics, and Immunopathogenesis of a po-tential agent of biowarfare. Annu. Rev. Microbiol. 2006, 60, 167–185. [Google Scholar] [CrossRef] [Green Version]
- Maurin, M. Francisella tularensis as a potential agent of bioterrorism? Expert Rev. Anti-Infect. Ther. 2015, 13, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Egan, J.R.; Hall, I.M.; Leach, S. Modeling Inhalational Tularemia: Deliberate Release and Public Health Response. Biosecurity Bioterrorism Biodefense Strat. Pr. Sci. 2011, 9, 331–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. WHO Guidelines on Tularaemia. In Epidemic and Pandemic Alert and Response; WHO: Geneva, Switzerland, 2007. [Google Scholar]
- Fàbrega, A.; Madurga, S.; Giralt, E.; Vila, J. Mechanism of action of and resistance to quinolones. Microb. Biotechnol. 2009, 2, 40–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aloni-Grinstein, R.; Shifman, O.; Lazar, S.; Steinberger-Levy, I.; Maoz, S.; Ber, R. A rapid real-time quantitative PCR assay to determine the minimal inhibitory extracellular concentration of antibiotics against an intracellular Francisella tularensis Live Vaccine Strain. Front. Microbiol. 2015, 6, 1213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kassinger, S.J.; van Hoek, M.L. Genetic Determinants of Antibiotic Resistance in Francisella. Front. Microbiol. 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Loveless, B.M.; Yermakova, A.; Christensen, D.R.; Kondig, J.P.; Heine, H.S.; Wasieloski, L.P.; Kulesh, D.A. Identification of ciprofloxacin resistance by SimpleProbe™, High Resolution Melt and Pyrosequencing™ nucleic acid analysis in biothreat agents: Bacillus anthracis, Yersinia pestis and Francisella tularensis. Mol. Cell. Probes 2010, 24, 154–160. [Google Scholar] [CrossRef]
- Sutera, V.; Levert, M.; Burmeister, W.; Schneider, D.; Maurin, M. Evolution toward high-level fluoroquinolone resistance in Francisella species. J. Antimicrob. Chemother. 2014, 69, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Gestin, B.; Valade, E.; Thibault, F.; Schneider, D.; Maurin, M. Phenotypic and genetic characterization of macrolide resistance in Francisella tularensis subsp. holarctica biovar I. J. Antimicrob. Chemother. 2010, 65, 2359–2367. [Google Scholar] [CrossRef]
- Sutera, V.; Hennebique, A.; Lopez, F.; Fernandez, N.; Schneider, D.; Maurin, M. Genomic trajectories to fluoroquinolone resistance in Francisella tularensis subsp. holarctica live vaccine strain. Int. J. Antimicrob. Agents 2020, 56, 106153. [Google Scholar] [CrossRef]
- Biot, F.V.; Bachert, B.A.; Mlynek, K.D.; Toothman, R.G.; Koroleva, G.I.; Lovett, S.P.; Klimko, C.P.; Palacios, G.F.; Cote, C.K.; Ladner, J.T.; et al. Evolution of Antibiotic Resistance in Surrogates of Francisella tularensis (LVS and Francisella novicida): Effects on Biofilm Formation and Fitness. Front. Microbiol. 2020, 11, 593542. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria, 3rd ed.; CLSI Document M45-A, Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015; Volume 9. [Google Scholar]
- Mohammed, M.J.; Marston, C.K.; Popovic, T.; Weyant, R.S.; Tenover, F.C. Antimicrobial Susceptibility Testing of Bacillus anthracis: Comparison of Results Obtained by Using the National Committee for Clinical Laboratory Standards Broth Microdilution Reference and Etest Agar Gradient Diffusion Methods. J. Clin. Microbiol. 2002, 40, 1902–1907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheel, O.; Hoel, T.; Sandvik, T.; Berdal, B.P. Susceptibility pattern of Scandinavian Francisella tularensis isolates with regard to oral and parenteral antimi-crobial agents. APMIS 1993, 101, 33–36. [Google Scholar] [CrossRef]
- Ikaheimo, I.; Syrjälä, H.; Karhukorpi, J.; Schildt, R.; Koskela, M. In vitro antibiotic susceptibility of Francisella tularensis isolated from humans and animals. J. Antimicrob. Chemother. 2000, 46, 287–290. [Google Scholar] [CrossRef] [Green Version]
- Johansson, A.F.; Urich, S.K.; Chu, M.C.; Sjöstedt, A.; Tärnvik, A. In Vitro Susceptibility to Quinolones of Francisella tularensis subspecies tularensis. Scand. J. Infect. Dis. 2002, 34, 327–330. [Google Scholar] [CrossRef] [PubMed]
- Tomaso, H.; Al Dahouk, S.; Hofer, E.; Splettstoesser, W.D.; Treu, T.M.; Dierich, M.P.; Neubauer, H. Antimicrobial susceptibilities of Austrian Francisella tularensis holarctica biovar II strains. Int. J. Antimicrob. Agents 2005, 26, 279–284. [Google Scholar] [CrossRef]
- Del Blanco, N.G. In vitro susceptibility of field isolates of Francisella tularensis subsp. holarctica recovered in Spain to several antimicrobial agents. Res. Veter. Sci. 2004, 76, 195–198. [Google Scholar] [CrossRef] [PubMed]
- Urich, S.K.; Petersen, J.M. In Vitro Susceptibility of Isolates of Francisella tularensis Types A and B from North America. Antimicrob. Agents Chemother. 2008, 52, 2276–2278. [Google Scholar] [CrossRef] [Green Version]
- Valade, E.; Vaissaire, J.; Mérens, A.; Hernandez, E.; Gros, C.; Le Doujet, C.; Paucod, J.-C.; Thibault, F.M.; Durand, B.; Lapalus, M.; et al. Susceptibility of 71 French isolates of Francisella tularensis subsp. holarctica to eight antibiotics and accuracy of the Etest® method. J. Antimicrob. Chemother. 2008, 62, 208–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velinov, T.; Nicolova, M.; Kuzmanov, A. In vitro antimicrobioal susceptibility of Francisella tularensis isolated in Bulgaria. Probl. Inf. Parasit. Dis. 2011, 39, 7–9. [Google Scholar]
- Yeşilyurt, M.; Kilic, S.; Çelebi, B.; Çelik, M.; Gül, S.; Erdoğan, F.; Özel, G.; Kılıç, S. Antimicrobial susceptibilities of Francisella tularensis subsp. holarctica strains isolated from humans in the Central Anatolia region of Turkey. J. Antimicrob. Chemother. 2011, 66, 2588–2592. [Google Scholar] [CrossRef] [Green Version]
- Georgi, E.; Schacht, E.; Scholz, H.C.; Splettstoesser, W.D. Standardized broth microdilution antimicrobial susceptibility testing of Francisella tularensis subsp. holarctica strains from Europe and rare Francisella species. J. Antimicrob. Chemother. 2012, 67, 2429–2433. [Google Scholar] [CrossRef] [PubMed]
- Hotta, A.; Fujita, O.; Uda, A.; Sharma, N.; Tanabayashi, K.; Yamamoto, Y.; Yamada, A.; Morikawa, S. In vitro antibiotic susceptibility of Francisella tularensis isolates from Japan. Jpn. J. Infect. Dis. 2013, 66, 534–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilic, S.; Celebi, B.; Acar, B.; Ataş, M. In vitro susceptibility of isolates of Francisella tularensis from Turkey. Scand. J. Infect. Dis. 2012, 45, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Origgi, F.C.; Pilo, P.; Origgi, F.C.; Pilo, P. Francisella Tularensis Clades B.FTN002-00 and B.13 Are Associated with Distinct Pathology in the European Brown Hare (Lepus europaeus). Veter. Pathol. 2016, 53, 1220–1232. [Google Scholar] [CrossRef] [Green Version]
- Kreizinger, Z.; Makrai, L.; Helyes, G.; Magyar, T.; Erdélyi, K.; Gyuranecz, M. Antimicrobial susceptibility of Francisella tularensis subsp. holarctica strains from Hungary, Central Europe. J. Antimicrob. Chemother. 2012, 68, 370–373. [Google Scholar] [CrossRef] [Green Version]
- Caspar, Y.; Maurin, M. Francisella tularensis Susceptibility to Antibiotics: A Comprehensive Review of the Data Obtained In vitro and in Animal Models. Front. Cell. Infect. Microbiol. 2017, 7, 122. [Google Scholar] [CrossRef] [Green Version]
- Jonasson, E.; Matuschek, E.; Kahlmeter, G. The EUCAST rapid disc diffusion method for antimicrobial susceptibility testing directly from positive blood culture bottles. J. Antimicrob. Chemother. 2020, 75, 968–978. [Google Scholar] [CrossRef] [Green Version]
- Shifman, O.; Aminov, T.; Aftalion, M.; Gur, D.; Cohen, H.; Bar-David, E.; Cohen, O.; Mamroud, E.; Levy, H.; Aloni-Grinstein, R.; et al. Evaluation of the European Committee on Antimicrobial Susceptibility Testing Guidelines for Rapid Antimi-crobial Susceptibility Testing of Bacillus anthracis-, Yersinia pestis- and Francisella tularensis-Positive Blood Cultures. Microor. Ganisms. 2021, 9, 1055. [Google Scholar] [CrossRef]
- Pearce, T.W.; Powell, E.O. A Selective Medium for Bacillus anthracis. J. Gen. Microbiol. 1951, 5, 387–390. [Google Scholar] [CrossRef]
- Knisely, R.F. A Selective Medium for Bacillus Anthracis. Sel. Medium Bacillus Anthracis 1966, 92, 784–786. [Google Scholar] [CrossRef]
- Zasada, A.A. Detection and Identification of Bacillus anthracis: From Conventional to Molecular Microbiology Methods. Microorganism 2020, 8, 125. [Google Scholar] [CrossRef] [Green Version]
- Tomaso, H.; Bartling, C.; Al Dahouk, S.; Hagen, R.M.; Scholz, H.C.; Beyer, W.; Neubauer, H. Growth characteristics of Bacillus anthracis compared to other Bacillus spp. on the selective nutrient media Anthrax Blood Agar® and Cereus Ident Agar®. Syst. Appl. Microbiol. 2006, 29, 24–28. [Google Scholar] [CrossRef]
- Klee, S.; Nattermann, H.; Becker, S.; Urban-Schriefer, M.; Franz, T.; Jacob, D.; Appel, B. Evaluation of different methods to discriminate Bacillus anthracis from other bacteria of the Bacillus cereus group. J. Appl. Microbiol. 2006, 100, 673–681. [Google Scholar] [CrossRef]
- Dragon, D.; Rennie, R. Evaluation of spore extraction and purification methods for selective recovery of viable Bacillus anthracis spores. Lett. Appl. Microbiol. 2001, 33, 100–105. [Google Scholar] [CrossRef] [Green Version]
- Rohde, A.; Papp, S.; Feige, P.; Grunow, R.; Kaspari, O. Development of a novel selective agar for the isolation and detection of Bacillus anthracis. J. Appl. Microbiol. 2020, 129, 311–318. [Google Scholar] [CrossRef]
- Meyer, K.F.; Batchelder, A.P. Selective Mediums in the Diagnosis of Rodent Plague: Plague Studies. J. Infect. Dis. 1926, 39, 370–385. [Google Scholar] [CrossRef]
- Markenson, J.; Ben-Efraim, S. Oxgall Medium for Identification of Pasteurella Pestis. J. Bacteriol. 1963, 85, 1443–1445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, E.J. Selective Media for some Pasteurella Species. J. Gen. Microbiol. 1958, 19, 305–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ber, R.; Mamroud, E.; Aftalion, M.; Tidhar, A.; Gur, D.; Flashner, Y.; Cohen, S. Development of an Improved Selective Agar Medium for Isolation of Yersinia pestis. Appl. Environ. Microbiol. 2003, 69, 5787–5792. [Google Scholar] [CrossRef] [Green Version]
- Schiemann, D.A. Synthesis of a selective agar medium for Yersinia enterocolitica. Can. J. Microbiol. 1979, 25, 1298–1304. [Google Scholar] [CrossRef] [PubMed]
- Aleksic, S.; Bockemuhl, J. Yersinia and other Enterobacteriaceae. In Manual of Clinical Microbiology, 7th ed.; Murray, P.R., Baron, E.J., Pfaller, M.A., Tenover, F.C., Yolken, R.H., Eds.; Blackwell Publishing Ltd.: Oxford, UK, 1999; pp. 483–496. [Google Scholar]
- Aftalion, M.; Aloni-Grinstein, R.; Andrianaivoarimanana, V.; Iharisoa, A.L.; Shmaya, S.; Gur, D.; Laskar, O.; Rajerison, M.; Mamroud, E. Improved selective BIN agar for a better rate of Yersinia pestis isolation from primary clinical specimens in suspected Madagascar’s plague cases. J. Clin. Microbiol. 2021, 59. [Google Scholar] [CrossRef]
- Suna, G. Francisella tularensis isolation from various clinical specimens. Clin. Microbiol. Infert. 1996, 2, 233–235. [Google Scholar]
- Petersen, J.M.; Schriefer, M.E.; Gage, K.L.; Montenieri, J.A.; Carter, L.G.; Stanley, M.; Chu, M.C. Methods for Enhanced Culture Recovery of Francisella tularensis. Appl. Environ. Microbiol. 2004, 70, 3733–3735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, J.M.; Carlson, J.; Yockey, B.; Pillai, S.; Kuske, C.; Garbalena, G.; Pottumarthy, S.; Chalcraft, L. Direct isolation of Francisella spp. from environmental samples. Lett. Appl. Microbiol. 2009, 48, 663–667. [Google Scholar] [PubMed]
- Humrighouse, B.W.; Adcock, N.J.; Rice, E.W. Use of Acid Treatment and a Selective Medium to Enhance the Recovery of Francisella tularensis from Water. Appl. Environ. Microbiol. 2011, 77, 6729–6732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aloni-Grinstein, R.; Schuster, O.; Yitzhaki, S.; Aftalion, M.; Maoz, S.; Steinberger-Levy, I.; Ber, R. Isolation of Francisella tularensis and Yersinia pestis from Blood Cultures by Plasma Purification and Immunomagnetic Separation Accelerates Antibiotic Susceptibility Determination. Front. Microbiol. 2017, 8, 312. [Google Scholar] [CrossRef] [Green Version]
- Ber, R.; Aftalion, M.; Cohen, S.; Flashner, Y.; Mamroud, E.; Gur, D.; Steinberger-Levy, I.; Zahavy, E. Enrichment of Yersinia pestis from Blood Cultures Enables Rapid Antimicrobial Susceptibility Determination by Flow Cytometry. Chem. Biol. Pteridines Folates 2007, 603, 339–350. [Google Scholar] [CrossRef]
- Zahavy, E.; Fisher, M.; Bromberg, A.; Olshevsky, U. Detection of Frequency Resonance Energy Transfer Pair on Double-Labeled Microsphere and Bacillus anthracis Spores by Flow Cytometry. Appl. Environ. Microbiol. 2003, 69, 2330–2339. [Google Scholar] [CrossRef] [Green Version]
- Zahavy, E.; Heleg-Shabtai, V.; Zafrani, Y.; Marciano, D.; Yitzhaki, S. Application of Fluorescent Nanocrystals (q-dots) for the Detection of Pathogenic Bacteria by Flow-Cytometry. J. Fluoresc. 2009, 20, 389–399. [Google Scholar] [CrossRef]
- Zahavy, E.; Ber, R.; Gur, D.; Abramovich, H.; Freeman, E.; Maoz, S.; Yitzhaki, S. Application of Nanoparticles for the Detection and Sorting of Pathogenic Bacteria by Flow-Cytometry. Adv. Exp. Med. Biol. 2011, 733, 23–36. [Google Scholar] [CrossRef]
- Peruski, L.F.; Peruski, A.H. Rapid diagnostic assays in the genomic biology era: Detection and identification of infectious disease and biological weapon agents. Biotechnology 2003, 35, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Seiner, D.R.; Colburn, H.A.; Baird, C.; Bartholomew, R.A.; Straub, T.; Victry, K.; Hutchison, J.R.; Valentine, N.; Bruckner-Lea, C.J. Evaluation of the FilmArray(R) system for detection of Bacillus anthracis, Francisella tularensis and Yersinia pestis. J. Appl. Microbiol. 2013, 114, 992–1000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozińska, A.; Seweryn, P.; Sitkiewicz, I. A crash course in sequencing for a microbiologist. J. Appl. Genet. 2019, 60, 103–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buermans, H.P.; den Dunnen, J.T. Next generation sequencing technology: Advances and applications. Biochim. Biophys Acta 2014, 1842, 1932–1941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Dijk, E.L.; Auger, H.; Jaszczyszyn, Y.; Thermes, C. Ten years of next-generation sequencing technology. Trends Genet. 2014, 30, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Israeli, O.; Makdasi, E.; Cohen-Gihon, I.; Zvi, A.; Lazar, S.; Shifman, O.; Levy, H.; Gur, D.; Laskar, O.; Beth-Din, A. A rapid high-throughput sequencing-based approach for the identification of unknown bacterial pathogens in whole blood. Futur. Sci. OA 2020, 6, FSO476. [Google Scholar] [CrossRef]
- Israeli, O.; Cohen-Gihon, I.; Zvi, A.; Lazar, S.; Shifman, O.; Levy, H.; Tidhar, A.; Beth-Din, A. Rapid identification of unknown pathogens in environmental samples using a high-throughput sequencing-based approach. Heliyon 2019, 5, e01793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Didelot, X.; Bowden, R.; Wilson, D.; Peto, T.E.A.; Crook, D.W. Transforming clinical microbiology with bacterial genome sequencing. Nat. Rev. Genet. 2012, 13, 601–612. [Google Scholar] [CrossRef] [Green Version]
- Fricke, W.F.; Rasko, D.A. Bacterial genome sequencing in the clinic: Bioinformatic challenges and solutions. Nat. Rev. Genet. 2014, 15, 49–55. [Google Scholar] [CrossRef]
- Hendriksen, R.S.; Bortolaia, V.; Tate, H.; Tyson, G.H.; Aarestrup, F.; McDermott, P.F. Using Genomics to Track Global Antimicrobial Resistance. Front. Public Health 2019, 7, 242. [Google Scholar] [CrossRef] [Green Version]
- Matamoros, S.; Hendriksen, R.S.; Pataki, B.A.; Pakseresht, N.; Rossello, M.; Silvester, N.; Amid, C.; Aarestrup, F.M.; Koopmans, M.; Cochrane, G.; et al. Accelerating surveillance and research of antimicrobial resistance—An online repository for sharing of anti-microbial susceptibility data associated with whole-genome sequences. Microb. Genom. 2020, 6. [Google Scholar]
- McArthur, A.; Tsang, K.K. Antimicrobial resistance surveillance in the genomic age. Ann. N. Y. Acad. Sci. 2016, 1388, 78–91. [Google Scholar] [CrossRef]
- Bortolaia, V.; Kaas, R.S.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.F.; et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 2020, 75, 3491–3500. [Google Scholar] [CrossRef]
- Kim, J.; Greenberg, D.E.; Pifer, R.; Jiang, S.; Xiao, G.; Shelburne, S.A.; Koh, A.; Xie, Y.; Zhan, X. VAMPr: VAriant Mapping and Prediction of antibiotic resistance via explainable features and machine learning. PLoS Comput. Biol. 2020, 16, e1007511. [Google Scholar] [CrossRef]
- Hunt, M.; Mather, A.E.; Sánchez-Busó, L.; Page, A.J.; Parkhill, J.; Keane, J.A.; Harris, S.R. ARIBA: Rapid antimicrobial resistance genotyping directly from sequencing reads. Microb. Genom. 2017, 3, e000131. [Google Scholar] [CrossRef]
- Feldgarden, M.; Brover, V.; Haft, D.H.; Prasad, A.B.; Slotta, D.J.; Tolstoy, I.; Tyson, G.H.; Zhao, S.; Hsu, C.; McDermott, P.F.; et al. Validating the AMRFinder Tool and Resistance Gene Database by Using Antimicrobial Resistance Geno-type-Phenotype Correlations in a Collection of Isolates. Antimicrob. Agents Chemother. 2019, 63, e00483-19. [Google Scholar] [CrossRef] [Green Version]
- Doster, E.; Lakin, S.M.; Dean, C.J.; Wolfe, C.; Young, J.G.; Boucher, C.; Belk, K.E.; Noyes, N.R.; Morley, P.S. MEGARes 2.0: A database for classification of antimicrobial drug, biocide and metal resistance determinants in metagenomic sequence data. Nucleic Acids Res. 2020, 48, D561–D569. [Google Scholar] [CrossRef]
- Gargis, A.S.; Cherney, B.; Conley, A.B.; McLaughlin, H.P.; Sue, D. Rapid Detection of Genetic Engineering, Structural Variation, and Antimicrobial Resistance Markers in Bacterial Biothreat Pathogens by Nanopore Sequencing. Sci. Rep. 2019, 9, 13501–13514. [Google Scholar] [CrossRef]
- Chen, Y.; Succi, J.; Tenover, F.C.; Koehler, T.M. Beta-lactamase genes of the penicillin-susceptible Bacillus anthracis Sterne strain. J. Bacteriol. 2003, 185, 823–830. [Google Scholar] [CrossRef] [Green Version]
- Nuding, S.; Zabel, L.T. Detection, identification, and susceptibility testing of bacteria by flow cytometry. J. Bacteriol. Parasitol. 2013, 5. [Google Scholar] [CrossRef] [Green Version]
- Müller, S.; Nebe-Von-Caron, G. Functional single-cell analyses: Flow cytometry and cell sorting of microbial populations and communities. FEMS Microbiol. Rev. 2010, 34, 554–587. [Google Scholar] [CrossRef] [Green Version]
- Nebe-Von-Caron, G.; Stephens, P.; Hewitt, C.; Powell, J.; Badley, R. Analysis of bacterial function by multi-colour fluorescence flow cytometry and single cell sorting. J. Microbiol. Methods 2000, 42, 97–114. [Google Scholar] [CrossRef]
- Eran, Z. Spectral Intensity Ratio (SIR) Analysis for Rapid Live Microbial Enumeration. U.S. Patent Application No 15/542,922; pending, EP3245295, 14 August 2019. [Google Scholar]
- Ingber, G.; Ben-David, M.; Fridman, M.; Gluckman, Y.; Gohman, D.; Munz, O.H.; Shinderman, A.; Zahavy, E. Rapid Antimicrobial Susceptibility Testing based on A Unique Spectral Intensity Ratio Analysis via Single Fluorescence Membrane Dye Staining and Flow Cytometry. U.S. Patent No 10,995,357, 4 May 2021. [Google Scholar]
- Zahavy, E.; Rotem, S.; Gur, D.; Aloni-Grinstein, R.; Aftalion, M.; Ber, R. Rapid Antibiotic Susceptibility Determination for Yersinia pestis Using Flow Cytometry Spectral Intensity Ratio (SIR) Fluorescence Analysis. J. Fluoresc. 2018, 28, 1151–1161. [Google Scholar] [CrossRef] [Green Version]
- Khazaei, T.; Barlow, J.; Schoepp, N.; Ismagilov, R.F. RNA markers enable phenotypic test of antibiotic susceptibility in Neisseria gonorrhoeae after 10 minutes of ciprofloxacin exposure. Sci. Rep. 2018, 8, 11606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fredborg, M.; Andersen, K.R.; Jørgensen, E.; Droce, A.; Olesen, T.; Jensen, B.B.; Rosenvinge, F.S.; Sondergaard, T.E. Real-Time Optical Antimicrobial Susceptibility Testing. J. Clin. Microbiol. 2013, 51, 2047–2053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLaughlin, H.P.; Gargis, A.; Michel, P.; Sue, D.; Weigel, L.M. Optical Screening for Rapid Antimicrobial Susceptibility Testing and for Observation of Phenotypic Diversity among Strains of the Genetically Clonal Species Bacillus anthracis. J. Clin. Microbiol. 2017, 55, 959–970. [Google Scholar] [CrossRef] [Green Version]
- Bugrysheva, J.V.; Lascols, C.; Sue, D.; Weigel, L.M. Rapid Antimicrobial Susceptibility Testing of Bacillus anthracis, Yersinia pestis, and Burkholderia pseu-domallei by Use of Laser Light Scattering Technology. J. Clin. Microbiol. 2016, 54, 1462–1471. [Google Scholar] [CrossRef] [Green Version]
- Chu, M.C. Laboratory Manual Pf Plague Diagnostic Tests; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2000; pp. 1–19. [Google Scholar]
- Abshire, T.G.; Brown, J.E.; Ezzell, J.W.; Mandal, P.; Banerjee, U.; Casadevall, A.; Nosanchuk, J.D. Production and Validation of the Use of Gamma Phage for Identification of Bacillus anthracis. J. Clin. Microbiol. 2005, 43, 4766–4772. [Google Scholar] [CrossRef] [Green Version]
- Schofield, D.A.; Molineux, I.J.; Westwater, C. Rapid identification and antibiotic susceptibility testing of Yersinia pestis using bioluminescent reporter phage. J. Microbiol. Methods 2012, 90, 80–82. [Google Scholar] [CrossRef] [Green Version]
- Schofield, D.A.; Sharp, N.J.; Vandamm, J.; Molineux, I.J.; Spreng, K.A.; Rajanna, C.; Westwater, C.; Stewart, G.C. Bacillus anthracis diagnostic detection and rapid antibiotic susceptibility determination using ’biolumines-cent’ reporter phage. J. Microbiol. Methods 2013, 95, 156–161. [Google Scholar] [CrossRef]
- Vandamm, J.P.; Rajanna, C.; Sharp, N.J.; Molineux, I.J.; Schofield, D.A. Rapid Detection and Simultaneous Antibiotic Susceptibility Analysis of Yersinia pestis Directly from Clinical Specimens by Use of Reporter Phage. J. Clin. Microbiol. 2014, 52, 2998–3003. [Google Scholar] [CrossRef] [Green Version]
- Moses, S.; Aftalion, M.; Mamroud, E.; Rotem, S.; Steinberger-Levy, I. Reporter-Phage-Based Detection and Antibiotic Susceptibility Testing of Yersinia pestis for a Rapid Plague Outbreak Response. Microorganism 2021, 9, 1278. [Google Scholar] [CrossRef]
- Aloni-Grinstein, R.; Shifman, O.; Gur, D.; Aftalion, M.; Rotem, S. MAPt: A Rapid Antibiotic Susceptibility Testing for Bacteria in Environmental Samples as a Means for Bioterror Preparedness. Front. Microbiol. 2020, 11, 592194. [Google Scholar] [CrossRef] [PubMed]
- Rotem, S.; Shifman, O.; Aftalion, M.; Gur, D.; Aminov, T.; Aloni-Grinstein, R. Rapid antibiotic susceptibility testing of Tier-1 agents Bacillus anthracis, Yersinia pestis, and Francisella tularensis directly from whole blood samples. Front. Microbiol. 2021, 12, 1822. [Google Scholar] [CrossRef]
- Sutera, V.; Caspar, Y.; Boisset, S.; Maurin, M. A new dye uptake assay to test the activity of antibiotics against intracellular Francisella tularensis. Front. Cell. Infect. Microbiol. 2014, 4, 36. [Google Scholar] [CrossRef]
Available ASTs for Bioterror Bacterial Agents (B. anthracis, Y. pestis, and F. tularensis) | Process Features | Sample Type | |||||||
---|---|---|---|---|---|---|---|---|---|
Isolation/Enrichment Steps | Bacteria Concentration Dependence | Preceding Preparation Time | AST Time | Total Time (h) | Bacterial Culture | Clinical (Blood, Blood Culture) | Environmental | ||
Genotypic | High-throughput sequencing [84,85] | DNA extraction | Yes (min. 1 ng DNA) | 1 h | 10–16 h | 11–17 h * | + | + Blood, blood culture | + |
Phenotypic | Broth medium dilution [37] | Blood culture enrichment/isolation from environment | Yes | 24–48 h | 24–48 h | 48–96 h | + | + | + |
Molecular mRNA based [21,24] | Blood culture enrichment/isolation from environment | Yes | 18 h | Y. pestis- 7 h | ~25 h | + | + Blood culture | N.D | |
Live/Dead fluorescent detection (SIR) [103] | Yet to be determined | No (Minimal 5 × 104) | Yet to be determined | Y. pestis- 7 h | Yet to be determined | + | N.D | N.D | |
Optical and microscopic screening [106] | Yet to be determined | Yes | Yet to be determined | B. anthracis 4 h | Yet to be determined | + | N.D | N.D | |
Reporter-phage [111,112,113] | No need | No (Minimal 102 cfu/mL) | No need | B. anthracis 80–160 min Y. pestis 5–16 h | B. anthracis 80–160 min Y. pestis 5–16 h | + | + Blood, blood culture | + | |
MAPt [114,115] | No need | No (Minimal 5 × 102 cfu/mL) | No need | B. anthracis −7 h, Y. pestis 13 h, F. tularemia 17 h | B. anthracis −7 h, Y. pestis 13 h, F. tularemia 17 h | + | + Blood, blood culture | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rotem, S.; Steinberger-Levy, I.; Israeli, O.; Zahavy, E.; Aloni-Grinstein, R. Beating the Bio-Terror Threat with Rapid Antimicrobial Susceptibility Testing. Microorganisms 2021, 9, 1535. https://doi.org/10.3390/microorganisms9071535
Rotem S, Steinberger-Levy I, Israeli O, Zahavy E, Aloni-Grinstein R. Beating the Bio-Terror Threat with Rapid Antimicrobial Susceptibility Testing. Microorganisms. 2021; 9(7):1535. https://doi.org/10.3390/microorganisms9071535
Chicago/Turabian StyleRotem, Shahar, Ida Steinberger-Levy, Ofir Israeli, Eran Zahavy, and Ronit Aloni-Grinstein. 2021. "Beating the Bio-Terror Threat with Rapid Antimicrobial Susceptibility Testing" Microorganisms 9, no. 7: 1535. https://doi.org/10.3390/microorganisms9071535
APA StyleRotem, S., Steinberger-Levy, I., Israeli, O., Zahavy, E., & Aloni-Grinstein, R. (2021). Beating the Bio-Terror Threat with Rapid Antimicrobial Susceptibility Testing. Microorganisms, 9(7), 1535. https://doi.org/10.3390/microorganisms9071535