Factors Associated with Prolonged Hospital Length of Stay in Adults with Imported Falciparum Malaria—An Observational Study from a Tertiary Care University Hospital in Berlin, Germany
Abstract
:1. Introduction
Criterion | Definition |
---|---|
Hyperparasitaemia | >10% parasitized erythrocytes 1 |
Jaundice | Plasma or serum bilirubin >3 mg/dL with parasitaemia > 100,000/µL |
Acute pulmonary oedema (APO) | Radiologically confirmed and/or oxygen saturation on room air < 92% with respiratory rate >30/min. |
Acute respiratory distress syndrome (ARDS) | Lung injury within 1 week of admission with progression of respiratory symptoms; bilateral opacities on chest imaging not explained by other lung pathologies; respiratory failure not explained by heart failure or volume overload; PaO2/FiO2 ≤ 300 mmHg under a minimum PEEP of 5 cmH2O (applied by non-invasive or invasive ventilation) |
Decompensated shock | Systolic blood pressure < 80 mmHg with need for norepinephrine dosages >0.05 µg/kg/min. to maintain mean arterial blood pressure > 65 mmHg despite adequate hydration |
Significant bleeding | Including recurrent or prolonged bleeding from the nose, gums, venepuncture sites, haematemesis, or malaena |
Coma | Glasgow coma scale (GCS) < 11 |
Renal impairment | Plasma or serum creatinine >3 mg/dL or blood urea > 120 mg/dL |
Metabolic acidosis | Base deficit >8 mmol/L and/or bicarbonate <15 mmol/L and/or venous plasma lactate ≥5 mmol/L or ≥45 mg/dL |
Severe malarial anaemia | Haemoglobin level < 7 g/dL and/or haematocrit < 20% with parasitaemia > 0.5% |
Hypoglycaemia | Blood glucose level < 40 mg/dL |
Convulsions | >2 convulsions within 24 h |
2. Materials and Methods
2.1. Data Collection
2.2. Clinical Management
2.3. Outcome Variable
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Length of Hospital Stay
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Substance | Dosage | Duration | Number (%) of Cases Treated | ||
---|---|---|---|---|---|
Total | Uncomplicated | Severe | |||
Artemisinin derivates | |||||
Artesunate | Loading dose of 2.4 mg/kg IBW intravenously | 2.4 mg/kg IBW 12, 24, 48 and 72 h after loading dose When able to take oral medication patients received a full course of oral artemether/lumefantrine or dihydroartemisinin/piperaquine | 27 (5.0) | 7 (1.3) | 20 (3.7) |
Artemether/Lumefantrine | 4 tablets of 20/120 mg orally | 0, 8, 24, 36, 48, and 60 h after diagnosis | 275 (51.4) | 264 (49.3) | 11 (2.0) |
Dihydroartemisinin/Piperaquine | 4 tablets of 320/40 mg orally | 0, 24, and 48 h after diagnosis | 88 (16.5) | 86 (16.1) | 2 (0.4) |
Other regimens | |||||
Quinine/Doxycyline | 20 mg quinine hydrochloride (16.4 mg base)/kg IBW loading dose intravenously Doxycycline 100 mg intravenously twice daily | 10 mg quinine hydrochloride/kg IBW thrice daily starting 8 h after loading dose. After 48 h, 10 mg/kg IBW twice daily | 61 (11.4) | 43 (8.0) | 18 (3.4) |
Quinine/Clindamycin | 20 mg quinine hydrochloride (16.4 mg base)/kg IBW loading dose intravenously Clindamycine: 600–900 mg IV thrice daily intravenously | 10 mg quinine hydrochloride/kg IBW thrice daily starting 8 h after loading dose. After 48 h, 10 mg/kg IBW twice daily | 7 (1.3) | 3 (0.6) | 4 (0.8) |
Mefloquine | 250 mg orally | Initial dose 750 mg, followed by 500 mg 12 h and 250 mg 24 h after diagnosis, respectively | 24 (4.5) | 24 (4.5) | 0 (0.0) |
Atovaquone/Proguanil | 4 tablets of 250/100 mg orally | 0, 24, and 48 h after diagnosis | 53 (9.9) | 53 (9.9) | 0 (0.0) |
References
- Miller, L.H.; Ackerman, H.C.; Su, X.Z.; Wellems, T.E. Malaria biology and disease pathogenesis: Insights for new treatments. Nat. Med. 2013, 19, 156–167. [Google Scholar] [CrossRef] [Green Version]
- Bernabeu, M.; Smith, J.D. EPCR and Malaria Severity: The Center of a Perfect Storm. Trends Parasitol. 2017, 33, 295–308. [Google Scholar] [CrossRef] [Green Version]
- WHO. Guidelines for the Treatment of Malaria, 3rd ed.; WHO: Geneva, Switzerland, 2014; Volume 19, pp. 7–131. [Google Scholar]
- Dondorp, A.; Nosten, F.; Stepniewska, K.; Day, N.; White, N. Artesunate versus quinine for treatment of severe falciparum malaria: A randomised trial. Lancet 2005, 366, 717–725. [Google Scholar] [PubMed] [Green Version]
- Dondorp, A.M.; Lee, S.J.; Faiz, M.A.; Mishra, S.; Price, R.; Tjitra, E.; Than, M.; Htut, Y.; Mohanty, S.; Yunun, E.B.; et al. The relationship between age and the manifestations of and mortality associated with severe malaria. Clin. Infect. Dis. 2008, 47, 151–157. [Google Scholar] [CrossRef] [Green Version]
- Keene, C.M.; Dondorp, A.C.; Crawley, J.; Ohuma, E.O.; Mukaka, M. A competing-risk approach for modeling length of stay in severe malaria patients in South-East Asia and the implications for planning of hospital services. Clin. Infect. Dis. 2018, 67, 1053–1062. [Google Scholar] [CrossRef] [PubMed]
- Ishioka, H.; Plewes, K.; Pattnaik, R.; Kingston, H.W.; Leopold, S.J.; Herdman, M.T.; Mahanta, K.; Mohanty, A.; Maude, R.J.; White, N.J.; et al. Associations between restrictive fluid management and renal function and tissue perfusion in adults with severe falciparum malaria: A prospective observational study. J. Infect. Dis. 2019, 221, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Kurth, F.; Develoux, M.; Mechain, M.; Malvy, D.; Clerinx, J.; Antinori, S.; Gjørup, I.E.; Gascon, J.; Mørch, K.; Nicastri, E.; et al. Severe malaria in Europe: An 8-year multi-centre observational study. Malar J. 2017, 16, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lebut, J.M.; Mourvillier, B.; Argy, N.; Dupuis, C.; Vinclair, C.; Radjou, A.; de Montmollin, E.; Sinnah, F.; Patrier, J.; Bihan, C.L.; et al. Changes in the clinical presentation and outcomes of patients treated for severe malaria in a referral French university intensive care unit from 2004 to 2017. Ann. Intensive Care 2020, 10, 21. [Google Scholar] [CrossRef] [Green Version]
- Phillips, A.; Bassett, P.; Zeki, S.; Newman, S.; Pasvol, G. Risk factors for severe disease in adults with falciparum malaria. Clin. Infect. Dis. 2009, 48, 871–878. [Google Scholar] [CrossRef]
- McHugh, M.D.; Aiken, L.H.; Sloane, D.M.; Windsor, C.; Douglas, C.; Yates, P. Effects of nurse-to-patient ratio legislation on nurse stuffing and patient mortality, readmissions, and length of stay: A prospective study in a panel of hospitals. Lancet 2021, 397, 1905–1913. [Google Scholar] [CrossRef]
- Blumenthal, D.; Fowler, E.J.; Abrams, M.; Collins, S.R. Covid-19-Implications for the helath care system. N. Engl. J. Med. 2020, 383, 1483–1488. [Google Scholar] [CrossRef] [PubMed]
- Emanuel, E.J.; Persad, G.; Upshur, R.; Thome, B.; Parker, M.; Glickman, A.; Zhang, C.; Boyle, C.; Smith, M.; Phillips, J.P. Fair allocation of scarce medical resources in the time of Covid-19. N. Engl. J. Med. 2020, 382, 2049–2055. [Google Scholar] [CrossRef] [PubMed]
- Ullrich, A.; Schranz, M.; Rexroth, U.; Hamouda, O.; Schaade, L.; Diercke, M.; Boender, T.S.; Robert Koch’s Infectious Disease Surveillance Group. Impact of the COVID-19 pandemic and associated non-pharmaceutical interventions on other notifiable infectious diseases in Germany: An analysis of national surveillance data during week 1-2016-week-32-2020. Lancet Reg. Health-Eur. 2021, 15, 27. [Google Scholar]
- Sundararajan, V.; Henderson, T.; Perry, C.; Muggivan, A.; Quan, H.; Ghali, W.A. New ICD-10 version of the Charlson comorbidity index predicted in-hospital mortality. J. Clin. Epidemiol. 2004, 57, 1288–1294. [Google Scholar] [CrossRef]
- Hoffmeister, B.; Aguilar Valdez, A.D. Hypertension is associated with an increased risk for severe imported falciparum malaria: A tertiary care hospital based observational study from Berlin, Germany. Malar. J. 2019, 18, 410. [Google Scholar] [CrossRef] [Green Version]
- Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S. Acute respiratory distress syndrome: The Berlin Definition. JAMA 2012, 307, 2526–2533. [Google Scholar]
- Hoffmeister, B.; Aguilar Valdez, A.D. ‘Run the dry’: A retrospective experience with a restrictive fluid management strategy in severe imported falciparum malaria from a tertiary care university hospital in Berlin, Germany. Trans. R. Soc Trop. Med. Hyg. 2021, 115, 520–530. [Google Scholar] [CrossRef]
- Verburg, I.W.M.; de Keizer, N.F.; de Jonge, E.; Peek, N. Comparison of regresson methods for modeling intensive care length of stay. PLoS ONE 2014, 9, e109684. [Google Scholar]
- Thabane, L.; Mbuagbaw, L.; Zhang, S.; Samaan, Z.; Marcucci, M.; Ye, C.; Thabane, M.; Giangregorio, L.; Dennis, B.; Kosa, D.; et al. A tutorial on sensitivity analyses in clinical trials: The what, why, when and how. BMC Med. Res. Metodol. 2013, 13, 92. [Google Scholar] [CrossRef] [Green Version]
- Heinze, G.; Wallisch, C.; Dunkler, D. Variable selection—A review and recommendations for the practicing statistician. Biomed. J. 2017, 60, 431–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z. Variable selection with stepwise and best subset approaches. Ann. Transl. Med. 2016, 4, 136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dondorp, A.M.; Ince, C.; Charunwatthana, P.; Hanson, J.; Kuijen, A.V.; Faiz, M.A.; Rahman, M.R.; Hasan, M.; Yunus, E.B.; Ghose, A.; et al. Direct in vivo assessment of microcirculatory dysfunction in severe falciparum malaria. J. Infect. Dis. 2008, 197, 79–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, T.E.; Fu, W.J.; Carr, R.A.; Whitten, R.O.; Mueller, J.G.; Fosiko, N.G.; Lewallen, S.; Liomba, N.G.; Molyneux, M.E. Differentiating the pathologies of cerebral malaria by postmortem parasite counts. Nat. Med. 2004, 10, 143–145. [Google Scholar] [CrossRef] [PubMed]
- Hanson, J.P.; Lee, S.J.; Mohanty, S.; Faiz, M.A.; Anstey, N.M.; Charunwatthana, P.K.; Yunus, E.B.; Mishra, S.K.; Tjitra, E.; Price, R.N.; et al. A simple score to predict the outcome of severe malaria in adults. Clin. Infect. Dis. 2015, 50, 679–685. [Google Scholar] [CrossRef]
- Moxon, C.A.; Gibbins, M.P.; McGuinness, D.; Milner, D.A.; Marti, M. New insights into malaria pathogenesis. Annu. Rev. Pathol. 2020, 15, 315–343. [Google Scholar] [CrossRef] [Green Version]
- Plewes, K.; Kingston, H.W.F.; Ghose, A.; Maude, R.J.; Herdman, M.T.; Leopold, S.J.; Ishioka, H.; Hasan, M.U.; Haider, S.; Alam, S.; et al. Cell-free hemoglobin mediated oxidative stress is associated with acute kidney injury and renal replacement therapy in severe falciparum malaria: An observational study. BMC Infect. Dis. 2017, 17, 313. [Google Scholar] [CrossRef]
- Plewes, K.; Turner, G.D.H.; Dondorp, A.M. Pathophysiology, clinical presentation, and treatment of coma and acute kidney injury complicating falciparum malaria. Curr. Opin. Infect. Dis. 2018, 31, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Trang, T.T.; Phu, N.H.; Vinh, H.; Hien, T.T.; Cuong, B.M.; Chau, T.T.H.; Mai, N.T.H.; Waller, D.J.; White, N.J. Acute renal failure in patients with severe falciparum malaria. Clin. Infect. Dis. 1992, 15, 874–880. [Google Scholar] [CrossRef] [PubMed]
- Yeo, T.W.; Lampah, D.A.; Gitawati, R.; Tjitra, E.; Kenangalem, E.; Piera, K.; Price, R.N.; Duffull, S.B.; Celermajer, D.S.; Anstey, N.M. Angiopoietin-2 is associated with decreased endothelial nitric oxide and poor clinical outcome in severe falciparum malaria. Proc. Natl. Acad. Sci. USA 2008, 105, 17097–17102. [Google Scholar] [CrossRef] [Green Version]
- Moxon, C.A.; Chisala, N.V.; Wassmer, S.C.; Taylor, T.E.; Seydel, K.B.; Molyneux, M.E.; Faragher, B.; Kennedy, N.; Toh, C.-H.; Craig, A.G.; et al. Persistent endothelial activation and inflammation after Plasmodium falciparum Infection in Malawian children. J. Infect. Dis. 2014, 209, 610–615. [Google Scholar] [CrossRef] [Green Version]
- Hanson, J.P.; Lam, S.W.; Mohanty, S.; Alam, S.; Pattnaik, R.; Mahanta, K.C.; Hasan, M.U.; Charunwatthana, P.; Mishra, S.K.; Day, N.P.J.; et al. Fluid resuscitation of adults with severe falciparum malaria: Effects on Acid-base status, renal function, and extravascular lung water. Crit. Care Med. 2013, 41, 972–981. [Google Scholar] [CrossRef] [PubMed]
- Taylor, W.R.; Hanson, J.P.; Turner, G.D.; White, N.J.; Dondorp, A.M. Respiratory manifestations of malaria. Chest 2012, 142, 492–505. [Google Scholar] [CrossRef]
- Marelli, M.T.; Brotto, M. The effect of malaria and anti-malarial drugs on skeletal and cardiac muscles. Malar. J. 2016, 15, 524. [Google Scholar] [CrossRef] [Green Version]
- Hermans, G.; De Jonghe, B.; Bruyninckx, F.; Van den Berghe, G. Clinical review: Critical illness polyneuropathy and myopathy. Crit. Care 2008, 12, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Njim, T.; Tanyitiku, B.S. Prognostic models for the clinical management of malaria and its complications: A systematic review. BMJ Open 2019, 9, e030793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wyss, K.; Wangdahl, A.; Vesterlund, M.; Hammar, U.; Dashti, S.; Naucler, P.; Färnert, A. Obesity and diabetes as risk factors for severe Plasmodium falciparum malaria: Results from a Swedish nationwide study. Clin. Infect. Dis. 2017, 65, 949–958. [Google Scholar] [CrossRef]
- Luthi, B.; Schlagenhauf, P. Risk factors associated with malaria deaths in travellers: A literature review. Travel Med. Infect. Dis. 2015, 13, 48–60. [Google Scholar] [CrossRef]
- Kurth, F.; Develoux, M.; Mechain, M.; Clerinx, J.; Antinori, S.; Gjørup, I.E.; Gascon, J.; Mørch, K.; Nicastri, E.; Ramharter, M.; et al. Intravenous artesunate reduces parasite clearance time, duration of intensive care, and hospital treatment in patients with severe malaria in Europe: The TropNet Severe Malaria study. Clin. Infect. Dis. 2015, 61, 1441–1444. [Google Scholar] [CrossRef] [Green Version]
- Hanson, J.P.; Hasan, M.U.; Royakkers, A.A.; Alam, S.; Charunwatthana, P.; Maude, R.J.; Douthwaite, S.T.; Yunus, E.B.; Mantha, M.L.; Schultz, M.J.; et al. Laboratory prediction of the requirement for renal replacement in acute falciparum malaria. Malar. J. 2011, 10, 217. [Google Scholar] [CrossRef] [Green Version]
- The National Heart, Lung, and Blood Institute Acute respiratory Distress Syndrom (ARDS) Clinical trials Network. Comparison of two fluid-management strategies in acute lung injury. N. Engl. J. Med. 2006, 354, 2564–2575. [Google Scholar] [CrossRef]
- Bellani, G.; Laffey, J.G.; Pham, T.; Madotto, F.; Fan, E.; Brochard, L.; Esteban, A.; GatTinoni, L.; Bumbasirevic, V.; Piquilloud, L.; et al. Noninvasive Ventilation of Patients with Acute Respiratory Distress Syndrome. Insights from the LUNG SAFE Study. Am. J. Respir. Crit. Care Med. 2017, 195, 67–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graca, L.A.; Gomez Abreu, I.; Santos, A.S.; Graca, L.; Dias, P.F.; Santos, M.L. Descriptive acute respiratory distress syndrome (ARDS) in adults with imported severe Plasmodium falciparum malaria: A 10 year-study in a Portuguese tertiary care hospital. PLoS ONE 2020, 15, e0235437. [Google Scholar] [CrossRef] [PubMed]
Covariate | Whole Group (n = 535) | Uncomplicated Malaria (n = 480) | Severe Malaria (n = 55) | p Value 1 |
---|---|---|---|---|
Demographics and history | ||||
Age in years 2 (total n 3) | 535 | 480 | 55 | 0.121 |
Median and IQR | 37 (29;46) | 37(29;45) | 38 (30; 51) | |
Gender 4 (total n) | 535 | 480 | 55 | 0.018 |
Females, n (%) | 168 (31.4) | 143 (29.8) | 25 (45.5) | |
Males, n (%) | 367 (68.6) | 337 (70.2) | 30 (54.5) | |
Origin (total n) | 535 | 480 | 55 | 0.409 |
From country, where malaria is endemic, n (%) | 329 (61.5) | 298 (62.1) | 31 (56.4) | |
From country, where malaria is not endemic, n (%) | 206 (38.5) | 182 (37.9) | 24 (43.6) | |
History of previous malaria episodes (total n) | 535 | 480 | 55 | 0.158 |
≥1 episode, n (%) | 163 (30.5) | 149 (31.0) | 12 (21.8) | |
no previous episodes, n (%) | 372 (69.5) | 331 (69.0) | 43 (78.2) | |
Use of chemoprophylaxis (total n) 5 | 441 | 394 | 47 | 0.733 |
Regular use, n (%) | 15 (3.4) | 13 (3.3) | 2 (4.3) | |
Irregular/no use, n (%) | 426 (96.6) | 381 (96.7) | 45 (95.7) | |
Destination (total n) 6 | 523 | 468 | 55 | <0.001 |
WHO African region, n (%) | 507 (96.8) | 459 (98.1) | 48 (87.3) | |
WHO Southeast Asian region, n (%) | 16 (3.1) | 9 (1.9) | 7 (12.7) | |
Duration from symptom onset to hospital admission, days (total n) | ||||
Median and IQR | 455 | 404 | 51 | 0.015 |
4 (3;6) | 4 (3;6) | 5 (3;7) | ||
Pregnancy (total n) | 168 | 143 | 25 | 0.577 |
Pregnant, n (%) | 11 (6.5) | 10 (7.0) | 1 (4.0) | |
Co-morbidities | ||||
CA-CCI (total n) | 535 | 480 | 55 | <0.001 |
Median and IQR | 0 (0;1) | 0 (0;1) | 5 (3;7) | |
Hypertension (total n) | 535 | 480 | 55 | 0.017 |
n (%) | 43 (8.0) | 34 (7.1) | 9 (16.4) | |
Diabetes (total n) | 535 | 480 | 55 | 0.767 |
n (%) | 16 (3.0) | 14 (2.9) | 2 (3.6) | |
HIV infection (total n) | 535 | 480 | 55 | 0.003 |
n (%) | 15 (2.8) | 10 (2.1) | 5 (9.1) | |
Chronic pulmonary disease (total n) | 535 | 480 | 55 | 0.54 |
n (%) | 13 (2.4) | 11 (2.3) | 2 (3.6) | |
Cardiovascular disease (total n) | 535 | 480 | 55 | <0.001 |
n (%) | 12 (2.2) | 5 (1.0) | 7 (12.7) | |
Hepatitis B and/or C (total n) | 535 | 480 | 55 | 0.383 |
n (%) | 11 (2.1) | 9 (1.9) | 2 (3.6) | |
Chronic renal disease (total n) | 535 | 480 | 55 | 0.038 |
n (%) | 10 (1.9) | 7 (1.5) | 3 (5.5) | |
Malignancy (total n) | 535 | 480 | 55 | 0.003 |
n (%) | 9 (1.7) | 6 (1.3) | 3 (5.5) | |
Obesity 7 (total n) | 248 | 204 | 44 | 0.035 |
n (%) | 24 (9.6) | 16 (7.8) | 8 (18.2) | |
BMI in kg/m2 (total n) | 248 | 204 | 44 | 0.793 |
Median and IQR | 24.5 (22.4;27.2) | 24.5 (22.3; 27.3) | 24.4 (22.3;26.1) | |
Severe malaria | ||||
≥1 criterion (total n) | 535 | 480 | 55 | <0.001 |
n (%) | 55 (10.3) | 0 (0.0) | 55 (100.0) | |
No. of complications on admission (total n) | 535 | 480 | 55 | - |
Median and IQR | 0 (0;0) | 0 (0;0) | 1 (1;3) | |
Acidosis (total n) | 535 | 480 | 55 | <0.001 |
n (%) | 7 (1.3) | 0 (0.0) | 7 (12.7) | |
Haemoglobinuria (total n) | 535 | 480 | 55 | <0.001 |
n (%) | 15 (2.8) | 3 (0.6) | 11 (20.0) | |
Renal impairment (total n) | 535 | 480 | 55 | <0.001 |
n (%) | 13 (2.4) | 0 (0.0) | 13 (23.6) | |
APO (total n) | 535 | 480 | 55 | <0.001 |
n (%) | 8 (1.5) | 0 (0.0) | 8 (14.5) | |
ARDS (total n) | 535 | 480 | 55 | <0.001 |
n (%) | 5 (0.9) | 0 (0.0) | 5 (9.1) | |
Shock (total n) | 535 | 480 | 55 | <0.001 |
n (%) | 12 (2.2) | 0 (0.0) | 12 (21.8) | |
Coma (total n) | 535 | 480 | 55 | <0.001 |
n (%) | 7 (1.3) | 0 (0.0) | 7 (12.7) | |
Seizures (total n) | 535 | 480 | 55 | - |
n (%) | 0 (0) | 0 (0.0) | 0 (0.0) | |
Hyperparasitemia (>10%) (total n) | 523 | 468 | 55 | <0.001 |
n (%) | 20 (3.8) | 0 (0.0) | 20 (36.4) | |
Laboratory findings | ||||
Mixed malaria 8 (total n) | 523 | 468 | 55 | 0.127 |
n (%) | 19 (3.6) | 15 (3.2) | 4 (7.3) | |
Leucocytosis >10.5/nL on admission (total n) | 524 | 471 | 53 | <0.001 |
n (%) | 12 (2.3) | 4 (0.8) | 8 (15.1) | |
Thrombocytopenia <150/nL on admission (total n) | 525 | 471 | 54 | 0.001 |
n (%) | 433 (82.5) | 380 (80.7) | 53 (98.1) | |
Thrombocytopenia <50/nL on admission (total n) | 525 | 471 | 54 | <0.001 |
n (%) | 95 (17.8) | 64 (13.6) | 31 (57.4) | |
Management | ||||
Healthcare-associated infection 9 (total n) | 535 | 480 | 55 | <0.001 |
n (%) | 11 (2.1) | 2 (0.4) | 9 (16.4) | |
Mechanical ventilation (total n) | 535 | 480 | 55 | <0.001 |
n (%) | 9 (1.7) | 0 (0.0) | 9 (16.4) | |
AKI3 with need for RRT during admission (total n) | 535 | 480 | 55 | <0.001 |
n (%) | 7 (1.3) | 0 (0.0) | 7 (12.7) | |
Initial antimalarial (total n) | 535 | 480 | 55 | 0.039 |
Artemisinin-based regimen (reference) | 393 (73.5) | 359 (74.8) | 34 (61.8) | |
Other | 142 (26.6) | 121 (25.2) | 21 (38.2) |
Discharge after 3 Days | Discharge after 4 Days | Discharge after 7 Days | ||||
---|---|---|---|---|---|---|
Covariate | p Value | HR (95% CI) | p Value | HR (95% CI) | p Value | HR (95% CI) |
Demographics and history | ||||||
Age | 0.027 | 0.988 (0.978–0.998) | 0.024 | 0.985 (0.971–0.998) | 0.783 | 0.996 (0.969–1.024) |
Gender | 0.242 | 1.18 (0.894–1.557) | 0.487 | 1.133 (0.797–1.612) | 0.657 | 0.860 (0.442–1.673) |
Origin | 0.344 | 1.139 (0.870–1.491) | 0.928 | 1.016 (0.718–1.438) | 0.121 | 0.573 (0.284–1.158) |
Previous malaria | 0.624 | 1.086 (0.781–1.511) | 0.249 | 1.278 (0.842–1.938) | 0.835 | 0.902 (0.344–2.367) |
Chemoprophylaxis | 0.449 | 1.296 (0.662–2.540) | 0.893 | 0.934 (0.343–2.542) | 0.642 | 0.621 (0.084–4.614) |
Destination | 0.053 | 1.746 (0.992–3.071) | 0.117 | 1.681 (0.878–3.216) | 0.431 | 0.714 (0.308–1.652) |
Duration from symptom onset to hospital admission | 0.351 | 0.976 (0.927–1.027) | 0.594 | 0.982 (0.916–1.051) | 0.354 | 0.922 (0.776–1.095) |
Pregnancy | 0.861 | 1.083 (0.450–2.634) | 0.299 | 1.701 (0.624–4.635) | 0.354 | 0.922 (0.776–1.095) |
Co-morbidities | ||||||
CA-CCI | 0.007 | 0.887 (0.812–0.968) | 0.022 | 0.885 (0.797–0.983) | 0.141 | 0.885 (0.752–1.041) |
Hypertension | <0.001 | 0.424 (0.263–0.684) | <0.001 | 0.368 (0.207–0.654) | 0.058 | 0.450 (0.197–1.029) |
Diabetes | 0.629 | 0.830 (0.391–1.765) | 0.698 | 1.177 (0.518–2.677) | 0.774 | 0.746 (0.101–5.517) |
HIV infection | 0.186 | 0.674 (0.375–1.210) | 0.352 | 0.724 (0.366–1.430) | 0.83 | 1.123 (0.388–3.255) |
Chronic pulmonary disease | 0.355 | 1.523 (0.625–3.715) | 0.165 | 2.272 (0.713–7.241) | 1.0 | - |
Cardiovascular disease | 0.008 | 0.397 (0.202–0.783) | 0.028 | 0.442 (0.213–0.914) | 0.203 | 0.536 (0.206–1.399) |
Hepatitis B and/or C | 0.059 | 0.453 (0.199–1.031) | 0.112 | 0.480 (0.194–1.188) | 0.465 | 0.636 (0.189–2.142) |
Chronic renal disease | 0.257 | 0.592 (0.239–1.467) | 0.188 | 0.454 (0.140–1.471) | 0.402 | 0.531 (0.120–2.338) |
Malignancy | 0.07 | 0.434 (0.176–1.068) | 0.104 | 0.432 (0.157–1.188) | 0.208 | 0.393 (0.092–1.681) |
Obesity | 0.222 | 0.666 (0.347–1.278) | 0.910 | 0.962 (0.492–1.881) | 0.143 | 2.162 (0.770–6.070) |
BMI | 0.794 | 0.994 (0.946–1.043) | 0.473 | 1.021 (0.965–1.08) | 0.069 | 1.086 (0.993–1.188) |
Complications | ||||||
≥1 complication during admission | <0.001 | 0.274 (0.190–0.396) | <0.001 | 0.274 (0.179–0.420) | 0.003 | 0.322 (0.151–0.688) |
No. of complications on admission | <0.001 | 0.595 (0.510–0.694) | <0.001 | 0.621 (0.528–0.730) | <0.001 | 0.727 (0.603–0.877) |
Acidosis | <0.001 | 0.150 (0.061–0.375) | <0.001 | 0.171 (0.068–0.429) | 0.009 | 0.275 (0.105–0.724) |
Haemoglobinuria | 0.001 | 0.375 (0.208–0.675) | 0.020 | 0.489 (0.268–0.892) | 0.367 | 0.682 (0.297–1.568 |
Renal impairment | <0.001 | 0.230 (0.123–0.432) | <0.001 | 0.219 (0.114–0.420) | 0.003 | 0.299 (0.137–0.654) |
APO or ARDS | <0.001 | 0.234 (0.127–0.431) | <0.001 | 0.279 (0.149–0.520) | 0.011 | 0.361 (0.165–0.790) |
Shock | <0.001 | 0.242 (0.128–0.456) | <0.001 | 0.255 (0.130–0.502) | 0.032 | 0.425 (0.194–0.930) |
Coma | <0.001 | 0.266 (0.122–0.578) | 0.002 | 0.260 (0.112–0.605) | 0.073 | 0.440 (0.179–1.080) |
Hyperparasitemia | <0.001 | 0.374 (0.231–0.605) | 0.001 | 0.427 (0.254–0.717) | 0.581 | 0.821 (0.407–1.655) |
Laboratory findings | ||||||
Mixed malaria | 0.146 | 0.663 (0.381–1.153) | 0.060 | 0.496 (0.239–1.031) | 0.309 | 0.606 (0.230–1.592) |
Leucocytosis | 0.050 | 0.528 (0.278–1.001) | 0.215 | 0.648 (0.327–1.286) | 0.520 | 0.706 (0.245–2.035) |
Thrombocytopenia < 50/nL | <0.001 | 0.549 (0.406–0.741) | 0.010 | 0.621 (0.431–0.893) | 0.332 | 0.711 (0.356–1.418) |
Management | ||||||
Healthcare-associated infection | <0.001 | 0.266 (0.142–0.499) | <0.001 | 0.317 (0.168–0.601) | 0.142 | 0.572 (0.271–1.206) |
Mechanical ventilation | <0.001 | 0.262 (0.132–0.521) | <0.001 | 0.310 (0.154–0.621) | 0.101 | 1.955 (0.878–4.353) |
AKI3 (Need for RRT) | <0.001 | 0.125 (0.050–0.317) | <0.001 | 0.140 (0.055–0.357) | 0.002 | 0.207 (0.077–0.557) |
Artemisinin-based regimen | <0.001 | 1.593 (1.218–2.084) | 0.512 | 1.124 (0.793–1.595) | 0.837 | 0.932 (0.476–1.825) |
Covariate | Adjusted Hazard Ratio | 95% Confidence Intervall | p Value |
---|---|---|---|
APO or ARDS | 0.450 | 0.223–0.874 | 0.018 |
Shock | 0.438 | 0.220–0.873 | 0.019 |
AKI3 | 0.170 | 0.063–0.461 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoffmeister, B. Factors Associated with Prolonged Hospital Length of Stay in Adults with Imported Falciparum Malaria—An Observational Study from a Tertiary Care University Hospital in Berlin, Germany. Microorganisms 2021, 9, 1941. https://doi.org/10.3390/microorganisms9091941
Hoffmeister B. Factors Associated with Prolonged Hospital Length of Stay in Adults with Imported Falciparum Malaria—An Observational Study from a Tertiary Care University Hospital in Berlin, Germany. Microorganisms. 2021; 9(9):1941. https://doi.org/10.3390/microorganisms9091941
Chicago/Turabian StyleHoffmeister, Bodo. 2021. "Factors Associated with Prolonged Hospital Length of Stay in Adults with Imported Falciparum Malaria—An Observational Study from a Tertiary Care University Hospital in Berlin, Germany" Microorganisms 9, no. 9: 1941. https://doi.org/10.3390/microorganisms9091941
APA StyleHoffmeister, B. (2021). Factors Associated with Prolonged Hospital Length of Stay in Adults with Imported Falciparum Malaria—An Observational Study from a Tertiary Care University Hospital in Berlin, Germany. Microorganisms, 9(9), 1941. https://doi.org/10.3390/microorganisms9091941