COVID-19 Infection in Children, Infants and Pregnant Subjects: An Overview of Recent Insights and Therapies
Abstract
:1. Introduction
2. Variants
3. Pregnancy
4. Psychological Consequences
5. Therapy
6. Antipyretic Therapy
7. Lactoferrin
8. Aerosols
9. Antiviral Treatment
9.1. Lopinavir/Ritonavir
9.2. Remdesivir
10. Hydroxychloriquine
11. Immunomodulant Therapy
12. Antibiotic Therapy
- −
- Amoxicillin: 90 mg/kg/die in 3 doses, in the case of possible oral administration.
- −
- Ceftriaxone: 80–100 mg/kg/die, in the case of impossible oral administration. As this drug has the possibility of being administered one time per day, it would reduce exposure risks and transmission for healthcare workers.
- −
- Azithromycin: 15 mg/kg on the first day, then 7.5 mg/kg once a day for another 4 days.
13. Tocilizumab
14. Vaccinations
15. Babies and Teenagers
16. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. N. Engl. J. Med. 2020, 382, 1199–1207. [Google Scholar] [CrossRef]
- Scarano, A.; Inchingolo, F.; Lorusso, F. Facial Skin Temperature and Discomfort When Wearing Protective Face Masks: Thermal Infrared Imaging Evaluation and Hands Moving the Mask. Int. J. Environ. Res. Public Health 2020, 17, 4624. [Google Scholar] [CrossRef] [PubMed]
- Scarano, A.; Inchingolo, F.; Rapone, B.; Festa, F.; Tari, S.R.; Lorusso, F. Protective Face Masks: Effect on the Oxygenation and Heart Rate Status of Oral Surgeons during Surgery. Int. J. Environ. Res. Public Health 2021, 18, 2363. [Google Scholar] [CrossRef] [PubMed]
- Scarano, A.; Inchingolo, F.; Lorusso, F. Environmental Disinfection of a Dental Clinic during the COVID-19 Pandemic: A Narrative Insight. Biomed. Res. Int. 2020, 2020, 8896812. [Google Scholar] [CrossRef] [PubMed]
- Bellocchio, L.; Bordea, I.R.; Ballini, A.; Lorusso, F.; Hazballa, D.; Isacco, C.G.; Malcangi, G.; Inchingolo, A.D.; Dipalma, G.; Inchingolo, F.; et al. Environmental Issues and Neurological Manifestations Associated with COVID-19 Pandemic: New Aspects of the Disease? Int. J. Environ. Res. Public Health 2020, 17, 8049. [Google Scholar] [CrossRef] [PubMed]
- Balzanelli, G.M.; Distratis, P.; Aityan, S.K.; Amatulli, F.; Catucci, O.; Cefalo, A.; Dipalma, G.; Inchingolo, F.; Lazzaro, R.; Nguyen, K.C. COVID-19 and COVID-like Patients: A Brief Analysis and Findings of Two Deceased Cases. Open Access Maced. J. Med. Sci. 2020, 8, 490–495. [Google Scholar] [CrossRef]
- Santacroce, L.; Inchingolo, F.; Topi, S.; Del Prete, R.; Di Cosola, M.; Charitos, I.A.; Montagnani, M. Potential Beneficial Role of Probiotics on the Outcome of COVID-19 Patients: An Evolving Perspective. Diabetes Metab. Syndr. Clin. Res. Rev. 2021, 15, 295–301. [Google Scholar] [CrossRef]
- Balzanelli, M.G.; Distratis, P.; Aityan, S.K.; Amatulli, F.; Catucci, O.; Cefalo, A.; De Michele, A.; Dipalma, G.; Inchingolo, F.; Lazzaro, R.; et al. An Alternative “Trojan Horse” Hypothesis for COVID-19: Immune Deficiency of IL-10 and SARS-CoV-2 Biology. EMIDDT 2021, 21, 1. [Google Scholar] [CrossRef]
- Patano, A.; Cirulli, N.; Beretta, M.; Plantamura, P.; Inchingolo, A.D.; Inchingolo, A.M.; Bordea, I.R.; Malcangi, G.; Marinelli, G.; Scarano, A.; et al. Education Technology in Orthodontics and Paediatric Dentistry during the COVID-19 Pandemic: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 6056. [Google Scholar] [CrossRef]
- Bordea, I.R.; Xhajanka, E.; Candrea, S.; Bran, S.; Onișor, F.; Inchingolo, A.D.; Malcangi, G.; Pham, V.H.; Inchingolo, A.M.; Scarano, A.; et al. Coronavirus (SARS-CoV-2) Pandemic: Future Challenges for Dental Practitioners. Microorganisms 2020, 8, 1704. [Google Scholar] [CrossRef]
- Inchingolo, A.D.; Dipalma, G.; Inchingolo, A.M.; Malcangi, G.; Santacroce, L.; D’oria, M.T.; Isacco, C.G.; Bordea, I.R.; Candrea, S.; Scarano, A.; et al. The 15-Months Clinical Experience of SARS-CoV-2: A Literature Review of Therapies and Adjuvants. Antioxidants 2021, 10, 881. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.-I.; Hu, Y.-L.; Chen, P.-Y.; Huang, Y.-C.; Hsueh, P.-R. Are Children Less Susceptible to COVID-19? J. Microbiol. Immunol. Infect. 2020, 53, 371–372. [Google Scholar] [CrossRef]
- Li, X.; Xu, W.; Dozier, M.; He, Y.; Kirolos, A.; Theodoratou, E. The Role of Children in Transmission of SARS-CoV-2: A Rapid Review. J. Glob. Health 2020, 10, 11101. [Google Scholar] [CrossRef] [PubMed]
- WHO Coronavirus Disease (COVID-19) Dashboard. Available online: https://covid19.who.int (accessed on 16 October 2020).
- Pandemia di COVID-19 del 2019–2021 Nel Mondo. Wikipedia. 2021. Available online: https://it.wikipedia.org/wiki/Pandemia_di_COVID-19 (accessed on 11 January 2021).
- Racine, N.; McArthur, B.A.; Cooke, J.E.; Eirich, R.; Zhu, J.; Madigan, S. Global Prevalence of Depressive and Anxiety Symptoms in Children and Adolescents during COVID-19: A Meta-Analysis. JAMA Pediatr. 2021. [Google Scholar] [CrossRef] [PubMed]
- Thorisdottir, I.E.; Asgeirsdottir, B.B.; Kristjansson, A.L.; Valdimarsdottir, H.B.; Tolgyes, E.M.J.; Sigfusson, J.; Allegrante, J.P.; Sigfusdottir, I.D.; Halldorsdottir, T. Depressive Symptoms, Mental Wellbeing, and Substance Use among Adolescents before and during the COVID-19 Pandemic in Iceland: A Longitudinal, Population-Based Study. Lancet Psychiatry 2021, 8, 663–672. [Google Scholar] [CrossRef]
- Muzi, S.; Sansò, A.; Pace, C.S. What’s Happened to Italian Adolescents During the COVID-19 Pandemic? A Preliminary Study on Symptoms, Problematic Social Media Usage, and Attachment: Relationships and Differences with Pre-Pandemic Peers. Front. Psychiatry 2021, 12, 590543. [Google Scholar] [CrossRef]
- Cipolla, C.; Curatola, A.; Ferretti, S.; Giugno, G.; Condemi, C.; Delogu, A.B.; Birritella, L.; Lazzareschi, I. Eating Habits and Lifestyle in Children with Obesity during the COVID19 Lockdown: A Survey in an Italian Center. Acta Biomed. 2021, 92, e2021196. [Google Scholar] [CrossRef]
- Segre, G.; Campi, R.; Scarpellini, F.; Clavenna, A.; Zanetti, M.; Cartabia, M.; Bonati, M. Interviewing Children: The Impact of the COVID-19 Quarantine on Children’s Perceived Psychological Distress and Changes in Routine. BMC Pediatr. 2021, 21, 231. [Google Scholar] [CrossRef]
- Davies, N.G.; Klepac, P.; Liu, Y.; Prem, K.; Jit, M.; Eggo, R.M. Age-Dependent Effects in the Transmission and Control of COVID-19 Epidemics. Nat. Med. 2020, 26, 1205–1211. [Google Scholar] [CrossRef]
- Götzinger, F.; Santiago-García, B.; Noguera-Julián, A.; Lanaspa, M.; Lancella, L.; Carducci, F.I.C.; Gabrovska, N.; Velizarova, S.; Prunk, P.; Osterman, V.; et al. COVID-19 in Children and Adolescents in Europe: A Multinational, Multicentre Cohort Study. Lancet Child Adolesc. Health 2020, 4, 653–661. [Google Scholar] [CrossRef]
- Epidemia COVID-19. Available online: https://www.epicentro.iss.it/coronavirus/bollettino/Bollettino-sorveglianza-integrata-COVID-19_9-giugno-2020.pdf (accessed on 11 January 2021).
- Calvo, C.; Alcolea, S.; Casas, I.; Pozo, F.; Iglesias, M.; Gonzalez-Esguevillas, M.; Luz García-García, M. A 14-Year Prospective Study of Human Coronavirus Infections in Hospitalized Children: Comparison with Other Respiratory Viruses. Pediatr. Infect. Dis. J. 2020, 39, 653–657. [Google Scholar] [CrossRef]
- Chiu, W.; Cheung, P.C.H.; Ng, K.L.; Ip, P.L.S.; Sugunan, V.K.; Luk, D.C.K.; Ma, L.C.K.; Chan, B.H.B.; Lo, K.L.; Lai, W.M. Severe Acute Respiratory Syndrome in Children: Experience in a Regional Hospital in Hong Kong. Pediatr. Crit. Care Med. 2003, 4, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Ogimi, C.; Englund, J.A.; Bradford, M.C.; Qin, X.; Boeckh, M.; Waghmare, A. Characteristics and Outcomes of Coronavirus Infection in Children: The Role of Viral Factors and an Immunocompromised State. J. Pediatric. Infect. Dis. Soc. 2018, 8, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases from the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Yuan, J.; Liu, Y.; Fu, T.; Yu, X.; Zhang, Z.-J. Novel Coronavirus Infection in Hospitalized Infants Under 1 Year of Age in China. JAMA 2020, 323, 1313–1314. [Google Scholar] [CrossRef] [PubMed]
- Eastin, C.; Eastin, T. Epidemiological Characteristics of 2143 Pediatric Patients with 2019 Coronavirus Disease in China. J. Emerg. Med. 2020, 58, 712–713. [Google Scholar] [CrossRef]
- Available online: https://www.iss.it/documents/20126/0/Rapporto+ISS+COVID-19+60_2020.pdf/6b4dfc13-fc37-fadd-3388-b93aef43a15d?t=1602857089054 (accessed on 11 January 2021).
- Bellino, S.; Punzo, O.; Rota, M.C.; Del Manso, M.; Urdiales, A.M.; Andrianou, X.; Fabiani, M.; Boros, S.; Vescio, F.; Riccardo, F.; et al. COVID-19 Disease Severity Risk Factors for Pediatric Patients in Italy. Pediatrics 2020, 146, e2020009399. [Google Scholar] [CrossRef]
- Rapporto ISS COVID-19 n. 12/2020—Indicazioni Ad Interim per Servizi Assistenziali Di Telemedicina Durante l’emergenza Sanitaria COVID-19. Versione Del 13 Aprile 2020—ISS. Available online: https://www.iss.it/rapporti-covid-19/-/asset_publisher/btw1J82wtYzH/content/rapporto-iss-covid-19-n.-12-2020-indicazioni-ad-interim-per-servizi-assistenziali-di-telemedicina-durante-l-emergenza-sanitaria-covid-19.-versione-del-13-aprile-2020 (accessed on 19 August 2021).
- School Re-Openings after Summer Breaks in Germany Did Not Increase SARS-CoV-2 Cases|IZA—Institute of Labor Economics. Available online: https://www.iza.org/publications/dp/13790/school-re-openings-after-summer-breaks-in-germany-did-not-increase-sars-cov-2-cases (accessed on 10 January 2021).
- Dub, T.; Erra, E.; Hagberg, L.; Sarvikivi, E.; Virta, C.; Jarvinen, A.; Osterlund, P.; Ikonen, N.; Haveri, A.; Melin, M.; et al. Transmission of SARS-CoV-2 Following Exposure in School Settings: Experience from Two Helsinki Area Exposure Incidents. medRxiv 2020. [Google Scholar] [CrossRef]
- Grech, V.; Grech, E.; Borg Myatt, J. Holidays over: A Review of Actual COVID-19 School Outbreaks up to September 2020. Early Hum. Dev. 2020, 1, 105206. [Google Scholar] [CrossRef]
- Li, Y.; Campbell, H.; Kulkarni, D.; Harpur, A.; Nundy, M.; Wang, X.; Nair, H. The Temporal Association of Introducing and Lifting Non-Pharmaceutical Interventions with the Time-Varying Reproduction Number (R) of SARS-CoV-2: A Modelling Study across 131 Countries. Lancet Infect. Dis. 2020, 21, 193–202. [Google Scholar] [CrossRef]
- Lee, B.; Hanley, J.P.; Nowak, S.; Bates, J.H.T.; Hébert-Dufresne, L. Modeling the Impact of School Reopening on SARS-CoV-2 Transmission Using Contact Structure Data from Shanghai. BMC Public Health 2020, 20, 1713. [Google Scholar] [CrossRef]
- The Impact of School Reopening on the Spread of COVID-19 in England|MedRxiv. Available online: https://www.medrxiv.org/content/10.1101/2020.06.04.20121434v2 (accessed on 10 January 2021).
- Head, J.R.; Andrejko, K.; Cheng, Q.; Collender, P.A.; Phillips, S.; Boser, A.; Heaney, A.K.; Hoover, C.M.; Wu, S.L.; Northrup, G.R.; et al. The Effect of School Closures and Reopening Strategies on COVID-19 Infection Dynamics in the San Francisco Bay Area: A Cross-Sectional Survey and Modeling Analysis. medRxiv 2020. [Google Scholar] [CrossRef]
- Domenico, L.D.; Pullano, G.; Sabbatini, C.E.; Boëlle, P.-Y.; Colizza, V. Can We Safely Reopen Schools during COVID-19 Epidemic? medRxiv 2020. [Google Scholar] [CrossRef]
- Larosa, E.; Djuric, O.; Cassinadri, M.; Cilloni, S.; Bisaccia, E.; Vicentini, M.; Venturelli, F.; Rossi, P.G.; Pezzotti, P.; Bedeschi, E.; et al. Secondary Transmission of COVID-19 in Preschool and School Settings after Their Reopening in Northern Italy: A Population-Based Study. medRxiv 2020. [Google Scholar] [CrossRef]
- Otte im Kampe, E.; Lehfeld, A.-S.; Buda, S.; Buchholz, U.; Haas, W. Surveillance of COVID-19 School Outbreaks, Germany, March to August 2020. Eurosurveillance 2020, 25, 2001645. [Google Scholar] [CrossRef] [PubMed]
- Cruz, A.T.; Zeichner, S.L. COVID-19 in Children: Initial Characterization of the Pediatric Disease. Pediatrics 2020, 145, e20200834. [Google Scholar] [CrossRef] [Green Version]
- Oliva, S.; Cucchiara, S.; Locatelli, F. Children and Fecal SARS-CoV-2 Shedding: Just the Tip of the Iceberg of Italian COVID-19 Outbreak? Dig. Liver. Dis. 2020, 52, 1219–1221. [Google Scholar] [CrossRef]
- Kelvin, A.A.; Halperin, S. COVID-19 in Children: The Link in the Transmission Chain. Lancet Infect. Dis. 2020, 20, 633–634. [Google Scholar] [CrossRef] [Green Version]
- Kotsu, M.; Urbizo Velez, J.; Bengazi, F.; Tumedei, M.; Fujiwara, S.; Kato, S.; Botticelli, D. Healing at Implants Installed from ~ 70- to <10-Ncm Insertion Torques: An Experimental Study in Dogs. Oral Maxillofac. Surg. 2020, 25, 55–64. [Google Scholar] [CrossRef]
- Fujiwara, S.; Kato, S.; Bengazi, F.; Urbizo Velez, J.; Tumedei, M.; Kotsu, M.; Botticelli, D. Healing at Implants Installed in Osteotomies Prepared Either with a Piezoelectric Device or Drills: An Experimental Study in Dogs. Oral Maxillofac. Surg. 2020, 25, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Gehrke, S.A.; Tumedei, M.; Aramburú Júnior, J.; Treichel, T.L.E.; Kolerman, R.; Lepore, S.; Piattelli, A.; Iezzi, G. Histological and Histomorphometrical Evaluation of a New Implant Macrogeometry. A Sheep Study. Int. J. Environ. Res. Public Health 2020, 17, 3477. [Google Scholar] [CrossRef] [PubMed]
- Tumedei, M.; Piattelli, A.; Degidi, M.; Mangano, C.; Iezzi, G. A 30-Year (1988-2018) Retrospective Microscopical Evaluation of Dental Implants Retrieved for Different Causes: A Narrative Review. Int. J. Periodontics. Restor. Dent. 2020, 40, e211–e227. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H. Clinical and Epidemiological Features of 36 Children with Coronavirus Disease 2019 (COVID-19) in Zhejiang, China: An Observational Cohort Study. Lancet Infect. Dis. 2020, 20, 689–696. [Google Scholar] [CrossRef] [Green Version]
- Rangel-Moreno, J.; Hartson, L.; Navarro, C.; Gaxiola, M.; Selman, M.; Randall, T.D. Inducible Bronchus-Associated Lymphoid Tissue (IBALT) in Patients with Pulmonary Complications of Rheumatoid Arthritis. J. Clin. Investig. 2006, 116, 3183–3194. [Google Scholar] [CrossRef] [Green Version]
- Assaker, R.; Colas, A.-E.; Julien-Marsollier, F.; Bruneau, B.; Marsac, L.; Greff, B.; Tri, N.; Fait, C.; Brasher, C.; Dahmani, S. Presenting Symptoms of COVID-19 in Children: A Meta-Analysis of Published Studies. Br. J. Anaesth. 2020, 125, e330–e332. [Google Scholar] [CrossRef]
- Levin, M. Childhood Multisystem Inflammatory Syndrome—A New Challenge in the Pandemic. N. Engl. J. Med. 2020, 383, 393–395. [Google Scholar] [CrossRef] [PubMed]
- Toubiana, J.; Poirault, C.; Corsia, A.; Bajolle, F.; Fourgeaud, J.; Angoulvant, F.; Debray, A.; Basmaci, R.; Salvador, E.; Biscardi, S.; et al. Kawasaki-like Multisystem Inflammatory Syndrome in Children during the COVID-19 Pandemic in Paris, France: Prospective Observational Study. BMJ 2020, 369, m2094. [Google Scholar] [CrossRef] [PubMed]
- Kuo, H.-C. Kawasaki-like Disease among Italian Children in the COVID-19 Era. J. Pediatr. 2020, 224, 179–183. [Google Scholar] [CrossRef]
- Jones, V.G.; Mills, M.; Suarez, D.; Hogan, C.A.; Yeh, D.; Segal, J.B.; Nguyen, E.L.; Barsh, G.R.; Maskatia, S.; Mathew, R. COVID-19 and Kawasaki Disease: Novel Virus and Novel Case. Hosp. Pediatr. 2020, 10, 537–540. [Google Scholar] [CrossRef]
- Verdoni, L.; Mazza, A.; Gervasoni, A.; Martelli, L.; Ruggeri, M.; Ciuffreda, M.; Bonanomi, E.; D’Antiga, L. An Outbreak of Severe Kawasaki-like Disease at the Italian Epicentre of the SARS-CoV-2 Epidemic: An Observational Cohort Study. Lancet 2020, 395, 1771–1778. [Google Scholar] [CrossRef]
- Riphagen, S.; Gomez, X.; Gonzalez-Martinez, C.; Wilkinson, N.; Theocharis, P. Hyperinflammatory Shock in Children during COVID-19 Pandemic. Lancet 2020, 395, 1607–1608. [Google Scholar] [CrossRef]
- Grimaud, M.; Starck, J.; Levy, M.; Marais, C.; Chareyre, J.; Khraiche, D.; Leruez-Ville, M.; Quartier, P.; Léger, P.L.; Geslain, G.; et al. Acute Myocarditis and Multisystem Inflammatory Emerging Disease Following SARS-CoV-2 Infection in Critically Ill Children. Ann. Intensive Care 2020, 10, 69. [Google Scholar] [CrossRef] [PubMed]
- Ebina-Shibuya, R.; Namkoong, H.; Shibuya, Y.; Horita, N. Multisystem Inflammatory Syndrome in Children (MIS-C) with COVID-19: Insights from Simultaneous Familial Kawasaki Disease Cases. Int. J. Infect. Dis. 2020, 97, 371–373. [Google Scholar] [CrossRef] [PubMed]
- Ballini, A.; Cantore, S.; Farronato, D.; Cirulli, N.; Inchingolo, F.; Papa, F.; Malcangi, G.; Inchingolo, A.D.; Dipalma, G.; Sardaro, N.; et al. Periodontal disease and bone pathogenesis: The crosstalk between cytokines and porphyromonas gingivalis. J. Biol. Regul. Homeost. Agents 2015, 29, 273–281. [Google Scholar] [PubMed]
- Ballini, A.; Gnoni, A.; De Vito, D.; Dipalma, G.; Cantore, S.; Gargiulo Isacco, C.; Saini, R.; Santacroce, L.; Topi, S.; Scarano, A.; et al. Effect of Probiotics on the Occurrence of Nutrition Absorption Capacities in Healthy Children: A Randomized Double-Blinded Placebo-Controlled Pilot Study. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 8645–8657. [Google Scholar] [CrossRef] [PubMed]
- Scarano, A.; Noumbissi, S.; Gupta, S.; Inchingolo, F.; Stilla, P.; Lorusso, F. Scanning Electron Microscopy Analysis and Energy Dispersion X-ray Microanalysis to Evaluate the Effects of Decontamination Chemicals and Heat Sterilization on Implant Surgical Drills: Zirconia vs. Steel. Appl. Sci. 2019, 9, 2837. [Google Scholar] [CrossRef] [Green Version]
- Maglione, M.; Bevilacqua, L.; Dotto, F.; Costantinides, F.; Lorusso, F.; Scarano, A. Observational Study on the Preparation of the Implant Site with Piezosurgery vs. Drill: Comparison between the Two Methods in Terms of Postoperative Pain, Surgical Times, and Operational Advantages. BioMed. Res. Int. 2019, 2019, 8483658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dufort, E.M.; Koumans, E.H.; Chow, E.J.; Rosenthal, E.M.; Muse, A.; Rowlands, J.; Barranco, M.A.; Maxted, A.M.; Rosenberg, E.S.; Easton, D.; et al. Multisystem Inflammatory Syndrome in Children in New York State. N. Engl. J. Med. 2020, 383, 347–358. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Advani, S.; Moreira, A.; Zoretic, S.; Martinez, J.; Chorath, K.; Acosta, S.; Naqvi, R.; Burmeister-Morton, F.; Burmeister, F.; et al. Multisystem Inflammatory Syndrome in Children: A Systematic Review. EClinicalMedicine 2020, 26, 100527. [Google Scholar] [CrossRef]
- Whittaker, E.; Bamford, A.; Kenny, J.; Kaforou, M.; Jones, C.E.; Shah, P.; Ramnarayan, P.; Fraisse, A.; Miller, O.; Davies, P.; et al. Clinical Characteristics of 58 Children with a Pediatric Inflammatory Multisystem Syndrome Temporally Associated With SARS-CoV-2. JAMA 2020, 324, 259–269. [Google Scholar] [CrossRef]
- Feldstein, L.R.; Rose, E.B.; Horwitz, S.M.; Collins, J.P.; Newhams, M.M.; Son, M.B.F.; Newburger, J.W.; Kleinman, L.C.; Heidemann, S.M.; Martin, A.A.; et al. Multisystem Inflammatory Syndrome in U.S. Children and Adolescents. N. Engl. J. Med. 2020, 383, 334–346. [Google Scholar] [CrossRef]
- Liu, L.; Wei, Q.; Lin, Q.; Fang, J.; Wang, H.; Kwok, H.; Tang, H.; Nishiura, K.; Peng, J.; Tan, Z.; et al. Anti–Spike IgG Causes Severe Acute Lung Injury by Skewing Macrophage Responses during Acute SARS-CoV Infection. Available online: https://insight.jci.org/articles/view/123158/pdf (accessed on 16 January 2021).
- Onouchi, Y. The Genetics of Kawasaki Disease. Int. J. Rheum. Dis. 2018, 21, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Carratù, P.; Boffi, R.; Dragonieri, S.; Munarini, E.; Veronese, C.; Portincasa, P. COVID-19 and Ex-Smokers: An Underestimated Prognostic Factor? Monaldi Arch. Chest Dis. 2020, 90, 1463. [Google Scholar] [CrossRef]
- Leung, J.M.; Yang, C.X.; Tam, A.; Shaipanich, T.; Hackett, T.-L.; Singhera, G.K.; Dorscheid, D.R.; Sin, D.D. ACE-2 Expression in the Small Airway Epithelia of Smokers and COPD Patients: Implications for COVID-19. Eur. Respir. J. 2020, 55, 2000688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorusso, F.; Inchingolo, F.; Scarano, A. The Impact of COVID-19 on the Scientific Production Spread: A Five-Month Bibliometric Report of the Worldwide Research Community. Acta Med. Mediterr. 2020, 36, 3357–3360. [Google Scholar] [CrossRef]
- Wu, H.; Zhu, H.; Yuan, C.; Yao, C.; Luo, W.; Shen, X.; Wang, J.; Shao, J.; Xiang, Y. Clinical and Immune Features of Hospitalized Pediatric Patients with Coronavirus Disease 2019 (COVID-19) in Wuhan, China. JAMA Netw. Open 2020, 3, e2010895. [Google Scholar] [CrossRef]
- Ma, X.; Liu, S.; Chen, L.; Zhuang, L.; Zhang, J.; Xin, Y. The Clinical Characteristics of Pediatric Inpatients with SARS-CoV-2 Infection: A Meta-Analysis and Systematic Review. J. Med. Virol. 2020, 93, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Henry, B.M.; Benoit, S.W.; de Oliveira, M.H.S.; Hsieh, W.C.; Benoit, J.; Ballout, R.A.; Plebani, M.; Lippi, G. Laboratory Abnormalities in Children with Mild and Severe Coronavirus Disease 2019 (COVID-19): A Pooled Analysis and Review. Clin. Biochem. 2020, 81, 1–8. [Google Scholar] [CrossRef]
- Chilazi, M.; Duffy, E.Y.; Thakkar, A.; Michos, E.D. COVID and Cardiovascular Disease: What We Know in 2021. Curr. Atheroscler. Rep. 2021, 23, 37. [Google Scholar] [CrossRef]
- Clark, D.E.; Parikh, A.; Dendy, J.M.; Diamond, A.B.; George-Durrett, K.; Fish, F.A.; Slaughter, J.C.; Fitch, W.; Hughes, S.G.; Soslow, J.H. COVID-19 Myocardial Pathology Evaluation in Athletes with Cardiac Magnetic Resonance (COMPETE CMR). Circulation 2021, 143, 609–612. [Google Scholar] [CrossRef]
- Martinez, M.W.; Tucker, A.M.; Bloom, O.J.; Green, G.; DiFiori, J.P.; Solomon, G.; Phelan, D.; Kim, J.H.; Meeuwisse, W.; Sills, A.K.; et al. Prevalence of Inflammatory Heart Disease Among Professional Athletes with Prior COVID-19 Infection Who Received Systematic Return-to-Play Cardiac Screening. JAMA Cardiol. 2021, 6, 745–752. [Google Scholar] [CrossRef]
- Moulson, N.; Petek, B.J.; Drezner, J.A.; Harmon, K.G.; Kliethermes, S.A.; Patel, M.R.; Baggish, A.L. Outcomes Registry for Cardiac Conditions in Athletes Investigators SARS-CoV-2 Cardiac Involvement in Young Competitive Athletes. Circulation 2021, 144, 256–266. [Google Scholar] [CrossRef] [PubMed]
- Daniels, C.J.; Rajpal, S.; Greenshields, J.T.; Rosenthal, G.L.; Chung, E.H.; Terrin, M.; Jeudy, J.; Mattson, S.E.; Law, I.H.; Borchers, J.; et al. Prevalence of Clinical and Subclinical Myocarditis in Competitive Athletes with Recent SARS-CoV-2 Infection: Results from the Big Ten COVID-19 Cardiac Registry. JAMA Cardiol. 2021. [Google Scholar] [CrossRef]
- Panda, P.K.; Sharawat, I.K.; Panda, P.; Natarajan, V.; Bhakat, R.; Dawman, L. Neurological Complications of SARS-CoV-2 Infection in Children: A Systematic Review and Meta-Analysis. J. Trop. Pediatr. 2021, 67, fmaa070. [Google Scholar] [CrossRef]
- Ranabothu, S.; Onteddu, S.; Nalleballe, K.; Dandu, V.; Veerapaneni, K.; Veerapandiyan, A. Spectrum of COVID-19 in Children. Acta Paediatr. 2020, 109, 1899–1900. [Google Scholar] [CrossRef] [PubMed]
- Schober, M.E.; Pavia, A.T.; Bohnsack, J.F. Neurologic Manifestations of COVID-19 in Children: Emerging Pathophysiologic Insights. Pediatr. Crit. Care Med. 2021, 22, 655–661. [Google Scholar] [CrossRef]
- Xia, H.; Lazartigues, E. Angiotensin-Converting Enzyme 2 in the Brain: Properties and Future Directions. J. Neurochem. 2008, 107, 1482–1494. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.-H. Neurological Involvement Associated with COVID-19 Infection in Children. J. Neurol. Sci. 2020, 418, 117096. [Google Scholar] [CrossRef]
- García-Salido, A. Three Hypotheses about Children COVID19. Pediatric Infect. Dis. J. 2020, 39, e157. [Google Scholar] [CrossRef] [PubMed]
- Ludvigsson, J.F. Systematic Review of COVID-19 in Children Shows Milder Cases and a Better Prognosis than Adults. Acta Paediatr. 2020, 109, 1088–1095. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Xie, Z.; Li, T.; Zhang, S.; Lai, C.; Zhu, P.; Wang, K.; Han, L.; Duan, Y.; Zhao, Z.; et al. Angiotensin-Converting Enzyme 2 Inhibits Lung Injury Induced by Respiratory Syncytial Virus. Sci. Rep. 2016, 6, 19840. [Google Scholar] [CrossRef]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical Course and Risk Factors for Mortality of Adult Inpatients with COVID-19 in Wuhan, China: A Retrospective Cohort Study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Qin, C.; Zhou, L.; Hu, Z.; Zhang, S.; Yang, S.; Tao, Y.; Xie, C.; Ma, K.; Shang, K.; Wang, W.; et al. Dysregulation of Immune Response in Patients with Coronavirus 2019 (COVID-19) in Wuhan, China. Clin. Infect. Dis. 2020, 71, 762–768. [Google Scholar] [CrossRef]
- Kikkert, M. Innate Immune Evasion by Human Respiratory RNA Viruses. J. Innate Immun. 2020, 12, 4–20. [Google Scholar] [CrossRef]
- Basha, S.; Surendran, N.; Pichichero, M. Immune Responses in Neonates. Expert Rev. Clin. Immunol. 2014, 10, 1171–1184. [Google Scholar] [CrossRef] [PubMed]
- Immune Responses in COVID-19 and Potential Vaccines: Lessons Learned from SARS and MERS Epidemic. Asian Pac. J. Allergy Immunol. 2020, 38, 1–9. [CrossRef]
- Otto, S.; Mahner, B.; Kadow, I.; Beck, J.F.; Wiersbitzky, S.K.W.; Bruns, R. General Non-Specific Morbidity Is Reduced After Vaccination Within the Third Month of Life—The Greifswald Study. J. Infect. 2000, 41, 172–175. [Google Scholar] [CrossRef]
- Iwasaki, A.; Pillai, P.S. Innate Immunity to Influenza Virus Infection. Nat. Rev. Immunol. 2014, 14, 315–328. [Google Scholar] [CrossRef]
- Dong, Y.; Mo, X.; Hu, Y.; Qi, X.; Jiang, F.; Jiang, Z.; Tong, S. Epidemiology of COVID-19 among Children in China. Pediatrics 2020, 145, e20200702. [Google Scholar] [CrossRef] [Green Version]
- Medzhitov, R. Toll-like Receptors and Innate Immunity. Nat. Rev. Immunol. 2001, 1, 135–145. [Google Scholar] [CrossRef]
- Barnes, B.J.; Adrover, J.M.; Baxter-Stoltzfus, A.; Borczuk, A.; Cools-Lartigue, J.; Crawford, J.M.; Daßler-Plenker, J.; Guerci, P.; Huynh, C.; Knight, J.S.; et al. Targeting Potential Drivers of COVID-19: Neutrophil Extracellular Traps. J. Exp. Med. 2020, 6, 217. [Google Scholar] [CrossRef]
- Weisberg, S.P.; Connors, T.J.; Zhu, Y.; Baldwin, M.R.; Lin, W.-H.; Wontakal, S.; Szabo, P.A.; Wells, S.B.; Dogra, P.; Gray, J.; et al. Distinct Antibody Responses to SARS-CoV-2 in Children and Adults across the COVID-19 Clinical Spectrum. Nat. Immunol. 2021, 22, 25–31. [Google Scholar] [CrossRef]
- Pierce, C.A.; Sy, S.; Galen, B.; Goldstein, D.Y.; Orner, E.; Keller, M.J.; Herold, K.C.; Herold, B.C. Natural Mucosal Barriers and COVID-19 in Children. JCI Insight 2021, 6, 148694. [Google Scholar] [CrossRef]
- Nogueira-de-Almeida, C.A.; Del Ciampo, L.A.; Ferraz, I.S.; Del Ciampo, I.R.L.; Contini, A.A.; Ued, F. da V. COVID-19 and Obesity in Childhood and Adolescence: A Clinical Review. J. Pediatr. 2020, 96, 546–558. [Google Scholar] [CrossRef] [PubMed]
- Caruso, C.; Buffa, S.; Candore, G.; Colonna-Romano, G.; Dunn-Walters, D.; Kipling, D.; Pawelec, G. Mechanisms of Immunosenescence. Immun. Ageing 2009, 6, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xudong, X.; Junzhu, C.; Xingxiang, W.; Furong, Z.; Yanrong, L. Age- and Gender-Related Difference of ACE2 Expression in Rat Lung. Life Sci. 2006, 78, 2166–2171. [Google Scholar] [CrossRef] [PubMed]
- Balzanelli, M.G.; Distratis, P.; Catucci, O.; Cefalo, A.; Lazzaro, R.; Inchingolo, F.; Tomassone, D.; Aityan, S.K.; Ballini, A.; Nguyen, K.C. Mesenchymal Stem Cells: The Secret Children’s Weapons against the SARS-CoV-2 Lethal Infection. Appl. Sci. 2021, 11, 1696. [Google Scholar] [CrossRef]
- Shimamoto, A.; Yokote, K.; Tahara, H. Werner Syndrome-Specific Induced Pluripotent Stem Cells: Recovery of Telomere Function by Reprogramming. Front. Genet. 2015, 6, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gargiulo, C.; Pham, V.H. Autologous Peripheral Blood Stem Cells Increase the Telomere Length in Patient: A Case Report of 13 Patients. J. Stem. Cell Res. Ther. 2016, 6, 6. [Google Scholar] [CrossRef] [Green Version]
- Gargiulo, C.; Hai, N.T.; Nguyen, K.C.; Van Phuc, P.; Abe, K.; Flores, V.; Shiffman, M. Isolation and Characterization of Multipotent and Pluripotent Stem Cells from Human Peripheral Blood. Stem Cell Discov. 2015, 5, 19. [Google Scholar] [CrossRef] [Green Version]
- Graham, R.L.; Becker, M.M.; Eckerle, L.D.; Bolles, M.; Denison, M.R.; Baric, R.S. A Live, Impaired-Fidelity Coronavirus Vaccine Protects in an Aged, Immunocompromised Mouse Model of Lethal Disease. Nat. Med. 2012, 18, 1820–1826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plante, J.A.; Liu, Y.; Liu, J.; Xia, H.; Johnson, B.A.; Lokugamage, K.G.; Zhang, X.; Muruato, A.E.; Zou, J.; Fontes-Garfias, C.R.; et al. Spike Mutation D614G Alters SARS-CoV-2 Fitness. Nature 2021, 592, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Thao, T.T.N.; Hoffmann, D.; Taddeo, A.; Ebert, N.; Labroussaa, F.; Pohlmann, A.; King, J.; Steiner, S.; Kelly, J.N.; et al. SARS-CoV-2 Spike D614G Change Enhances Replication and Transmission. Nature 2021, 592, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Anderson, E.J.; Rouphael, N.G.; Widge, A.T.; Jackson, L.A.; Roberts, P.C.; Makhene, M.; Chappell, J.D.; Denison, M.R.; Stevens, L.J.; Pruijssers, A.J.; et al. Safety and Immunogenicity of SARS-CoV-2 MRNA-1273 Vaccine in Older Adults. N. Engl. J. Med. 2020, 383, 2427–2438. [Google Scholar] [CrossRef]
- Chand, G.B.; Banerjee, A.; Azad, G.K. Identification of Novel Mutations in RNA-Dependent RNA Polymerases of SARS-CoV-2 and Their Implications on Its Protein Structure. PeerJ 2020, 8, e9492. [Google Scholar] [CrossRef] [PubMed]
- Abdool Karim, S.S.; de Oliveira, T. New SARS-CoV-2 Variants—Clinical, Public Health, and Vaccine Implications. N. Engl. J. Med. 2021, 384, 1866–1868. [Google Scholar] [CrossRef]
- Davies, N.G.; Abbott, S.; Barnard, R.C.; Jarvis, C.I.; Kucharski, A.J.; Munday, J.D.; Pearson, C.A.B.; Russell, T.W.; Tully, D.C.; Washburne, A.D.; et al. Estimated Transmissibility and Impact of SARS-CoV-2 Lineage, B.1.1.7 in England. Science 2021, 372, eabg3055. [Google Scholar] [CrossRef] [PubMed]
- Volz, E.; Mishra, S.; Chand, M.; Barrett, J.C.; Johnson, R.; Geidelberg, L.; Hinsley, W.R.; Laydon, D.J.; Dabrera, G.; O’Toole, Á.; et al. Assessing Transmissibility of SARS-CoV-2 Lineage B.1.1.7 in England. Nature 2021, 593, 266–269. [Google Scholar] [CrossRef] [PubMed]
- Abu-Raddad, L.J.; Chemaitelly, H.; Butt, A.A. National Study Group for COVID-19 Vaccination Effectiveness of the BNT162b2 COVID-19 Vaccine against the B.1.1.7 and B.1.351 Variants. N. Engl. J. Med. 2021, 385, 187–189. [Google Scholar] [CrossRef]
- Haas, E.J.; Angulo, F.J.; McLaughlin, J.M.; Anis, E.; Singer, S.R.; Khan, F.; Brooks, N.; Smaja, M.; Mircus, G.; Pan, K.; et al. Impact and Effectiveness of MRNA BNT162b2 Vaccine against SARS-CoV-2 Infections and COVID-19 Cases, Hospitalisations, and Deaths Following a Nationwide Vaccination Campaign in Israel: An Observational Study Using National Surveillance Data. Lancet 2021, 397, 1819–1829. [Google Scholar] [CrossRef]
- Ikegame, S.; Siddiquey, M.N.A.; Hung, C.-T.; Haas, G.; Brambilla, L.; Oguntuyo, K.Y.; Kowdle, S.; Vilardo, A.E.; Edelstein, A.; Perandones, C.; et al. Neutralizing Activity of Sputnik V Vaccine Sera against SARS-CoV-2 Variants. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Wu, K.; Werner, A.P.; Moliva, J.I.; Koch, M.; Choi, A.; Stewart-Jones, G.B.E.; Bennett, H.; Boyoglu-Barnum, S.; Shi, W.; Graham, B.S.; et al. MRNA-1273 Vaccine Induces Neutralizing Antibodies against Spike Mutants from Global SARS-CoV-2 Variants. bioRxiv 2021. [Google Scholar] [CrossRef]
- Estimates of Severity and Transmissibility of Novel SARS-CoV-2 Variant 501Y.V2 in South Africa. Available online: https://cmmid.github.io/topics/covid19/sa-novel-variant.html (accessed on 19 August 2021).
- Shinde, V.; Bhikha, S.; Hoosain, Z.; Archary, M.; Bhorat, Q.; Fairlie, L.; Lalloo, U.; Masilela, M.S.L.; Moodley, D.; Hanley, S.; et al. Efficacy of NVX-CoV2373 COVID-19 Vaccine against the B.1.351 Variant. N. Engl. J. Med. 2021, 384, 1899–1909. [Google Scholar] [CrossRef]
- Naveca, F.G.; Nascimento, V.; de Souza, V.C.; de Lima Corado, A.; Nascimento, F.; Silva, G.; Costa, Á.; Duarte, D.; Pessoa, K.; Mejía, M.; et al. COVID-19 in Amazonas, Brazil, Was Driven by the Persistence of Endemic Lineages and P.1 Emergence. Nat. Med. 2021, 27, 1230–1238. [Google Scholar] [CrossRef] [PubMed]
- de Souza, W.M.; Amorim, M.R.; Sesti-Costa, R.; Coimbra, L.D.; de Toledo-Teixeira, D.A.; Parise, P.L.; Barbosa, P.P.; Bispo-dos-Santos, K.; Mofatto, L.S.; Simeoni, C.L. Levels of SARS-CoV-2 Lineage P. 1 Neutralization by Antibodies Elicited after Natural Infection and Vaccination. Lancet 2021. [Google Scholar] [CrossRef]
- Danner, C.; Rosa-Aquino, P. What We Know about the Dangerous COVID b.1.617.2 (Delta) Variant. N. Y. Intelligence 2021. Available online: https://nymag.com/intelligencer/article/covid-b-1-617-2-delta-variant-what-we-know.html (accessed on 23 August 2021).
- Zhang, W.; Davis, B.D.; Chen, S.S.; Sincuir Martinez, J.M.; Plummer, J.T.; Vail, E. Emergence of a Novel SARS-CoV-2 Variant in Southern California. JAMA 2021, 325, 1324–1326. [Google Scholar] [CrossRef]
- Public Health England. SARS-CoV-2 Variants of Concern and Variants under Investigation in England. 2021. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1012644/Technical_Briing_21.pdf (accessed on 23 August 2021).
- Iacobucci, G. COVID-19: Single Vaccine Dose Is 33% Effective against Variant from India, Data Show. BMJ 2021, 373, n1346. [Google Scholar] [CrossRef]
- Lopez Bernal, J.; Andrews, N.; Gower, C.; Gallagher, E.; Simmons, R.; Thelwall, S.; Stowe, J.; Tessier, E.; Groves, N.; Dabrera, G.; et al. Effectiveness of COVID-19 Vaccines against the B.1.617.2 (Delta) Variant. N. Engl. J. Med. 2021, 385, 585–594. [Google Scholar] [CrossRef]
- Sadoff, J.; Gray, G.; Vandebosch, A.; Cárdenas, V.; Shukarev, G.; Grinsztejn, B.; Goepfert, P.A.; Truyers, C.; Fennema, H.; Spiessens, B.; et al. Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against COVID-19. N. Engl. J. Med. 2021, 384, 2187–2201. [Google Scholar] [CrossRef]
- Mahase, E. Delta Variant: What Is Happening with Transmission, Hospital Admissions, and Restrictions? BMJ 2021, 373, n1513. [Google Scholar] [CrossRef]
- Wall, E.C.; Wu, M.; Harvey, R.; Kelly, G.; Warchal, S.; Sawyer, C.; Daniels, R.; Hobson, P.; Hatipoglu, E.; Ngai, Y.; et al. Neutralising Antibody Activity against SARS-CoV-2 VOCs B.1.617.2 and B.1.351 by BNT162b2 Vaccination. Lancet 2021, 397, 2331–2333. [Google Scholar] [CrossRef]
- Aleem, A.; Akbar Samad, A.B.; Slenker, A.K. Emerging variants of SARS-CoV-2 and novel therapeutics against coronavirus (COVID-19). In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Zhao, L.P.; Lybrand, T.P.; Gilbert, P.B.; Hawn, T.R.; Schiffer, J.T.; Stamatatos, L.; Payne, T.H.; Carpp, L.N.; Geraghty, D.E.; Jerome, K.R. Tracking SARS-CoV-2 Spike Protein Mutations in the United States (2020/01–2021/03) Using a Statistical Learning Strategy. bioRxiv 2021. [Google Scholar] [CrossRef]
- GISAID—HCov19 Variants. Available online: https://www.gisaid.org/hcov19-variants/ (accessed on 19 August 2021).
- Kimura, I.; Kosugi, Y.; Wu, J.; Yamasoba, D.; Butlertanaka, E.P.; Tanaka, Y.L.; Liu, Y.; Shirakawa, K.; Kazuma, Y.; Nomura, R. SARS-CoV-2 Lambda Variant Exhibits Higher Infectivity and Immune Resistance. bioRxiv 2021. [Google Scholar] [CrossRef]
- Carreno, J.M.; Alshammary, H.; Singh, G.; Raskin, A.; Amanat, F.; Amoako, A.; Gonzalez-Reiche, A.S.; van de Guchte, A.; Srivastava, K.; Sordillo, E.M. Reduced Neutralizing Activity of Post-SARS-CoV-2 Vaccination Serum against Variants B. 1.617. 2, B. 1.351, B. 1.1. 7+ E484K and a Sub-Variant of C. 37. medRxiv 2021. [Google Scholar] [CrossRef]
- Acevedo, M.L.; Alonso-Palomares, L.; Bustamante, A.; Gaggero, A.; Paredes, F.; Cortés, C.P.; Valiente-Echeverría, F.; Soto-Rifo, R. Infectivity and Immune Escape of the New SARS-CoV-2 Variant of Interest Lambda. medRxiv 2021. [Google Scholar] [CrossRef]
- COVID-19 Vaccine Breakthrough Cases: Data from the States|KFF. Available online: https://www.kff.org/policy-watch/covid-19-vaccine-breakthrough-cases-data-from-the-states/ (accessed on 19 August 2021).
- CDC Coronavirus Disease 2019 (COVID-19). Available online: https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/fully-vaccinated-people.html (accessed on 19 August 2021).
- Christie, A.; Brooks, J.T.; Hicks, L.A.; Sauber-Schatz, E.K.; Yoder, J.S.; Honein, M.A.; COVID, C.; Team, R. Guidance for Implementing COVID-19 Prevention Strategies in the Context of Varying Community Transmission Levels and Vaccination Coverage. Morb. Mortal. Wkly. Rep. 2021, 70, 1044. [Google Scholar] [CrossRef] [PubMed]
- Pieper, O. Coronavirus Lambda Variant Spreads across Latin America. Available online: https://www.dw.com/en/coronavirus-lambda-variant-spreads-across-latin-america/a-58035249 (accessed on 19 August 2021).
- Nikolopoulou, G.B.; Maltezou, H.C. COVID-19 in Children: Where Do We Stand? Arch. Med. Res. 2021. In Press. [Google Scholar] [CrossRef] [PubMed]
- Callaway, E. COVID Vaccines and Kids: Five Questions as Trials Begin. Nature 2021, 592, 670–671. [Google Scholar] [CrossRef]
- EpiCentro COVID-19: Pregnancy, Delivery and Breastfeeding—23 April 2020. Available online: https://www.epicentro.iss.it/en/coronavirus/sars-cov-2-pregnancy-childbirth-breastfeeding-23-april-20 (accessed on 24 January 2021).
- Breslin, N.; Baptiste, C.; Gyamfi-Bannerman, C.; Miller, R.; Martinez, R.; Bernstein, K.; Ring, L.; Landau, R.; Purisch, S.; Friedman, A.M.; et al. Coronavirus Disease 2019 Infection among Asymptomatic and Symptomatic Pregnant Women: Two Weeks of Confirmed Presentations to an Affiliated Pair of New York City Hospitals. Am. J. Obstet. Gynecol. MFM 2020, 2, 100118. [Google Scholar] [CrossRef]
- Tekbali, A.; Grünebaum, A.; Saraya, A.; McCullough, L.; Bornstein, E.; Chervenak, F.A. Pregnant vs. Nonpregnant Severe Acute Respiratory Syndrome Coronavirus 2 and Coronavirus Disease 2019 Hospital Admissions: The First 4 Weeks in New York. Am. J. Obstet. Gynecol. 2020, 223, 126–127. [Google Scholar] [CrossRef]
- Chen, H.; Guo, J.; Wang, C.; Luo, F.; Yu, X.; Zhang, W.; Li, J.; Zhao, D.; Xu, D.; Gong, Q.; et al. Clinical Characteristics and Intrauterine Vertical Transmission Potential of COVID-19 Infection in Nine Pregnant Women: A Retrospective Review of Medical Records. Lancet 2020, 395, 809–815. [Google Scholar] [CrossRef] [Green Version]
- WHO Collaborating Centre for Global Women’s Health. Available online: https://www.birmingham.ac.uk/research/who-collaborating-centre/index.aspx (accessed on 13 February 2021).
- Ministero Della Salute, Circ. 31 Marzo 2020, Prot. n. 11257—COVID-19: Indicazioni per Gravida-Partoriente, Puerpera, Neonato e Allattamento. Available online: https://olympus.uniurb.it/index.php?option=com_content&view=article&id=22138:sal11257_20cov&catid=6&Itemid=137 (accessed on 13 February 2021).
- Warner, F.J.; Smith, A.I.; Hooper, N.M.; Turner, A.J. Angiotensin-Converting Enzyme-2: A Molecular and Cellular Perspective. Cell Mol. Life Sci. 2004, 61, 2704–2713. [Google Scholar] [CrossRef]
- Vickers, C.; Hales, P.; Kaushik, V.; Dick, L.; Gavin, J.; Tang, J.; Godbout, K.; Parsons, T.; Baronas, E.; Hsieh, F.; et al. Hydrolysis of Biological Peptides by Human Angiotensin-Converting Enzyme-Related Carboxypeptidase. J. Biol. Chem. 2002, 277, 14838–14843. [Google Scholar] [CrossRef] [Green Version]
- Chappell, M.C. Of Diabetic Mice and ACE2: A New Biomarker of Renal Disease? Am. J. Physiol. Renal. Physiol. 2013, 305, F970–F972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crackower, M.A.; Sarao, R.; Oudit, G.Y.; Yagil, C.; Kozieradzki, I.; Scanga, S.E.; Oliveira-dos-Santos, A.J.; da Costa, J.; Zhang, L.; Pei, Y.; et al. Angiotensin-Converting Enzyme 2 Is an Essential Regulator of Heart Function. Nature 2002, 417, 822–828. [Google Scholar] [CrossRef]
- Guillaume, R.; Annie, M.; Christophe, B.; Gilles, V.; Christine, L.; Mihaela, E.; Jean, L.; Sylvie, D.; Pierre, C.; Didier, V. Angiotensin-Converting Enzyme 2 (ACE2) and ACE Activities Display Tissue-Specific Sensitivity to Undernutrition-Programmed Hypertension in the Adult Rat. Hypertension 2005, 46, 1169–1174. [Google Scholar] [CrossRef] [Green Version]
- Anton, L.; Merrill, D.C.; Neves, L.A.A.; Diz, D.I.; Corthorn, J.; Valdes, G.; Stovall, K.; Gallagher, P.E.; Moorefield, C.; Gruver, C.; et al. The Uterine Placental Bed Renin-Angiotensin System in Normal and Preeclamptic Pregnancy. Endocrinology 2009, 150, 4316–4325. [Google Scholar] [CrossRef] [PubMed]
- Dhaundiyal, A.; Kumari, P.; Jawalekar, S.S.; Chauhan, G.; Kalra, S.; Navik, U. Is Highly Expressed ACE 2 in Pregnant Women “a Curse” in Times of COVID-19 Pandemic? Life Sci. 2020, 264, 118676. [Google Scholar] [CrossRef]
- Zambrano, L.I.; Fuentes-Barahona, I.C.; Bejarano-Torres, D.A.; Bustillo, C.; Gonzales, G.; Vallecillo-Chinchilla, G.; Sanchez-Martínez, F.E.; Valle-Reconco, J.A.; Sierra, M.; Bonilla-Aldana, D.K.; et al. A Pregnant Woman with COVID-19 in Central America. Travel Med. Infect. Dis. 2020, 36, 101639. [Google Scholar] [CrossRef]
- Donders, F.; Lonnée-Hoffmann, R.; Tsiakalos, A.; Mendling, W.; de Oliveira, J.M.; Judlin, P.; Xue, F.; Donders, G.G.G.; Isidog Covid-Guideline Workgroup. ISIDOG Recommendations Concerning COVID-19 and Pregnancy. Diagnostics 2020, 10, 243. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Wang, M.; Zhu, Z.; Liu, Y. Coronavirus Disease 2019 (COVID-19) and Pregnancy: A Systematic Review. J. Matern. Fetal. Neonatal. Med. 2020, 11, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Qiancheng, X.; Jian, S.; Lingling, P.; Lei, H.; Xiaogan, J.; Weihua, L.; Gang, Y.; Shirong, L.; Zhen, W.; GuoPing, X.; et al. Coronavirus Disease 2019 in Pregnancy. Int. J. Infect. Dis. 2020, 95, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Cheruiyot, I.; Henry, B.M.; Lippi, G. Is There Evidence of Intra-Uterine Vertical Transmission Potential of COVID-19 Infection in Samples Tested by Quantitative RT-PCR? Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 249, 100–101. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Acharya, G. Novel Corona Virus Disease (COVID-19) in Pregnancy: What Clinical Recommendations to Follow? Acta Obstet. Gynecol. Scand. 2020, 99, 439–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, L.; Tian, J.; He, S.; Zhu, C.; Wang, J.; Liu, C.; Yang, J. Possible Vertical Transmission of SARS-CoV-2 From an Infected Mother to Her Newborn. JAMA 2020, 323, 1846–1848. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Li, J.; He, X.; Zhang, C.; Mei, S.; Li, C.; Li, Y.; Cheng, S.; Zhang, P. The Diagnostic Value of Joint Detection of Serum IgM and IgG Antibodies to 2019-NCoV in 2019-NCoV Infection. Chin. J. Lab. Med. 2020, 43, E012. [Google Scholar] [CrossRef]
- Liao, J.; He, X.; Gong, Q.; Yang, L.; Zhou, C.; Li, J. Analysis of Vaginal Delivery Outcomes among Pregnant Women in Wuhan, China during the COVID-19 Pandemic. Int. J. Gynaecol. Obstet. 2020, 150, 53–57. [Google Scholar] [CrossRef]
- Vivanti, A.J.; Vauloup-Fellous, C.; Prevot, S.; Zupan, V.; Suffee, C.; Do Cao, J.; Benachi, A.; De Luca, D. Transplacental Transmission of SARS-CoV-2 Infection. Nat. Commun. 2020, 11, 3572. [Google Scholar] [CrossRef] [PubMed]
- Riley, T.; Sully, E.; Ahmed, Z.; Biddlecom, A. Estimates of the Potential Impact of the COVID-19 Pandemic on Sexual and Reproductive Health in Low- and Middle-Income Countries. Int. Perspect. Sex Reprod. Health 2020, 46, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Qiao, J. What Are the Risks of COVID-19 Infection in Pregnant Women? Lancet 2020, 395, 760–762. [Google Scholar] [CrossRef] [Green Version]
- National Health Commission of the PRC. Available online: http://en.nhc.gov.cn/ (accessed on 23 January 2021).
- Liu, W.; Wang, J.; Li, W.; Zhou, Z.; Liu, S.; Rong, Z. Clinical Characteristics of 19 Neonates Born to Mothers with COVID-19. Front. Med. 2020, 14, 193–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davanzo, R.; Moro, G.; Sandri, F.; Agosti, M.; Moretti, C.; Mosca, F. Breastfeeding and Coronavirus Disease-2019: Ad Interim Indications of the Italian Society of Neonatology Endorsed by the Union of European Neonatal & Perinatal Societies. Matern. Child Nutr. 2020, 16, e13010. [Google Scholar] [CrossRef]
- Boix-Amorós, A.; Collado, M.C.; Van’t Land, B.; Calvert, A.; Le Doare, K.; Garssen, J.; Hanna, H.; Khaleva, E.; Peroni, D.G.; Geddes, D.T.; et al. Reviewing the Evidence on Breast Milk Composition and Immunological Outcomes. Nutr. Rev. 2019, 77, 541–556. [Google Scholar] [CrossRef]
- Marinelli, K.A.; Lawrence, R.M. Safe Handling of Containers of Expressed Human Milk in All Settings during the SARS-CoV-2 (COVID-19) Pandemic. J. Hum. Lact. 2020, 36, 498–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kampf, G.; Todt, D.; Pfaender, S.; Steinmann, E. Persistence of Coronaviruses on Inanimate Surfaces and Their Inactivation with Biocidal Agents. J. Hosp. Infect. 2020, 104, 246–251. [Google Scholar] [CrossRef] [Green Version]
- Fiorillo, L.; Cervino, G.; Matarese, M.; D’Amico, C.; Surace, G.; Paduano, V.; Fiorillo, M.T.; Moschella, A.; Bruna, A.L.; Romano, G.L.; et al. COVID-19 Surface Persistence: A Recent Data Summary and Its Importance for Medical and Dental Settings. Int. J. Environ. Res. Public Health 2020, 17, 3132. [Google Scholar] [CrossRef] [PubMed]
- Riddell, S.; Goldie, S.; Hill, A.; Eagles, D.; Drew, T.W. The Effect of Temperature on Persistence of SARS-CoV-2 on Common Surfaces. Virol. J. 2020, 17, 145. [Google Scholar] [CrossRef]
- Indagine-Irccs-Gaslini.Pdf. Available online: http://www.gaslini.org/wp-content/uploads/2020/06/Indagine-Irccs-Gaslini.pdf (accessed on 11 January 2021).
- Ballini, A.; Cantore, S.; Fotopoulou, E.A.; Georgakopoulos, I.P.; Athanasiou, E.; Bellos, D.; Paduanelli, G.; Saini, R.; Dipalma, G.; Inchingolo, F. Combined Sea Salt-Based Oral Rinse with Xylitol in Orthodontic Patients: Clinical and Microbiological Study. J. Biol. Regul. Homeost. Agents 2019, 33, 263–268. [Google Scholar] [PubMed]
- Ballini, A.; Dipalma, G.; Isacco, C.G.; Boccellino, M.; Di Domenico, M.; Santacroce, L.; Nguyễn, K.C.D.; Scacco, S.; Calvani, M.; Boddi, A.; et al. Oral Microbiota and Immune System Crosstalk: A Translational Research. Biology 2020, 9, 131. [Google Scholar] [CrossRef]
- Cantore, S.; Mirgaldi, R.; Ballini, A.; Coscia, M.F.; Scacco, S.; Papa, F.; Inchingolo, F.; Dipalma, G.; De Vito, D. Cytokine Gene Polymorphisms Associate with Microbiogical Agents in Periodontal Disease: Our Experience. Int. J. Med. Sci. 2014, 11, 674–679. [Google Scholar] [CrossRef] [Green Version]
- Inchingolo, F.; Dipalma, G.; Cirulli, N.; Cantore, S.; Saini, R.S.; Altini, V.; Santacroce, L.; Ballini, A.; Saini, R. Microbiological Results of Improvement in Periodontal Condition by Administration of Oral Probiotics. J. Biol. Regul. Homeost. Agents 2018, 32, 1323–1328. [Google Scholar]
- Balzanelli, M.G.; Distratis, P.; Dipalma, G.; Vimercati, L.; Inchingolo, A.D.; Lazzaro, R.; Aityan, S.K.; Maggiore, M.E.; Mancini, A.; Laforgia, R.; et al. SARS-CoV-2 Virus Infection May Interfere CD34+ Hematopoietic Stem Cells and Megakaryocyte–Erythroid Progenitors Differentiation Contributing to Platelet Defection towards Insurgence of Thrombocytopenia and Thrombophilia. Microorganisms 2021, 9, 1632. [Google Scholar] [CrossRef]
- Venturini, E.; Montagnani, C.; Garazzino, S.; Donà, D.; Pierantoni, L.; Lo Vecchio, A.; Nicolini, G.; Bianchini, S.; Krzysztofiak, A.; Galli, L.; et al. Treatment of Children with COVID-19: Position Paper of the Italian Society of Pediatric Infectious Disease. Ital. J. Pediatr. 2020, 46, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Home—ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ (accessed on 31 January 2021).
- Chiotos, K.; Hayes, M.; Kimberlin, D.W.; Jones, S.B.; James, S.H.; Pinninti, S.G.; Yarbrough, A.; Abzug, M.J.; MacBrayne, C.E.; Soma, V.L.; et al. Multicenter Initial Guidance on Use of Antivirals for Children with COVID-19/SARS-CoV-2. J. Pediatric. Infect. Dis. Soc. 2020, 9, 701–715. [Google Scholar] [CrossRef]
- WHO. Clinical management of severe acute respiratory infection when novel coronavirus (2019-nCoV) infection is suspected: Interim guidance. In Clinical Management of Severe Acute Respiratory Infection When Novel Coronavirus (2019-nCoV) Infection Is Suspected: Interim Guidance; WHO: Geneva, Switzerland, 2020; p. 21. [Google Scholar]
- Pediatric Acute Respiratory Distress Syndrome: Consensus Recommendations from the Pediatric Acute Lung Injury Consensus Conference. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5253180/ (accessed on 31 January 2021).
- Weiss, S.L.; Peters, M.J.; Alhazzani, W.; Agus, M.S.D.; Flori, H.R.; Inwald, D.P.; Nadel, S.; Schlapbach, L.J.; Tasker, R.C.; Argent, A.C.; et al. Surviving Sepsis Campaign International Guidelines for the Management of Septic Shock and Sepsis-Associated Organ Dysfunction in Children. Pediatr. Crit. Care Med. 2020, 21, e52–e106. [Google Scholar] [CrossRef] [PubMed]
- WHO. Multisystem Inflammatory Syndrome in Children and Adolescents with COVID-19. 2020. Available online: https://apps.who.int/iris/bitstream/handle/10665/332095/WHO-2019-nCoV-Sci_Brief-Multisystem_Syndrome_Children-2020.1-eng.pdf (accessed on 13 February 2021).
- Day, M. COVID-19: Ibuprofen Should Not Be Used for Managing Symptoms, Say Doctors and Scientists. BMJ 2020, 368, m1086. [Google Scholar] [CrossRef] [Green Version]
- Peroni, D.G.; Fanos, V. Lactoferrin Is an Important Factor When Breastfeeding and COVID-19 Are Considered. Acta Paediatr. 2020, 109, 2139–2140. [Google Scholar] [CrossRef] [PubMed]
- Berlutti, F.; Pantanella, F.; Natalizi, T.; Frioni, A.; Paesano, R.; Polimeni, A.; Valenti, P. Antiviral Properties of Lactoferrin—A Natural Immunity Molecule. Molecules 2011, 16, 6992–7018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosa, L.; Cutone, A.; Lepanto, M.S.; Paesano, R.; Valenti, P. Lactoferrin: A Natural Glycoprotein Involved in Iron and Inflammatory Homeostasis. Int. J. Mol. Sci. 2017, 18, 1985. [Google Scholar] [CrossRef]
- Lepanto, M.S.; Rosa, L.; Paesano, R.; Valenti, P.; Cutone, A. Lactoferrin in Aseptic and Septic Inflammation. Molecules 2019, 24, 1323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manzoni, P.; Stolfi, I.; Messner, H.; Cattani, S.; Laforgia, N.; Romeo, M.G.; Bollani, L.; Rinaldi, M.; Gallo, E.; Quercia, M.; et al. Bovine Lactoferrin Prevents Invasive Fungal Infections in Very Low Birth Weight Infants: A Randomized Controlled Trial. Pediatrics 2012, 129, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, J.; Jenkins, P.; Vargova, M.; Bowler, U.; Juszczak, E.; King, A.; Linsell, L.; Murray, D.; Partlett, C.; Patel, M.; et al. Enteral Lactoferrin Supplementation for Very Preterm Infants: A Randomised Placebo-Controlled Trial. Lancet 2019, 393, 423–433. [Google Scholar] [CrossRef] [Green Version]
- Lang, J.; Yang, N.; Deng, J.; Liu, K.; Yang, P.; Zhang, G.; Jiang, C. Inhibition of SARS Pseudovirus Cell Entry by Lactoferrin Binding to Heparan Sulfate Proteoglycans. PLoS ONE 2011, 6, e23710. [Google Scholar] [CrossRef] [PubMed]
- Li, F. Evidence for a Common Evolutionary Origin of Coronavirus Spike Protein Receptor-Binding Subunits. J. Virol. 2012, 86, 2856–2858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasan, A.; Paray, B.A.; Hussain, A.; Qadir, F.A.; Attar, F.; Aziz, F.M.; Sharifi, M.; Derakhshankhah, H.; Rasti, B.; Mehrabi, M.; et al. A Review on the Cleavage Priming of the Spike Protein on Coronavirus by Angiotensin-Converting Enzyme-2 and Furin. J. Biomol. Struct. Dyn. 2020, 39, 3025–3033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, M.-Y.; Xie, X.-L.; Peng, Y.-G.; Wu, M.-J.; Deng, X.-Z.; Wu, Y.; Xiong, L.-J.; Shang, L.-H. From SARS to COVID-19: What We Have Learned about Children Infected with COVID-19. Int. J. Infect. Dis. 2020, 96, 710–714. [Google Scholar] [CrossRef]
- Harrel, S.K.; Molinari, J. Aerosols and Splatter in Dentistry: A Brief Review of the Literature and Infection Control Implications. J. Am. Dent. Assoc. 2004, 135, 429–437. [Google Scholar] [CrossRef]
- Recommendations for Inhaled Asthma Controller Medications. Available online: https://ginasthma.org/recommendations-for-inhaled-asthma-controller-medications/ (accessed on 19 August 2021).
- Chen, Z.-M.; Fu, J.-F.; Shu, Q.; Chen, Y.-H.; Hua, C.-Z.; Li, F.-B.; Lin, R.; Tang, L.-F.; Wang, T.-L.; Wang, W.; et al. Diagnosis and Treatment Recommendations for Pediatric Respiratory Infection Caused by the 2019 Novel Coronavirus. World J. Pediatr. 2020, 16, 240–246. [Google Scholar] [CrossRef] [Green Version]
- Parshuram, C.S.; Duncan, H.P.; Joffe, A.R.; Farrell, C.A.; Lacroix, J.R.; Middaugh, K.L.; Hutchison, J.S.; Wensley, D.; Blanchard, N.; Beyene, J.; et al. Multicentre Validation of the Bedside Paediatric Early Warning System Score: A Severity of Illness Score to Detect Evolving Critical Illness in Hospitalised Children. Crit. Care 2011, 15, R184. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Chen, X.; Cai, Y.; Xia, J.; Zhou, X.; Xu, S.; Huang, H.; Zhang, L.; Zhou, X.; Du, C.; et al. Risk Factors Associated with Acute Respiratory Distress Syndrome and Death in Patients with Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern. Med. 2020, 180, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahajerin, A.; Branchford, B.R.; Amankwah, E.K.; Raffini, L.; Chalmers, E.; van Ommen, C.H.; Goldenberg, N.A. Hospital-Associated Venous Thromboembolism in Pediatrics: A Systematic Review and Meta-Analysis of Risk Factors and Risk-Assessment Models. Haematologica 2015, 100, 1045–1050. [Google Scholar] [CrossRef] [Green Version]
- Jaffray, J.; Young, G. Developmental Hemostasis: Clinical Implications from the Fetus to the Adolescent. Pediatric Clin. N. Am. 2013, 60, 1407–1417. [Google Scholar] [CrossRef] [PubMed]
- Bamford, A.; Turkova, A.; Lyall, H.; Foster, C.; Klein, N.; Bastiaans, D.; Burger, D.; Bernadi, S.; Butler, K.; Chiappini, E.; et al. Paediatric European Network for Treatment of AIDS (PENTA) Guidelines for Treatment of Paediatric HIV-1 Infection 2015: Optimizing Health in Preparation for Adult Life. HIV Med. 2018, 19, e1–e42. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration Approves Gilead’s Antiviral Veklury® (Remdesivir) for Treatment of COVID-19. Available online: https://www.gilead.com/news-and-press/press-room/press-releases/2020/10/us-food-and-drug-administration-approves-gileads-antiviral-veklury-remdesivir-for-treatment-of-covid19 (accessed on 1 February 2021).
- Dong, L.; Hu, S.; Gao, J. Discovering Drugs to Treat Coronavirus Disease 2019 (COVID-19). Drug Discov. Ther. 2020, 14, 58–60. [Google Scholar] [CrossRef] [Green Version]
- FDA Cautions against Use of Hydroxychloroquine or Chloroquine for COVID-19 Outside of the Hospital Setting or a Clinical Trial Due to Risk of Heart Rhythm Problems. 2020. Available online: https://www.fda.gov/media/137250/download (accessed on 1 February 2021).
- Maharaj, A.R.; Wu, H.; Hornik, C.P.; Balevic, S.J.; Hornik, C.D.; Smith, P.B.; Gonzalez, D.; Zimmerman, K.O.; Benjamin, D.K.; Cohen-Wolkowiez, M.; et al. Simulated Assessment of Pharmacokinetically Guided Dosing for Investigational Treatments of Pediatric Patients with Coronavirus Disease 2019. JAMA Pediatr. 2020, 174, e202422. [Google Scholar] [CrossRef]
- Anonymous RoActemra. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/roactemra (accessed on 13 February 2021).
- Francisco, E.M. EMA Gives Advice on the Use of Non-Steroidal Anti-Inflammatories for COVID-19. Available online: https://www.ema.europa.eu/en/news/ema-gives-advice-use-non-steroidal-anti-inflammatories-covid-19 (accessed on 19 August 2021).
- COVID-19 Vaccination Considerations for Obstetric–Gynecologic Care|ACOG. Available online: https://www.acog.org/clinical/clinical-guidance/practice-advisory/articles/2020/12/covid-19-vaccination-considerations-for-obstetric-gynecologic-care (accessed on 19 August 2021).
- SOGC Statement on COVID-19 Vaccination in Pregnancy. Available online: https://sogc.org/en/content/featured-news/SOGC_Statement_on_COVID-19_Vaccination_in_Pregnancy.aspx (accessed on 19 August 2021).
- Clinical Trials in Children|Pfpfizeruscom. Available online: https://www.pfizer.com/science/clinical-trials/children (accessed on 19 August 2021).
- Administration, U.S.F. and D. Coronavirus (COVID-19) Update: FDA Authorizes Pfizer-BioNTech COVID-19 Vaccine for Emergency Use in Adolescents in Another Important Action in Fight Against Pandemic. Available online: https://www.prnewswire.com/news-releases/coronavirus-covid-19-update-fda-authorizes-pfizer-biontech-covid-19-vaccine-for-emergency-use-in-adolescents-in-another-important-action-in-fight-against-pandemic-301287941.html (accessed on 19 August 2021).
- Primo Vaccino Anti-COVID-19 Approvato Nell’UE per Bambini Di Età Compresa Tra 12 e 15 Anni. Available online: https://www.aifa.gov.it/-/primo-vaccino-anti-covid-19-approvato-nell-ue-per-bambini-di-et%C3%A0-compresa-tra-12-e-15-anni (accessed on 19 August 2021).
- Frenck, R.W., Jr.; Klein, N.P.; Kitchin, N.; Gurtman, A.; Absalon, J.; Lockhart, S.; Perez, J.L.; Walter, E.B.; Senders, S.; Bailey, R. Safety, Immunogenicity, and Efficacy of the BNT162b2 COVID-19 Vaccine in Adolescents. N. Engl. J. Med. 2021, 385, 239–250. [Google Scholar] [CrossRef] [PubMed]
- COVID-19 VaST Technical Report 24 May 2021|CDC. Available online: https://www.cdc.gov/vaccines/acip/work-groups-vast/report-2021-05-24.html (accessed on 19 August 2021).
- Moderna COVID-19 Vaccine Retains Neutralizing Activity against Emerging Variants First Identified in the U.K. and the Republic of South Africa|Moderna, Inc. Available online: https://investors.modernatx.com/news-releases/news-release-details/moderna-covid-19-vaccine-retains-neutralizing-activity-against/ (accessed on 13 February 2021).
- Oxford Sospende Sperimentazione di AstraZeneca sui Bambini—Europa. Available online: https://www.ansa.it/sito/notizie/mondo/europa/2021/04/06/oxford-sospende-sperimentazione-di-astrazeneca-sui-bambini_2ae57e21-a561-4df8-8d5e-e565283e1b34.html (accessed on 19 August 2021).
- Raman, R.; Patel, K.J.; Ranjan, K. COVID-19: Unmasking Emerging SARS-CoV-2 Variants, Vaccines and Therapeutic Strategies. Biomolecules 2021, 11, 993. [Google Scholar] [CrossRef]
Clinical Grading | Characteristics |
---|---|
Asymptomatic case | usually detected in the contact track |
Slight case | usually is characterised by fever and/or asthenia and/or effects of upper airway with no radiological/sonographic evidence. |
Moderate case | characterised by fever and/or fatigue and/or effects on upper airway (cough or slight respiratory distress) and/or inappetence and/or pneumonia reported by radiography of thorax or ultrasonography. |
Severe case | characterised by fever together with cough, always associated with one of the following symptoms: oxygen saturation (SpO2) < 92%, cyanosis, intermittent apnoea, severe respiratory distress, high respiratory rate (RR): breaths/minute > 60 > 3 months; >50 3–12 months >> 40 1–5 years; >30 > 5 years) lethargy, convulsions, drowsiness and dehydration. |
Critical case | characterised by paediatric acute respiratory distress syndrome (PARDS) alterations of organ function associated with sepsis, septic shock, coma. |
Authors | Drug | Study Design | Experimental Model | Administration Protocol | Results | Test | Control | Subjects/ Specimens | Study Period |
---|---|---|---|---|---|---|---|---|---|
Venturini et al. 2020 | (1) Antipyretic therapy: prefer paracetamol (10–15 mg/kg every 4–6 h). (2) Inhalation therapy. (3) Antiviral. (4) Anticoagulants. (5) Steroids: Methylprednisolone 1–2 mg/kg (max 80 mg) once a day. | Position Paper | - | (1) Lopinavir/ritonavir: 1) 14 days—12 months: 300 mg/75 mg/m2 (corresponding to a 3.75 mL/kg) twice a day OR 16/4 mg/kg (corresponding to 0.2 mL/kg) twice a day 2) > 12 months–18 years: if <15 kg: 12/3 mg/kg (corresponding to 0.15 mL/kg) twice a day; if >15 kg: 10/2.5 mg/kg (corresponding to 0.125 mL/kg) twice a day. (2) Hydroxychloroquine: Children: 6 mg/kg (maximum: 400 mg/dose) twice a day on day 1, followed by 3 mg/kg (maximum: 200 mg/dose) twice a day for up to 5 days. (3) Tocilizumab vial 20 mg/mL 3 infusions: First infusion at a dosage of 10–12 mg/kg < 30 kg and 8 mg/kg > 30 kg, (maximum dosage 800 mg, duration of infusion at least 60 min). (4) Antibiotic: Amoxicillin 90 mg/kg/day in 3 doses, in the case of possible oral intake | - | - | - | Children and prepuberal subjects | - |
Chiotos et al. 2020 | (1) Remdesivir; (2) Hydroxychloroquine; (3) Lopinavir- ritonavir | Multicentre guidelines | Human | (1) Remdesivir: <40 kg: 5 mg/kg IV loading dose on day 1; followed by 2.5 mg/kg IV every 24 h, ≥40 kg: 200 mg IV loading dose on day 1; followed by 100 mg IV every 24 h with a recommended duration up to 10 days, with a 5-day duration favoured for fast responders (5-day vs. 10-day); (2) Hydroxychloroquine: 400 mg PO BID on day 1, followed by 200 mg PO BID for up to 5 days Infants, children, and adolescents 13 mg/kg (maximum: 800 mg) PO followed by 6.5 mg/kg (maximum: 400 mg) PO at 6, 24, and 48 h after initial dose. Lopinavir-ritonavir: Lopinavir 400 mg/ritonavir 100 mg (2 tablets) PO twice daily Neonates aged ≥ 14 days and postmenstrual age ≥ 42 weeks to children aged < 18 years Lopinavir 300 mg/m2 (maximum 400 mg/dose) PO twice daily Recommended duration 7–14 days | - | - | - | Children and Infants | |
Maharaj et al. 2020 | (1) Remdesivir; (2) Hydroxychloroquine; | Clinical study simulation | Children of all ages | weight-normalised dosing for children less than 50 kg | in this simulation-based dose-ranging study, paediatric dosing strategies were devised that provided similar exposures between children within different developmental stages and adults. However, the analysis raised concerns regarding hydroxychloroquine use for coronavirus disease 2019 treatment because unbound plasma concentrations were less than those postulated to mediate an antiviral effect. | children less than 50 kg | - | 6000 simulated children (birth to 18 years postnatal age) and 1000 simulated adults (age 20–50 years) | 1 month |
Authors | Drug | Study Design | Experimental Model | Administration Protocol | Results | Test | Control | Subjects/ Specimens | Study Period |
---|---|---|---|---|---|---|---|---|---|
Peroni et al. 2020 | Natural Lactoferrin | Editorial | - | peak concentration in colostrum (8 mg/mL), lower levels in mature milk (3.5–4 mg/mL) | Lactoferrin, demonstrates potential antiviral effects. | - | |||
Lang et al. 2011 | Lactoferrin | In vitro culture | HEK293E/ACE2-Myc cells, SARS pseudovirus | 1, 3 and 10 µM Lactoferrin | Lactoferrin protective role in host defense against SARS-CoV infection blocking the preliminary interaction between SARS-CoV and host cells. | Lactoferrin | Heparin | 12 plates | 1 h |
Authors | Drug | Study Design | Experimental Model | Administration Protocol | Results | Test | Control | Subjects/Specimens | Study Period |
---|---|---|---|---|---|---|---|---|---|
Chen et al. 2020 | Interferon-α2b nebulisation, Lopinavir/litonavir; methylprednisolone | Review | Human | Interferon-α2b nebulisation 100,000–200,000 IU/kg for mild cases, and 200,000–400,000 IU/kg for severe cases, two times/day for 5–7 days. Lopinavir/litonavir (200 mg/50 mg) The recommended doses: weight 7–15 kg, 12 mg/3 mg/kg; weight 15–40 kg, 10 mg/2.5 mg/kg; weight > 40 kg, 400 mg/100 mg as adult each time, twice a day for 1–2 weeks; Intravenous methylprednisolone (1–2 mg/kg/day) is recommended for 3–5 days for | - | - | - | - | |
Parshuram et al. 2020 | Patients need tracheostomy, enterostomy feeding device, home oxygen | Multicenter case-control study | children admitted to inpatient units with no limitations on care | patients with chronic conditions (bone marrow or organ transplantation, cardiac disease, severe cerebral palsy), patients with medical devices that might place them at increased risk (tracheostomy, enterostomy feeding device, home oxygen), patients with acute illness (diabetic ketoacidosis, seizures) | PEWS scores for the 12 h ending 1 h before the clinical deterioration event were 8 (5 to 12) in case patients and 2 (1 to 4) in control patients (p < 0.0001). The AUCROC curve (95% confidence interval) was 0.87 (0.85 to 0.89). In case patients, mean scores were 5.3 at 20 to 24 h and 8.4 at 0 to 4 h before the event (p < 0.0001). | Urgent ICU | Code Blue | 2074 subjects | 24 h |
Dong et al. | IFN-α Lopinavir/ritonavir Ribavirin Chloroquine phosphate Arbido | Editorial | adults and children over 14 days of age | IFN-α inhalation 5 million U or equivalent dose each time, 2 times/day. Lopinavir/ritonavir oral 200 mg/50 mg/capsule, 2 capsules each time, 2 times/day. Ribavirin intravenous 500 mg each time, 2 to 3 times/day in combination with IFN-α or lopinavir/ritonavir. Chloroquine phosphate oral 500 mg (300 mg for chloroquine) each time, 2 times/day. Arbidol 200 mg each time, 3 times/day | Promising results have been achieved efficacy and safety in the treatment of coronavirus disease 2019 (COVID-19) | - | - | - | - |
Antivirals | Dosing |
---|---|
Lopinavir/ritonavir | 14 days–12 months: 300 mg/75 mg/m2 (corresponding to 3.75 mL/kg) two times per day OR 16/4 mg/kg (corresponding to 0.2 mL/kg) two times per day >12 months–18 years: if <15 kg: 12/3 mg/kg (corresponding to 0.15 mL/kg) two times per day; if >15 kg: 10/2.5 mg/kg (corresponding to 0.125 mL/kg) two times per day |
Remdesivir | Babies (< 40 kg): 1st day 5 mg/kg EV (in 30 min), followed by 2.5 mg/kg EV (in 30 min)/die for other 9 days. To date it is not possible to administer this drug before 2 weeks of life and if the weight is <2.5 kg |
Antivirals | Dosing |
---|---|
Hydroxychloriquine | Babies: 6 mg/kg (max: 400 mg/dose) two times per day on day 1; continue with 3 mg/kg (max: 200 mg/dose) two times per day for a max of 5 days. |
Antivirals | Dosing |
---|---|
Methylprednisolone | 1–2 mg/kg (max 80 mg) one time per day for 2–5 days. |
Anakinra | Babies (<40 kg): 1st day 5 mg/kg EV (in 30 min), followed by 2.5 mg/kg EV (in 30 min)/die for another 9 days. 100 mg/0.67 mL endogenously: 8–10 mg/kg/die in 2 or 4 administrations according to the overall dose (until max 100 mg 4 times per day). At 48–72 h after administration, it would be necessary to repeat plasma dosing of IL-6 and/or D-dimer. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malcangi, G.; Inchingolo, A.D.; Inchingolo, A.M.; Santacroce, L.; Marinelli, G.; Mancini, A.; Vimercati, L.; Maggiore, M.E.; D’Oria, M.T.; Hazballa, D.; et al. COVID-19 Infection in Children, Infants and Pregnant Subjects: An Overview of Recent Insights and Therapies. Microorganisms 2021, 9, 1964. https://doi.org/10.3390/microorganisms9091964
Malcangi G, Inchingolo AD, Inchingolo AM, Santacroce L, Marinelli G, Mancini A, Vimercati L, Maggiore ME, D’Oria MT, Hazballa D, et al. COVID-19 Infection in Children, Infants and Pregnant Subjects: An Overview of Recent Insights and Therapies. Microorganisms. 2021; 9(9):1964. https://doi.org/10.3390/microorganisms9091964
Chicago/Turabian StyleMalcangi, Giuseppina, Alessio Danilo Inchingolo, Angelo Michele Inchingolo, Luigi Santacroce, Grazia Marinelli, Antonio Mancini, Luigi Vimercati, Maria Elena Maggiore, Maria Teresa D’Oria, Denisa Hazballa, and et al. 2021. "COVID-19 Infection in Children, Infants and Pregnant Subjects: An Overview of Recent Insights and Therapies" Microorganisms 9, no. 9: 1964. https://doi.org/10.3390/microorganisms9091964
APA StyleMalcangi, G., Inchingolo, A. D., Inchingolo, A. M., Santacroce, L., Marinelli, G., Mancini, A., Vimercati, L., Maggiore, M. E., D’Oria, M. T., Hazballa, D., Bordea, I. R., Xhajanka, E., Scarano, A., Farronato, M., Tartaglia, G. M., Giovanniello, D., Nucci, L., Serpico, R., Sammartino, G., ... Dipalma, G. (2021). COVID-19 Infection in Children, Infants and Pregnant Subjects: An Overview of Recent Insights and Therapies. Microorganisms, 9(9), 1964. https://doi.org/10.3390/microorganisms9091964