Circulating Concentrations of Key Regulators of Nitric Oxide Production in Undernourished Sheep Carrying Single and Multiple Fetuses
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Animals and Experimental Procedure
2.3. Blood Sampling
2.4. Assessment of Metabolic and Hormonal Profile
2.5. Quantification of Circulating Concentrations of Arginine Metabolites, Other Amino Acids, and Total Proteins
2.6. Homoarginine Detection by LC-MS/MS
2.7. Statistical Analyses
3. Results
3.1. Metabolic and Hormonal Profile
3.2. Changes in Amino Acids and Arginine Metabolites during Pregnancy
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zullino, S.; Buzzella, F.; Simoncini, T. Nitric oxide and the biology of pregnancy. Vasc. Pharmacol. 2018, 110, 71–74. [Google Scholar] [CrossRef]
- Gagioti, S.; Scavone, C.; Bevilacqua, E. Participation of the mouse implanting trophoblast in nitric oxide production during pregnancy. Biol. Reprod. 2000, 62, 260–268. [Google Scholar] [CrossRef] [Green Version]
- Tsikas, D.; Böger, R.H.; Sandmann, J.; Bode-Böger, S.M.; Frölich, J.C. Endogenous nitric oxide synthase inhibitors are responsible for the L-arginine paradox. FEBS Lett. 2000, 478, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Savvidou, M.D.; Hingorani, A.D.; Tsikas, D.; Frölich, J.C.; Vallance, P.; Nicolaides, K.H. Endothelial dysfunction and raised plasma concentrations of asymmetric dimethylarginine in pregnant women who subsequently develop pre-eclampsia. Lancet 2003, 361, 1511–1517. [Google Scholar] [CrossRef]
- Brinkmann, S.; Wörner, E.; Buijs, N.; Richir, M.; Cynober, L.; van Leeuwen, P.; Couderc, R. The Arginine/ADMA Ratio Is Related to the Prevention of Atherosclerotic Plaques in Hypercholesterolemic Rabbits When Giving a Combined Therapy with Atorvastatine and Arginine. Int. J. Mol. Sci. 2015, 16, 12230–12242. [Google Scholar] [CrossRef] [PubMed]
- Iyengar, R.; Stuehr, D.J.; Marletta, M.A. Macrophage synthesis of nitrite, nitrate, and N-nitrosamines: Precursors and role of the respiratory burst. Proc. Natl. Acad. Sci. USA 1987, 84, 6369–6373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hecker, M.; Walsh, D.T.; Vane, J.R. On the substrate specificity of nitric oxide synthase. FEBS Lett. 1991, 294, 221–224. [Google Scholar] [CrossRef] [Green Version]
- Valtonen, P.; Laitinen, T.; Lyyra-Laitinen, T.; Raitakari, O.T.; Juonala, M.; Viikari, J.S.; Heiskanen, N.; Vanninen, E.; Punnonen, K.; Heinonen, S. Serum L-homoarginine concentration is elevated during normal pregnancy and is related to flow-mediated vasodilatation. Circ. J. 2008, 72, 1879–1884. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Bazer, F.W.; Satterfield, M.C.; Li, X.; Wang, X.; Johnson, G.A.; Burghardt, R.C.; Dai, Z.; Wang, J.; Wu, Z. Impacts of arginine nutrition on embryonic and fetal development in mammals. Amino Acids 2013, 45, 241–256. [Google Scholar] [CrossRef]
- Gootwine, E.; Spencer, T.E.; Bazer, F.W. Litter-size-dependent intrauterine growth restriction in sheep. Animal 2007, 1, 547–564. [Google Scholar] [CrossRef] [Green Version]
- Symonds, M.E.; Budge, H.; Stephenson, T.; McMillen, I.C. Fetal endocrinology and development—Manipulation and adaptation to long-term nutritional and environmental challenges. Reproduction 2001, 121, 853–862. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, L.P.; Borowicz, P.P.; Caton, J.S.; Vonnahme, K.A.; Luther, J.S.; Buchanan, D.S.; Hafez, S.A.; Grazul-Bilska, A.T.; Redmer, D.A. Uteroplacental vascular development and placental function: An update. Int. J. Dev. Biol. 2010, 54, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Cannas, A.; Tedeschi, L.O.; Fox, D.G.; Pell, A.N.; Van Soest, P.J. A mechanistic model for predicting the nutrient requirements and feed biological values for sheep. J. Anim. Sci. 2004, 82, 149–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porcu, C.; Manca, C.; Cabiddu, A.; Dattena, M.; Gallus, M.; Pasciu, V.; Succu, S.; Naitana, S.; Berlinguer, F.; Molle, G. Effects of short-term administration of a glucogenic mixture at mating on feed intake, metabolism, milk yield and reproductive performance of lactating dairy ewes. Anim. Feed Sci. Technol. 2018, 243, 10–21. [Google Scholar] [CrossRef]
- Pasciu, V.; Baralla, E.; Nieddu, M.; Succu, S.; Porcu, C.; Leoni, G.G.; Sechi, P.; Bomboi, G.C.; Berlinguer, F. Commercial human kits’ applicability for the determination of biochemical parameters in sheep plasma. J. Vet. Med Sci. 2019, 81, 294–297. [Google Scholar] [CrossRef]
- Zinellu, A.; Sotgia, S.; Usai, M.F.; Pintus, G.; Deiana, L.; Carru, C. Improved method for plasma ADMA.; SDMA, and arginine quantification by field-amplified sample injection capillary electrophoresis UV detection. Anal. Bioanal. Chem. 2011, 399, 1815–1821. [Google Scholar] [CrossRef]
- Teerlink, T. Measurement of asymmetric dimethylarginine in plasma: Methodological considerations and clinical relevance. Clin. Chem. Lab. Med. 2005, 43, 1130–1138. [Google Scholar] [CrossRef]
- Zinellu, A.; Sotgia, S.; Deiana, L.; Carru, C. Analysis of neurotransmitter amino acids by CE-LIF detection in biological fluids. Methods Mol. Biol. 2013, 919, 35–42. [Google Scholar]
- Zinellu, A.; Sotgia, S.; Deiana, L.; Talanas, G.; Terrosu, P.; Carru, C. Simultaneous analysis of kynurenine and tryptophan in human plasma by capillary electrophoresis with UV detection. J. Sep. Sci. 2012, 35, 1146–1151. [Google Scholar] [CrossRef]
- Sotgia, S.; Zinellu, A.; Paliogiannis, P.; Pinna, G.A.; Mangoni, A.A.; Milanesi, L.; Carru, C. A diethylpyrocarbonate-based derivatization method for the LC-MS/MS measurement of plasma arginine and its chemically related metabolites and analogs. Clin. Chim. Acta 2019, 492, 29–36. [Google Scholar] [CrossRef]
- Christian, J.A.; Pugh, D.G. Appendix 2—Reference Intervals and Conversions. In Sheep and Goat Medicine, 2nd ed.; Pugh, D.G., Baird, A.N., Eds.; W.B. Saunders: Saint Louis, MO, USA, 2012; pp. 596–600. [Google Scholar]
- Tsikas, D.; Sandmann, J.; Savva, A.; Lueßen, P.; Böger, R.H.; Gutzki, F.M.; Mayer, B.; Frölich, J.C. Assessment of nitric oxide synthase activity in vitro and in vivo by gas chromatography-mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl. 2000, 742, 143–153. [Google Scholar] [CrossRef]
- Leiper, J.; Vallance, P. Biological significance of endogenous methylarginines that inhibit nitric oxide synthases. Cardiovasc. Res. 1999, 43, 542–548. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Zhang, H.; Wang, Z.; Fan, Y.; Guo, Y.; Wang, F. Dietary rumen-protected arginine and N-carbamylglutamate supplementation enhances fetal growth in underfed ewes. Reprod. Fertil. Dev. 2018, 30, 1116–1127. [Google Scholar] [CrossRef]
- Lassala, A.; Bazer, F.W.; Cudd, T.A.; Datta, S.; Keisler, D.H.; Satterfield, M.C.; Spencer, T.E.; Wu, G. Parenteral administration of L-arginine prevents fetal growth restriction in undernourished ewes. J. Nutr. 2010, 140, 1242–1248. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Wu, Z.; Dai, Z.; Yang, Y.; Wang, W.; Liu, C.; Wang, B.; Wang, J.; Yin, Y. Dietary requirements of “nutritionally non-essential amino acids” by animals and humans. Amino Acids 2013, 44, 1107–1113. [Google Scholar] [CrossRef] [PubMed]
- Satterfield, M.C.; Dunlap, K.A.; Keisler, D.H.; Bazer, F.W.; Wu, G. Arginine nutrition and fetal brown adipose tissue development in nutrient-restricted sheep. Amino Acids 2013, 45, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Sun, L.W.; Wang, Z.Y.; Deng, M.T.; Zhang, G.M.; Guo, R.H.; Ma, T.W.; Wang, F. Dietary N-carbamylglutamate and rumen-protected L-arginine supplementation ameliorate fetal growth restriction in undernourished ewes. J. Anim. Sci. 2016, 94, 2072–2085. [Google Scholar] [CrossRef]
- Vosatka, R.J.; Hassoun, P.M.; Harvey-Wilkes, K.B. Dietary L-arginine prevents fetal growth restriction in rats. Am. J. Obstet. Gynecol. 1998, 178, 242–246. [Google Scholar] [CrossRef]
- Morales, Y.; Cáceres, T.; May, K.; Hevel, J.M. Biochemistry and regulation of the protein arginine methyltransferases (PRMTs). Arch. Biochem. Biophys. 2016, 590, 138–152. [Google Scholar] [CrossRef]
- Zobel, E.H.; von Scholten, B.J.; Reinhard, H.; Persson, F.; Teerlink, T.; Hansen, T.W.; Parving, H.H.; Jacobsen, P.K.; Rossing, P. Symmetric and asymmetric dimethylarginine as risk markers of cardiovascular disease, all-cause mortality and deterioration in kidney function in persons with type 2 diabetes and microalbuminuria. Cardiovasc. Diabetol. 2017, 16, 88. [Google Scholar] [CrossRef] [Green Version]
- Tsikas, D.; Bollenbach, A.; Savvidou, M.D. Inverse correlation between maternal plasma asymmetric dimethylarginine (ADMA) and birthweight percentile in women with impaired placental perfusion: Circulating ADMA as an NO-independent indicator of fetal growth restriction? Amino Acids 2018, 50, 341–351. [Google Scholar] [CrossRef]
- Martín-Estal, I.; De La Garza, R.G.; Castilla-Cortázar, I. Intrauterine growth retardation (IUGR) as a novel condition of insulin-like growth factor-1 (IGF-1) deficiency. Rev. Physiol. Biochem. Pharmacol. 2016, 170, 1–35. [Google Scholar]
- Barbero, A.; Porcu, C.; Spezzigu, A.; Succu, S.; Dattena, M.; Gallus, M.; Molle, G.; Naitana, S.; Gonzalez-Bulnes, A.; Berlinguer, F. Changes in renal hemodynamics of undernourished fetuses appear earlier than IUGR evidences. J. Dev. Orig. Health Dis. 2018, 9, 338–343. [Google Scholar] [CrossRef]
- Laskowska, M.; Laskowska, K.; Terbosh, M.; Oleszczuk, J. A comparison of maternal serum levels of endothelial nitric oxide synthase, asymmetric dimethylarginine, and homocysteine in normal and preeclamptic pregnancies. Med. Sci. Monit. 2013, 19, 430–437. [Google Scholar]
- Herrmann, W.; Isber, S.; Obeid, R.; Herrmann, M.; Jouma, M. Concentrations of homocysteine, related metabolites and asymmetric dimethylarginine in preeclamptic women with poor nutritional status. Clin. Chem. Lab. Med. 2005, 43, 1139–1146. [Google Scholar] [CrossRef]
- Demir, B.; Demir, S.; Pasa, S.; Guven, S.; Atamer, Y.; Atamer, A.; Kocyigit, Y. The role of homocysteine, asymmetric dimethylarginine and nitric oxide in pre-eclampsia. J. Obstet. Gynaecol. 2012, 32, 525–528. [Google Scholar] [CrossRef]
- Mao, D.; Che, J.; Li, K.; Han, S.; Yue, Q.; Zhu, L.; Zhang, W.; Li, L. Association of homocysteine, asymmetric dimethylarginine, and nitric oxide with preeclampsia. Arch. Gynecol. Obstet. 2010, 282, 371–375. [Google Scholar] [CrossRef]
- Abu-Soud, H.M.; Wang, J.; Rousseau, D.L.; Stuehr, D.J. Stopped-flow analysis of substrate binding to neuronal nitric oxide synthase. Biochemistry 1999, 38, 12446–12451. [Google Scholar] [CrossRef]
- Tommasi, S.; Elliot, D.J.; Da Boit, M.; Gray, S.R.; Lewis, B.C.; Mangoni, A.A. Homoarginine and inhibition of human arginase activity: Kinetic characterization and biological relevance. Sci. Rep. 2018, 8, 3697. [Google Scholar] [CrossRef]
- Wu, G.; Bazer, F.W.; Davis, T.A.; Kim, S.W.; Li, P.; Rhoads, J.M.; Satterfield, M.C.; Smith, S.B.; Spencer, T.E.; Yin, Y. Arginine metabolism and nutrition in growth, health and disease. Amino Acids 2009, 37, 153–168. [Google Scholar] [CrossRef] [Green Version]
- Adams, S.; Che, D.; Qin, G.; Farouk, M.H.; Hailong, J.; Rui, H. Novel Biosynthesis, Metabolism and Physiological Functions of L-Homoarginine. Curr. Protein Pept. Sci. 2019, 20, 184–193. [Google Scholar] [CrossRef] [PubMed]
Ingredients | Feed-Restricted Diet | Control Diet |
---|---|---|
50% Energy Requirement | 100% Energy Requirement | |
Ryegrass hay | 316 | 281 |
Concentrate Low 1 | 684 | - |
Concentrate High 2 | - | 719 |
Dry matter | 902 | 886 |
Ash | 99 | 85 |
Ether Extract | 22 | 28 |
Crude protein | 133 | 121 |
Neutral Detergent Fibre | 465 | 393 |
Acid Detergent Fibre | 300 | 218 |
Acid Detergent Lignin | 83 | 30 |
Metabolizable energy | 1.442 | 1.926 |
Pregnancy (Days) | Group | ||
---|---|---|---|
Control (n) | Feed-Restricted (n) | p Value | |
Mean values | 149.5 ± 0.3 (30) | 150.5 ± 0.4 (29) | 0.031 |
Singleton | 149.4 ± 0.4 (14) | 150.8 ± 0.5 (11) | 0.049 |
Twins | 149.4 ± 0.6 (12) | 150.7 ± 0.5 (15) | 0.109 |
Triplets | 149.7 ± 1.2 (4) | 149.0 ± 0.1 (3) | 0.699 |
Lamb Weight (kg) | Group | ||
---|---|---|---|
Control (n) | Feed-Restricted (n) | p Value | |
Mean values | 3.27 ± 0.1 (47) | 2.57 ± 0.1 (52) | 0.001 |
Singleton | 3.72 ± 0.2 (14) a | 2.93 ± 0.2 (11) a | 0.007 |
Twins | 3.30 ± 0.1 (24) a | 2.59 ± 0.1 (30) a | 0.001 |
Triplets | 2.50 ± 0.6 (9) b | 2.17 ± 0.4 (11 *) b | 0.098 |
Variables | Litter Size | Treatments (T) | Day of Pregnancy | p-Values | ||||
---|---|---|---|---|---|---|---|---|
Controls | Feed-Restr. | 24 | 140 | T | D | T × D | ||
ALT (U/L) | Singletons | 25.9 ± 1.7 | 24.8 ± 2.0 | 26.2 ± 1.3 | 24.5 ± 1.6 | 0.696 | 0.175 | 0.526 |
Twins | 22.1 ± 1.4 | 25.0 ± 1.3 | 24.9 ± 1.4 | 22.1 ± 0.9 | 0.137 | 0.071 | 0.795 | |
Triplets | 20.6 ± 2.2 | 24.7 ± 2.2 | 25.6 ± 1.6 | 19.7 ± 1.7 | 0.246 | 0.002 | 0.810 | |
Albumin (g/dL) | Singletons | 3.5 ± 0.1 | 3.4 ± 0.1 | 3.5 ± 0.1 | 3.4 ± 0.1 | 0.626 | 0.325 | 0.224 |
Twins | 3.6 ± 0.1 | 3.5 ± 0.1 | 3.5 ± 0.1 | 3.5 ± 0.1 | 0.516 | 0.406 | 0.681 | |
Triplets | 3.5 ± 0.1 | 3.4 ± 0.1 | 3.6 ± 0.1 | 3.3 ± 0.1 | 0.681 | 0.078 | 0.994 | |
AST (U/L) | Singletons | 161.6 ± 19.0 | 141.5 ± 20.7 | 171.0 ± 21.9 | 132.1 ± 10.2 | 0.483 | 0.060 | 0.420 |
Twins | 144.8 ± 15.3 | 138.9 ± 14.1 | 155.7 ± 11.2 | 128.0 ± 11.0 | 0.781 | 0.002 | 0.436 | |
Triplets | 125.1 ± 15.4 | 108.3 ± 15.4 | 121.0 ± 7.0 | 112.5 ± 15.4 | 0.470 | 0.419 | 0.940 | |
Glucose (mg/dL) | Singletons | 82.3 ± 2.6 | 76.8 ± 2.9 | 81.9 ± 2.2 | 77.3 ± 2.0 | 0.167 | 0.014 | 0.507 |
Twins | 78.0 ± 1.9 | 76.7 ± 1.7 | 81.4 ± 1.0 | 73.3 ± 2.1 | 0.606 | 0.001 | 0.484 | |
Triplets | 72.9 ± 4.4 | 66.9 ± 4.4 | 77.0 ± 3.4 | 62.8 ± 4.5 | 0.377 | 0.030 | 0.088 | |
LDH (U/L) | Singletons | 556.0 ± 42.2 | 531.1 ± 49.9 | 577.0 ± 50.3 | 510.0 ± 26.2 | 0.707 | 0.163 | 0.234 |
Twins | 707.2 ± 122.0 | 549.9 ± 109.1 | 746.6 ± 163.4 | 510.5 ± 26.5 | 0.346 | 0.170 | 0.390 | |
Triplets | 535.5 ± 44.6 | 466.7 ± 44.6 | 490.7 ± 12.6 | 511.5 ± 52.9 | 0.317 | 0.653 | 0.360 | |
Progesterone (ng/mL) | Singletons | 12.6 ± 1.4 | 9.3 ± 1.6 | 6.8 ± 0.8 | 15.1 ± 1.5 | 0.141 | 0.000 | 0.099 |
Twins | 23.5 ± 2.3 | 15.6 ± 1.6 | 9.0 ± 1.3 | 30.1 ± 2.6 | 0.011 | 0.000 | 0.205 | |
Triplets | 25.1 ± 8.5 | 35.2 ± 7.4 | 11.9 ± 0.9 | 48.5 ± 11.2 | 0.411 | 0.023 | 0.319 | |
NEFA (mmol/L) | Singletons | 0.2 ± 0.0 | 0.2 ± 0.0 | 0.3 ± 0.0 | 0.1 ± 0.0 | 0.549 | 0.000 | 0.554 |
Twins | 0.3 ± 0.0 | 0.3 ± 0.0 | 0.4 ± 0.1 | 0.3 ± 0.0 | 0.750 | 0.055 | 0.738 | |
Triplets | 0.3 ± 0.1 | 0.2 ± 0.1 | 0.3 ± 0.0 | 0.2 ± 0.1 | 0.180 | 0.332 | 0.619 | |
Urea (mg/dL) | Singletons | 29.7 ± 1.5 | 31.4 ± 1.7 | 31.7 ± 1.6 | 29.5 ± 1.0 | 0.445 | 0.154 | 0.622 |
Twins | 26.7 ± 1.3 | 29.3 ± 1.2 | 29.3 ± 1.2 | 26.7 ± 1.0 | 0.166 | 0.057 | 0.161 | |
Triplets | 25.9 ± 2.2 | 29.1 ± 2.2 | 29.2 ± 2.6 | 25.7 ± 1.7 | 0.333 | 0.307 | 0.139 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berlinguer, F.; Porcu, C.; Molle, G.; Cabiddu, A.; Dattena, M.; Gallus, M.; Pasciu, V.; Succu, S.; Sotgiu, F.D.; Paliogiannis, P.; et al. Circulating Concentrations of Key Regulators of Nitric Oxide Production in Undernourished Sheep Carrying Single and Multiple Fetuses. Animals 2020, 10, 65. https://doi.org/10.3390/ani10010065
Berlinguer F, Porcu C, Molle G, Cabiddu A, Dattena M, Gallus M, Pasciu V, Succu S, Sotgiu FD, Paliogiannis P, et al. Circulating Concentrations of Key Regulators of Nitric Oxide Production in Undernourished Sheep Carrying Single and Multiple Fetuses. Animals. 2020; 10(1):65. https://doi.org/10.3390/ani10010065
Chicago/Turabian StyleBerlinguer, Fiammetta, Cristian Porcu, Giovanni Molle, Andrea Cabiddu, Maria Dattena, Marilia Gallus, Valeria Pasciu, Sara Succu, Francesca D. Sotgiu, Panagiotis Paliogiannis, and et al. 2020. "Circulating Concentrations of Key Regulators of Nitric Oxide Production in Undernourished Sheep Carrying Single and Multiple Fetuses" Animals 10, no. 1: 65. https://doi.org/10.3390/ani10010065