Fatty Acid Profiles from Routine Milk Recording as a Decision Tool for Body Weight Change of Dairy Cows after Calving
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Day Records for Milk Components and Fatty Acids
2.2. Bodyweight Records
2.3. Data Editing
2.4. Prediction Model
2.5. Model Development
3. Results and Discussion
3.1. Milk Fatty Acid Profiles
3.2. Relative BW Change
3.3. Model Performance and Evaluation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Variable | Training Set | SD | P1 | P99 | Count | Evaluation Set | SD | P1 | P99 | Count |
---|---|---|---|---|---|---|---|---|---|---|
Mean | Mean | |||||||||
Parity 1 | 42.8% | 40.9% | ||||||||
Parity 2 | 34.9% | 35.4% | ||||||||
Parity 3 | 22.3% | 23.7% | ||||||||
DIM | 21.7 | 8.10 | 7 | 35 | 21.7 | 8.19 | 7 | 35 | ||
Milk yield (kg) | 36.1 | 10.95 | 14.8 | 58.9 | 35.5 | 10.71 | 13.2 | 60.6 | ||
Fat (%) | 4.37 | 0.959 | 2.49 | 6.97 | 4.38 | 0.967 | 2.46 | 7.26 | ||
Protein (%) | 3.38 | 0.324 | 2.71 | 4.21 | 3.38 | 0.320 | 2.75 | 4.26 | ||
SCC | 225 | 701 | 7 | 3878 | 240 | 755 | 6 | 3359 | ||
BHB | 0.06 | 0.061 | 0.00 | 0.32 | 0.06 | 0.072 | 0.00 | 0.27 | ||
BWC (g/kg BW) | −0.62 | 3.714 | −8.99 | 5.70 | −0.66 | 2.889 | −8.79 | 5.47 | ||
Fatty acids (g/100 g milk) | ||||||||||
SFA | 2.62 | 0.583 | 1.43 | 4.09 | 2.62 | 0.576 | 1.40 | 4.29 | ||
MUFA | 1.28 | 0.399 | 0.65 | 2.54 | 1.29 | 0.415 | 0.63 | 2.58 | ||
PUFA | 0.17 | 0.046 | 0.07 | 0.28 | 0.17 | 0.046 | 0.07 | 0.30 | ||
SCFA | 0.43 | 0.104 | 0.22 | 0.69 | 0.43 | 0.101 | 0.22 | 0.73 | ||
LCFA | 1.83 | 0.576 | 0.85 | 3.65 | 1.85 | 0.600 | 0.80 | 3.64 | ||
MCFA | 1.55 | 0.381 | 0.79 | 2.52 | 1.55 | 0.378 | 0.79 | 2.62 | ||
C16:0 | 1.08 | 0.256 | 0.60 | 1.76 | 1.08 | 0.253 | 0.57 | 1.83 | ||
C14:0 | 0.36 | 0.090 | 0.19 | 0.59 | 0.36 | 0.087 | 0.19 | 0.62 | ||
C18:0 | 0.56 | 0.162 | 0.28 | 1.03 | 0.57 | 0.166 | 0.26 | 1.06 | ||
C18:1 | 1.15 | 0.382 | 0.54 | 2.38 | 1.16 | 0.398 | 0.51 | 2.37 |
References
- Jorritsma, R.; Wensing, T.; Kruip, T.A.M.; Vos, P.L.A.M.; Noordhuizen, J.P.T.M. Metabolic changes in early lactation and impaired reproductive performance in dairy cows. Vet. Res. 2003, 34, 11–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrew, S.M.; Waldo, D.R.; Erdman, R.A. Direct analysis of body composition of dairy cows at three physiological stages. J. Dairy Sci. 1994, 77, 3022–3033. [Google Scholar] [CrossRef]
- Grummer, R.R.; Rastani, R.R. Review: When should lactating dairy cows reach positive energy balance? Prof. Anim. Sci. 2003, 19, 197–203. [Google Scholar] [CrossRef]
- Bar-Peled, U.; Lehrer, A.R.; Folman, Y.; Bruckental, I.; Kali, J.; Gacitua, H.; Maltz, E.; Tagari, H.; Robinzon, B. Milk production, and some related nutritional and reproductive variables, of dairy cows under two different milking regimes in early lactation. In Prospects for Automatic Milking; EAAP Publ. No. 65; Ipema, A.H., Lipus, A.C., Metz, J.H.M., Rossing, W., Eds.; PU-DOC Scientific Publishers: Wageningen, The Netherlands, 1992; pp. 219–226. [Google Scholar]
- Roche, J.R.; Friggens, N.C.; Kay, J.K.; Fisher, M.W.; Stafford, K.J.; Berry, D.P. Invited review: Body condition score and its association with dairy cow productivity, health, and welfare. J. Dairy Sci. 2009, 92, 5769–5801. [Google Scholar] [CrossRef] [Green Version]
- Palmquist, D.L.; Beaulieu, D.; Barbano, D.M. Feed and animal factors influencing milk fat composition. J. Dairy Sci. 1993, 76, 753–1771. [Google Scholar] [CrossRef]
- Garnsworthy, P.C.; Masson, L.L.; Lock, A.L.; Mottram, T.T. Variation of milk citrate with stage of lactation and de novo fatty acid synthesis in dairy cows. J. Dairy Sci. 2006, 89, 1604–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hein, L.; Sørensen, L.P.; Kargo, M.; Buitenhuis, A.J. Genetic analysis of predicted fatty acid profiles of milk from Danish Holstein and Danish Jersey cattle populations. J. Dairy Sci. 2018, 101, 2148–2157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bossen, D.; Hlidasdottir, T.; Thorup, V.M. Diurnal variation in live weight for evaluation of feed ration allowance and intake. In Proceedings of the Precision Dairy Conference and Expo, Rochester, MA, USA, 26–27 June 2013; pp. 179–180. [Google Scholar]
- Elgersma, A.; Ellen, G.; van der Horst, H.; Boer, H.; Dekker, P.R.; Tamminga, S. Quick changes in milk fat composition from cows after transition from fresh grass to a silage diet. Anim. Feed Sci. Technol. 2004, 117, 13–27. [Google Scholar] [CrossRef]
- Gervais, R.; Université Laval, Québec, QC, Canada. Personal communication, 2020.
- Peres-Neto, P.R.; Jackson, D.A.; Somers, K.M. How many principal components? Stopping rules for determining the number of non-trivial axes revisited. Br. J. Stat. Psych. 2005, 49, 974–997. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar]
- Breiman, L. Statistical modeling: The two cultures. Stat. Sci. 2001, 16, 199–231. [Google Scholar]
- Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar]
- Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305. [Google Scholar]
- Williams, P.C.; Sobering, D.C. Comparison of commercial near infrared transmittance and reflectance instruments for analysis of whole grains and seeds. J. Near Infrared Spectrosc. 1993, 1, 25–32. [Google Scholar]
- Bellon-Maurel, V.; Fernandez-Ahumada, E.; Palagos, B.; Roger, J.-M.; McBratney, A. Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy. Trends Anal. Chem. 2010, 29, 1073–1081. [Google Scholar] [CrossRef]
- Biecek, P. DALEX: Explainers for Complex Predictive Models in R. J. Mach. Learn. Res. 2018, 19, 1–5. [Google Scholar]
- Gosiewska, A.; Biecek, P. Do not trust additive explanations. arvXi 2019, arXiv:1903.11420. [cs.LG]. Available online: https://arxiv.org/abs/1903.11420 (accessed on 22 October 2020).
- Van Straten, M.; Shpigel, N.Y.; Friger, M. Analysis of daily body weight of high-producing dairy cows in the first one hundred twenty days of lactation and associations with ovarian inactivity. J. Dairy Sci. 2008, 91, 3353–3362. [Google Scholar] [CrossRef] [Green Version]
- Christie, W.W. The composition, structure and function of lipids in the tissues of ruminant animals. In Lipid Metabolism in Ruminant Animals; Christie, W.W., Ed.; Pergamon Press: Oxford, UK, 1981; pp. 95–191. [Google Scholar]
- Artegoitia, V.; Meikle, A.; Olazabal, L.; Damián, J.P.; Adrien, M.L.; Mattiauda, D.A.; Bermudez, J.; Torre, A.; Carriquiry, M. Milk casein and fatty acid fractions in early lactation are affected by nutritional regulation of body condition score at the beginning of the transition period in primiparous and multiparous cows under grazing conditions. J. Anim. Physiol. Anim. (Berl.) 2014, 97, 919–932. [Google Scholar] [CrossRef]
- Mäntysaari, P.; Mäntysaari, E.A.; Kokkonen, T.; Mehtiö, T.; Kajava, S.; Grelet, C.; Lidauer, P.; Lidauer, M.H. Body and milk traits as indicators of dairy cow energy status in early lactation. J. Dairy Sci. 2019, 102, 7904–7916. [Google Scholar] [CrossRef] [Green Version]
- Zachut, M.; Moallem, U. Consistent magnitude of postpartum body weight loss within cows across lactations and the relation to reproductive performance. J. Dairy Sci. 2017, 100, 3143–3154. [Google Scholar] [CrossRef] [PubMed]
- Maltz, E.; Devir, S.; Metz, J.H.M.; Hegeveen, H. The body weight of the dairy cow: I. Introductory study into body weight changes in dairy cows as a management aid. Livest. Prod. Sci. 1997, 48, 175–186. [Google Scholar] [CrossRef]
- Enevoldsen, C.; Kristensen, T. Estimation of body weight from body size measurements and body conditions scores in dairy cows. J. Dairy Sci. 1997, 80, 1988–1995. [Google Scholar] [CrossRef]
- Santschi, D.E.; Lacroix, R.; Durocher, J.; Duplessis, M.; Moore, R.K.; Lefebvre, D.M. Prevalence of elevated milk β-hydroxybutyrate concentrations in Holstein cows measured by Fourier-transform infrared analysis in Dairy Herd Improvement milk samples and association with milk yield and components. J. Dairy Sci. 2016, 99, 9263–9270. [Google Scholar] [CrossRef]
- Tatone, E.H.; Duffield, T.F.; LeBlanc, S.J.; DeVries, T.J.; Gordon, J.L. Investigating the within-herd prevalence and risk factors for ketosis in dairy cattle in Ontario as diagnosed by the test-day concentration of β-hydroxybutyrate in milk. J. Dairy Sci. 2017, 100, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suthar, V.S.; Canelas-Raposo, J.; Deniz, A.; Heuwieser, W. Prevalence of subclinical ketosis and relationships with postpartum diseases in European dairy cows. J. Dairy Sci. 2013, 96, 2925–2938. [Google Scholar] [CrossRef] [Green Version]
- FOSS. Application Note 64; FOSS Analytical A/S: Hillerød, Denmark, 2009; pp. 11–12. [Google Scholar]
- Grelet, C.; Bastin, C.; Gelé, M.; Davière, J.-B.; Johan, M.; Werner, A.; Reding, R.; Fernandez Pierna, J.A.; Colinet, F.G.; Dardenne, P.; et al. Development of Fourier transform mid-infrared calibrations to predict acetone, β-hydroxybutyrate, and citrate contents in bovine milk through a European dairy network. J. Dairy Sci. 2016, 99, 4816–4825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, S.L.; Denholm, S.J.; Coffey, M.P.; Wall, E. Energy profiling of dairy cows from routine milk mid-infrared analysis. J. Dairy Sci. 2019, 102, 11169–11179. [Google Scholar] [CrossRef]
- McParland, S.; Banos, G.; Wall, E.; Coffey, M.P.; Soyeurt, H.; Veerkamp, R.F.; Berry, D.P. The use of mid-infrared spectrometry to predict body energy status of Holstein cows. J. Dairy Sci. 2011, 94, 3651–3661. [Google Scholar] [CrossRef] [Green Version]
Trait | Parity 1 (n = 8113) 1 | Parity 2 (n = 6698) 1 | Parity 3 (n = 4327) 1 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | P1 | P99 | Mean | SD | P1 | P99 | Mean | SD | P1 | P99 | |
Milk yield 1 (kg) | 27.4 | 6.5 | 11.6 | 42.9 | 41.1 | 8.8 | 17.1 | 60.6 | 43.3 | 9.6 | 16.7 | 63.3 |
Fat 1 (%) | 4.50 | 0.97 | 2.56 | 7.44 | 4.25 | 0.91 | 2.43 | 6.86 | 4.33 | 0.98 | 2.41 | 7.25 |
Protein 1 (%) | 3.41 | 0.31 | 2.78 | 4.22 | 3.37 | 0.33 | 2.72 | 4.28 | 3.34 | 0.34 | 2.71 | 4.26 |
Ratio fat-to-protein 1 | 1.32 | 0.28 | 0.77 | 2.19 | 1.26 | 0.27 | 0.73 | 2.10 | 1.30 | 0.29 | 0.75 | 2.28 |
BHB 1 (mmol/L) | 0.048 | 0.051 | 0.000 | 0.230 | 0.067 | 0.066 | 0.000 | 0.293 | 0.077 | 0.075 | 0.000 | 0.337 |
Fatty acid 1 (g/100 g of milk) | ||||||||||||
C14:0 | 0.37 | 0.09 | 0.20 | 0.63 | 0.36 | 0.09 | 0.19 | 0.59 | 0.36 | 0.09 | 0.18 | 0.61 |
C16:0 | 1.11 | 0.25 | 0.62 | 1.87 | 1.05 | 0.25 | 0.56 | 1.74 | 1.05 | 0.26 | 0.56 | 1.81 |
C18:0 | 0.59 | 0.17 | 0.29 | 1.09 | 0.54 | 0.15 | 0.25 | 0.98 | 0.56 | 0.17 | 0.26 | 1.08 |
C18:1 | 1.20 | 0.40 | 0.54 | 2.46 | 1.11 | 0.35 | 0.51 | 2.22 | 1.15 | 0.40 | 0.51 | 2.48 |
SFA | 2.68 | 0.58 | 1.48 | 4.39 | 2.57 | 0.57 | 1.33 | 4.03 | 2.60 | 0.60 | 1.40 | 4.32 |
MUFA | 1.33 | 0.41 | 0.66 | 2.67 | 1.23 | 0.37 | 0.62 | 2.42 | 1.28 | 0.42 | 0.62 | 2.65 |
PUFA | 0.17 | 0.05 | 0.08 | 0.31 | 0.16 | 0.04 | 0.01 | 0.28 | 0.16 | 0.04 | 0.07 | 0.30 |
SCFA | 0.43 | 0.11 | 0.23 | 0.74 | 0.43 | 0.10 | 0.22 | 0.69 | 0.44 | 0.10 | 0.23 | 0.72 |
MCFA | 1.59 | 0.37 | 0.84 | 2.68 | 1.52 | 0.38 | 0.75 | 2.51 | 1.52 | 0.39 | 0.76 | 2.64 |
LCFA | 1.90 | 0.59 | 0.85 | 3.74 | 1.76 | 0.54 | 0.78 | 3.42 | 1.83 | 0.60 | 0.79 | 3.77 |
Initial BW 2 (kg) | 572 | 60.3 | 432 | 717 | 641 | 64.8 | 491 | 804 | 681 | 70.7 | 523 | 854 |
Average BW 3 (kg) | 603 | 66.1 | 458 | 772 | 656 | 67.7 | 505 | 834 | 689 | 70.2 | 531 | 870 |
BWC 4 (g/kg of BW per day) | −0.52 | 2.65 | −7.77 | 5.17 | −0.64 | 2.82 | −9.06 | 5.59 | −0.82 | 5.53 | −10.50 | 8.57 |
Model Metric 1 | Grouped by Animal 2 | Evaluation | Grouped by Herd 3 | Evaluation |
---|---|---|---|---|
Cross-Validation | Cross-Validation | |||
Pearson’s r | 0.95 | 0.49 | 0.94 | 0.55 |
Lin’s CCC | 0.85 | 0.39 | 0.83 | 0.46 |
R2 | 0.91 | 0.24 | 0.89 | 0.31 |
RMSEP | 1.69 | 2.57 | 1.79 | 2.33 |
MAE | 0.76 | 1.71 | 0.73 | 1.71 |
RPD | 2.18 | 1.15 | 2.08 | 1.20 |
RPIQ | 1.81 | 1.19 | 1.70 | 1.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dettmann, F.; Warner, D.; Buitenhuis, B.; Kargo, M.; Kjeldsen, A.M.H.; Nielsen, N.H.; Lefebvre, D.M.; Santschi, D.E. Fatty Acid Profiles from Routine Milk Recording as a Decision Tool for Body Weight Change of Dairy Cows after Calving. Animals 2020, 10, 1958. https://doi.org/10.3390/ani10111958
Dettmann F, Warner D, Buitenhuis B, Kargo M, Kjeldsen AMH, Nielsen NH, Lefebvre DM, Santschi DE. Fatty Acid Profiles from Routine Milk Recording as a Decision Tool for Body Weight Change of Dairy Cows after Calving. Animals. 2020; 10(11):1958. https://doi.org/10.3390/ani10111958
Chicago/Turabian StyleDettmann, Franziska, Daniel Warner, Bart Buitenhuis, Morten Kargo, Anne Mette Hostrup Kjeldsen, Niels Henning Nielsen, Daniel M. Lefebvre, and Debora E. Santschi. 2020. "Fatty Acid Profiles from Routine Milk Recording as a Decision Tool for Body Weight Change of Dairy Cows after Calving" Animals 10, no. 11: 1958. https://doi.org/10.3390/ani10111958
APA StyleDettmann, F., Warner, D., Buitenhuis, B., Kargo, M., Kjeldsen, A. M. H., Nielsen, N. H., Lefebvre, D. M., & Santschi, D. E. (2020). Fatty Acid Profiles from Routine Milk Recording as a Decision Tool for Body Weight Change of Dairy Cows after Calving. Animals, 10(11), 1958. https://doi.org/10.3390/ani10111958