Oxidative and Epigenetic Changes and Gut Permeability Response in Early-Treated Chickens with Antibiotic or Probiotic
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Chicken Experiment
2.2. Sampling Procedures
2.3. Ethical Statement
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Juśkiewicz, J.; Zduńczyk, Z.; Jankowski, J.; Król, B. Caecal metabolism in young turkeys fed diets supplemented with oligosaccharides. Arch. Geflugelkd. 2002, 66, 206–210. [Google Scholar]
- Mikulski, D.; Zduńczyk, Z.; Jankowski, J.; Juśkiewicz, J. Effects of organic acids or natural plant extracts added to diets for turkeys on growth performance, gastrointestinal tract metabolism and carcass characteristics. J. Anim. Feed Sci. 2008, 17, 233–246. [Google Scholar] [CrossRef] [Green Version]
- Jankowski, J.; Zduńczyk, Z.; Juskiewicz, J.; Kozłowski, K.; Lecewicz, A.; Jeroch, H. Gastrointestinal tract and metabolic response of broilers to diets with the Macleaya cordata alkaloid extract. Arch. Geflugelkd. 2009, 73, 95–101. [Google Scholar]
- Zhang, L.; Zhang, L.; Zhan, X.; Zeng, X.; Zhou, L.; Cao, G.; Chen, A.; Yang, C. Effects of dietary supplementation of probiotic, Clostridium butyricum, on growth performance, immune response, intestinal barrier function, and digestive enzyme activity in broiler chickens challenged with Escherichia coli K88. J. Anim. Sci. Biotechnol. 2016, 7, 3. [Google Scholar] [CrossRef] [Green Version]
- Shang, Y.; Kumar, S.; Oakley, B.; Kim, W.K. Chicken Gut Microbiota: Importance and Detection Technology. Front. Vet. Sci. 2018, 5, 254. [Google Scholar] [CrossRef] [PubMed]
- Khalifeh, M.S.; Amawi, M.M.; Abu-Basha, E.A.; Yonis, I.B. Assessment of humoral and cellular-mediated immune response in chickens treated with tilmicosin, florfenicol, or enrofloxacin at the time of Newcastle disease vaccination. Poult. Sci. 2009, 88, 2118–2124. [Google Scholar] [CrossRef]
- Chrząstek, K.; Wieliczko, A. The influence of enrofloxacin, florfenicol, ceftiofur and E. coli LPS interaction on T and B cells subset in chicks. Vet. Res. Commun. 2015, 39, 53–60. [Google Scholar]
- Hassanin, O.; Abdallah, F.; Awad, A. Effects of florfenicol on the immune responses and the interferon-inducible genes in broiler chickens under the impact of E. coli infection. Vet. Res. Commun. 2014, 38, 51–58. [Google Scholar] [CrossRef]
- Tokarzewski, S. Influence of enrofloxacin and chloramphenicol on the level of IgY in serum and egg yolk after immunostimulation of hens with Salmonella Enteritidis antigens. Pol. J. Vet. Sci. 2002, 5, 151–158. [Google Scholar]
- Laxminarayan, R.; Heymann, D.L. Challenges of drug resistance in the developing world. BMJ 2012, 344, e1567. [Google Scholar] [CrossRef] [Green Version]
- Bartkiene, E.; Ruzauskas, M.; Bartkevics, V.; Pugajeva, I.; Zavistanaviciute, P.; Starkute, V.; Zokaityte, E.; Lele, V.; Dauksiene, A.; Grashorn, M.; et al. Study of the antibiotic residues in poultry meat in some of the EU countries and selection of the best compositions of lactic acid bacteria and essential oils against Salmonella enterica. Poult. Sci. 2020. [Google Scholar] [CrossRef] [PubMed]
- Patterson, J.A.; Burkholder, K.M. Application of prebiotics and probiotics in poultry production. Poult. Sci. 2003, 82, 627–631. [Google Scholar] [CrossRef] [PubMed]
- Gaggia, F.; Mattarelli, P.; Biavati, B. Probiotics and prebiotics in animal feeding for safe food production. Int. J. Food Microbiol. 2010, 141, S15–S28. [Google Scholar] [CrossRef] [PubMed]
- Krauze, M.; Abramowicz, K.; Ognik, K. The effect of addition of probiotic bacteria (Bacillus subtilis or Enterococcus faecium) or phytobiotic containing cinnamon oil to drinking water on the health and performance of broiler. Ann. Anim. Sci. 2020, 20, 191–205. [Google Scholar] [CrossRef] [Green Version]
- Ajuwon, K.M. Toward a better understanding of mechanisms of probiotics and prebiotics action in poultry species. J. Appl. Poult. Res. 2016, 25, 277–283. [Google Scholar] [CrossRef]
- Chen, F.; Zhu, L.; Qiu, H. Isolation and probiotic potential of Lactobacillus salivarius and Pediococcus pentosaceus in specific pathogen free chickens. Rev. Bras. Cienc. Avic. 2017, 19, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Sarangi, N.R.; Babu, L.K.; Kumar, A.; Pradhan, C.R.; Pati, P.K.; Mishra, J.P. Effect of dietary supplementation of prebiotic, probiotic, and synbiotic on growth performance and carcass characteristics of broiler chickens. Vet. World 2016, 9, 313–319. [Google Scholar] [CrossRef] [Green Version]
- Ghadban, G. Probiotics in broiler production—A review. Arch. Geflugelkd. 2002, 66, 49–58. [Google Scholar]
- Abramowicz, K.; Krauze, M.; Ognik, K. Use of Bacillus subtilis PB6 enriched with choline to improve growth performance, immune status, histological parameters and intestinal microbiota of broiler chickens. Anim. Prod. Sci. 2020, 60, 625–634. [Google Scholar] [CrossRef]
- Ognik, K.; Cholewińska, E.; Krauze, M.; Abramowicz, K.; Matusevicius, P. The effect of a probiotic preparation containing Enterococcus faecium DSM 7134 for chickens on growth performance, immune status, and the histology and microbiological profile of the jejunum. Anim. Prod. Sci. 2019, 59, 101–108. [Google Scholar] [CrossRef]
- Hilmarsson, H.; Thormar, H.; Thranisson, J.H.; Gunnarsson, E.; Dadatottir, S. Effect of glycerol monocaprate (monocaprin) on broiler chickens: An attempt at reducing intestinal Campylobacter infection. Poult. Sci. 2006, 85, 588–592. [Google Scholar] [CrossRef] [PubMed]
- Willis, W.L.; Reid, L. Investigating the effects of dietary probiotic feeding regimens on broiler chicken production and Campylobacter jejuni presence. Poult. Sci. 2008, 87, 606–611. [Google Scholar] [CrossRef] [PubMed]
- Dunislawska, A.; Slawinska, A.; Siwek, M. Hepatic DNA methylation in response to early stimulation of microbiota with Lactobacillus synbiotics in broiler chickens. Genes 2020, 11, 579. [Google Scholar] [CrossRef] [PubMed]
- Borrmann, E.; Berndt, A.; Hanel, L.; Kohler, H. Campylobacter induced interleukin-8 responses in human intestinal epithelial cells and primary intestinal chick cells. Vet. Microbiol. 2007, 124, 115–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brisbin, J.T.; Gong, J.; Sharif, S. Interactions between commensal bacteria and the gut-associated immune system of the chicken. Anim. Health Res. Rev. 2008, 9, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Van Deun, K.; Pasmans, F.; Ducatelle, R.; Flahou, B.; Vissenberg, K.; Martel, A.; Van den Broeck, W.; Van Immerseel, F.; Haesebrouck, F. Colonization strategy of campylobacter jejuni results in persistent infection of the chicken gut. Vet. Microbiol. 2008, 130, 285–297. [Google Scholar] [CrossRef]
- Teirlynck, E.; Bjerrum, L.; Eeckhaut, V.; Huygebaert, G.; Pasmans, F.; Haesebrouck, F.; Dewulf, J.; Ducatelle, R.; Van Immerseel, F. The cereal type in feed influences gut wall morphology and intestinal immune cell infiltration in broiler chickens. Br. J. Nutr. 2009, 102, 1453–1461. [Google Scholar] [CrossRef]
- Lu, H.; Adedokun, S.A.; Adeola, L.; Ajuwon, K.M. Anti-inflammatory effects of non-antibiotic alternatives in coccidia challenged broiler chickens. J. Poult. Sci. 2014, 51, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Aviagen 2014. Ross 308 Broiler: Performance Objectives. Available online: http://en.aviagen.com/assets/Tech_Center/Ross_PS/Ross308-PS-NS-2016-EN.pdf (accessed on 13 May 2020).
- Smulikowska, S.; Rutkowski, A. Recommended Allowances and Nutritive Value of Feedstuffs. Poultry Feeding Standards, 4th ed.; Smulikowska, S., Rutkowski, A., Eds.; The Kielanowski Institute of Animal Physiology and Nutrition, PAS: Jabłonna, Poland, 2005. (In Polish) [Google Scholar]
- Dibner, J.J.; Richards, J.D. Antibiotic growth promoter in agriculture: History and mode of action. Poult. Sci. 2005, 84, 634–643. [Google Scholar] [CrossRef] [PubMed]
- Engster, H.M.; Marvil, D.; Stewart-Brown, B. The effect of withdrawing growth promoting antibiotics from broiler chickens: A long-term commercial industry study. J. Appl. Poult. Res. 2002, 11, 431–436. [Google Scholar] [CrossRef]
- Da Costa, P.M.; Oliveira, M.; Ramos, B.; Bernardo, F. The impact of antimicrobial use in broiler chickens on growth performance and on the occurrence of antimicrobial-resistant Escherichia coli. Livest. Sci. 2011, 136, 262–269. [Google Scholar] [CrossRef]
- Gilani, S.; Howarth, G.S.; Kitessa, S.M.; Forder, R.E.A.; Tran, C.D.; Hughes, R.J. New biomarkers for intestinal permeability induced by lipopolysaccharide in chickens. Anim. Prod. Sci. 2016, 56, 1984–1997. [Google Scholar] [CrossRef]
- Nieto, N.; Torres, M.I.; Fernández, M.I.; Girón, M.D.; Ríos, A.; Suárez, M.D.; Gil, A. Experimental ulcerative colitis impairs antioxidant defense system in rat intestine. Dig. Dis. Sci. 2000, 45, 1820–1827. [Google Scholar] [CrossRef] [PubMed]
- Song, W.B.; Wang, Y.Y.; Meng, F.S.; Zhang, Q.H.; Zeng, J.Y.; Xiao, L.P.; Yu, X.P.; Peng, D.D.; Su, L.; Xiao, B.; et al. Curcumin protects intestinal mucosal barrier function of rat enteritis via activation of MKP-1 and attenuation of p38 and NF-kB activation. PLoS ONE 2010, 5, e12969. [Google Scholar] [CrossRef]
- Leber, B.; Tripolt, N.J.; Blattl, D.; Eder, M.; Wascher, T.C.; Pieber, T.R.; Stauber, R.; Sourij, H.; Oettl, K.; Stadlbauer, V. The influence of probiotic supplementation on gut permeability in patients with metabolic syndrome: An open label, randomized pilot study. Eur. J. Clin. Nutr. 2012, 66, 1110–1115. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.J.; Zhou, Y.M.; Wu, Y.N.; Zhang, L.L.; Wang, T. The effects of natural and modified clinoptilolite on intestinal barrier function and immune response to LPS in broiler chickens. Vet. Immunol. Immunopathol. 2013, 153, 70–76. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Chen, Y.P.; Yang, M.X.; Zhang, L.L.; Lu, Z.X.; Zhou, Y.M.; Wang, T. Bacillus amyloliquefaciens supplementation alleviates immunological stress and intestinal damage in lipopolysaccharide challenged broilers. Anim. Feed Sci. Technol. 2015, 208, 119–131. [Google Scholar] [CrossRef]
- Fernandes, B.C.S.; Martins, M.R.F.B.; Mendes, A.A.; Milbradt, E.L.; Sanfelice, C.; Martins, B.B.; Aguiar, E.F.; Bresne, C. Intestinal integrity and performance of broiler chickens fed a probiotic, a prebiotic, or an organic acid. Braz. J. Poult. Sci. 2014, 16, 417–424. [Google Scholar] [CrossRef] [Green Version]
- Taylor, R. Hindgut Function in Laying Hens. A Report for the Rural Industries Research and Development Corporation; Publication No. 02/043; Rural Industries Research and Development Corporation: Newcastle, Australia, 2001. [Google Scholar]
- Dalle-Donne, I.; Scaloni, A.; Giustarini, D.; Cavarra, E.; Tell, G.; Lungarella, G.; Colombo, R.; Rossi, R.; Milzani, A. Protein as biomarkers of oxidative/nitrosative stress in diseases: The contribution of redox proteomics. Mass Spectrom. Rev. 2005, 24, 55–99. [Google Scholar] [CrossRef]
- Xue, S.; Hu, J.; Cheng, H.; Kim, Y.H.B. Effects of probiotic supplementation and postmortem storage condition on the oxidative stability of M. Pectoralis major of laying hens. Poult. Sci. 2019, 98, 7158–7169. [Google Scholar] [CrossRef]
- Alak, G.; Yeltekin, A.C.; Tas, H.I.; Ucar, A.; Parlak, V.; Topal, A.; Kocaman, E.M.; Atamanal, M. Investigation of 8-OHdG, CYP1A, HSP70 and transcriptional analyses of antioxidant defence system I liver tissues of rainbow trout exposed to eprinomectin. Fish Shellfish Immunol. 2017, 65, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N. Epigenetic modulation of DNA methylation by nutrition and its mechanisms in animals. Anim. Nutr. 2015, 1, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Hing, B.; Braun, P.; Cordner, Z.A.; Ewald, E.R.; Moody, L.; McKane, M.; Willour, V.L.; Tamashiro, K.L.; Potash, J.B. Chronic social stress induces DNA methylation changes at an evolutionary conserved intergenic region in chromosome X. Epigenetics 2018, 13, 627–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ansari, I.; Raddatz, G.; Gutekunst, J.; Ridnik, M.; Cohen, D.; Abu-Remaileh, M.; Tuganbaev, T.; Shapiro, H.; Pikarsky, E.; Elinav, E.; et al. The microbiota programs DNA methylation to control intestinal homeostasis and inflammation. Nat. Microbiol. 2020, 5, 610–619. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Chen, F.; Wu, T.; Tang, H.; Zhao, Z. Prebiotic oligosaccharides change the concentrations of short-chain fatty acids and the microbial population of mouse bowel. J. Zhejiang Univ. Sci. B 2009, 10, 258–263. [Google Scholar] [CrossRef] [Green Version]
- Paul, B.; Barnes, S.; Demark-Wahnefried, W.; Morrow, C.; Salvador, C.; Skibola, C.; Tollefsbol, T.O. Influences of diet and the gut microbiome on epigenetic modulation in cancer and other diseases. Clin. Epigenet. 2015, 7, 112. [Google Scholar] [CrossRef] [Green Version]
- Gelen, V.; Gelen, S.U.; Celebi, F.; Cinar, A.; Yildirim, S.; Eser, G. The protective effect of Lactobacillus rhamnosus, Lactobacillus fermentum and lactobacillus brevis against cisplatin-induced hepatic damage in rats. Fresenius Environ. Bull. 2019, 28, 7583–7592. [Google Scholar]
- De Souza-Pinto, N.C.; Eide, L.; Hogue, B.A.; Thybo, T.; Stevnsner, T.; Seeberg, E.; Klungland, A.; Bohr, V.A. Repair of 8-oxodeoxyguanosine lesions in mitochondrial DNA depends on the oxoguanine DNA glycosylase (OGG1) gene and 8-oxoguanine accumulates in the mitochondrial DNA of OGG1-defective mice. Cancer Res. 2001, 61, 5378–5381. [Google Scholar]
- Oezguen, N.; Schein, C.H.; Peddi, S.R.; Power, T.D.; Izumi, T.; Braun, W.A. Moving metal mechanism for substrate cleavage by the DNA repair endonuclease APE-1. Proteins Struct. Funct. Bioinform. 2007, 68, 313–323. [Google Scholar] [CrossRef]
- Fischer, C.D.; Beatty, J.K.; Zvaigzne, C.G.; Morck, D.W.; Lucas, M.J.; Buret, A.G. Anti-inflammatory benefits of antibiotic-induced neutrophil apoptosis: Tulathromycin induces caspase-3-dependent neutrophil programmed cell death and inhibits NF-B signaling and CXCL8 transcription. Antimicrob. Agents Chemiother. 2011, 55, 338–348. [Google Scholar] [CrossRef]
- Daigle, I.; Simon, H.U. Critical role for caspases 3 and 8 in neutrophil but not eosinophil apoptosis. Int. Arch. Allergy Immunol. 2001, 126, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Mazidi, M.; Rezaie, P.; Ferns, G.A.; Vatanparas, H. Impact of probiotic administration on sSerum C-reactive protein concentrations: Systematic review and meta-analysis of randomized control trials. Nutrients 2017, 9, 20. [Google Scholar] [CrossRef] [PubMed]
- Pomorska-Mól, M.; Czyżewska-Dors, E.; Kwit, K.; Pejsak, Z. Enrofloxacin decreases IL-6 and TNF-alpha production by lipopolysaccharide-stimulated porcine peripheral blood mononuclear cells. J. Vet. Res. 2016, 60, 189–193. [Google Scholar] [CrossRef] [Green Version]
- Alipour, B.; Homayouni-Rad, A.; Vaghef-Mehrabany, E.; Sharif, S.K.; Vaghef-Mehrabany, L.; Asghari-Jafarabadi, M.; Nakhjavani, M.R.; Mohtadi-Nia, J. Effects of Lactobacillus casei supplementation on disease activity and inflammatory cytokines in rheumatoid arthritis patients: A randomized double-blind clinical trial. Int. J. Rheum. Dis. 2014, 17, 519–527. [Google Scholar] [PubMed]
- Amdekar, S.; Singh, V.; Singh, R.; Sharma, P.; Keshav, P.; Kumar, A. Lactobacillus casei reduces the inflammatory joint damage associated with collagen-induced arthritis (CIA) by reducing the pro-inflammatory cytokines: Lactobacillus casei: Cox-2 inhibitor. J. Clin. Immunol. 2011, 31, 147–154. [Google Scholar] [CrossRef]
Ingredients | Starter (1–14 Days) | Grower (15–35 Days) |
---|---|---|
Wheat | 64.071 | 64.586 |
Soybean meal | 28.772 | 21.085 |
Rapeseed meal | - | 50.0 |
Soybean oil | 3.232 | 5.868 |
Limestone | 1.349 | 1.277 |
L-Lysine | 0.403 | 0.318 |
DL-Methionine | 0.301 | 0.227 |
L-Threonine | 0.077 | 0.081 |
MCP | 0.956 | 0.742 |
NaCl | 0.339 | 0.316 |
Vitamin and mineral premix 1 | 0.50 | 0.50 |
Calculated analysis 2 | ||
AMEn MJ/kg | 12.35 | 12.98 |
Crude protein | 24.97 | 29.13 |
Lysine | 1.35 | 1.16 |
Methionine | 0.604 | 0.517 |
Met. + Cys. | 1.00 | 0.900 |
Threonine | 0.830 | 0.770 |
Ca | 0.900 | 0.850 |
P | 0.637 | 0.590 |
P available | 0.400 | 0.350 |
Item | Casp 3 ng/mL | Casp 8 ng/mL | 8-OHdG ng/mL | OGG1 ng/mL | APEX-1 ng/L | DAO U/L | LA mmol/L | PC nmol/mg Protein | % DNA Methylation | CRP mg/dL |
---|---|---|---|---|---|---|---|---|---|---|
Treatment 1 | ||||||||||
GC | 0.127 | 35.97 ab | 0.742 | 18.87 | 216.0 | 9.486 a | 0.328 a | 3.023 | 72.38 a | 1.210 a |
±0.057 | ±3.89 | ±0.109 | ±6.55 | ±75.1 | ±2.400 | ±0.059 | ±0.745 | ±8.34 | ±0.100 | |
GP | 0.139 | 39.07 a | 0.746 | 25.93 | 231.8 | 8.077 ab | 0.220 b | 2.524 | 71.27 a | 1.094 b |
±0.066 | ±4.48 | ±0.197 | ±9.39 | ±94.0 | ±1.265 | ±0.048 | ±0.303 | ±6.25 | ±0.071 | |
GA | 0.145 | 32.75 b | 0.728 | 22.27 | 267.0 | 7.186 b | 0.345 a | 3.119 | 58.79 b | 1.067 b |
±0.097 | ±6.78 | ±0.221 | ±4.27 | ±82.2 | ±0.989 | ±0.120 | ±0.523 | ±9.04 | ±0.044 | |
SEM | 0.013 | 1.034 | 0.032 | 1.354 | 15.34 | 0.342 | 0.018 | 0.113 | 1.810 | 0.018 |
p-value | 0.864 | 0.038 | 0.973 | 0.101 | 0.394 | 0.016 | 0.004 | 0.063 | 0.001 | <0.001 |
Item | Casp 3 ng/g | Casp 8 ng/g | 8-OHdG ng/g | OGG1 ng/g | APEX-1 ng/g | DAO U/g | LA mmol/g | PC nmol/mg Protein | % DNA Methylation |
---|---|---|---|---|---|---|---|---|---|
Treatment 1 | |||||||||
GC | 30.28 b ± 9.74 | 48.57 ± 6.45 | 39.36 ± 14.31 | 43.27 a ± 9.70 | 2791.3 a ± 548.5 | 0.165 a ± 0.060 | 0.015 a ± 0.006 | 40.08 b ± 6.77 | 41.17 a ± 4.29 |
GP | 32.13 ab ± 9.09 | 49.57 ± 9.91 | 49.10 ± 18.20 | 24.59 b ± 9.76 | 1545.4 b ± 537.7 | 0.069 b ± 0.031 | 0.009 b ± 0.003 | 47.92 a ± 7.70 | 34.08 b ± ±4.21 |
GA | 41.97 a ± 9.89 | 54.88 ± 12.65 | 43.18 ± 15.26 | 33.38 ab ± 9.74 | 2162.1 ab ± 613.0 | 0.109 b ± 0.041 | 0.011 ab ± 0.003 | 48.35 a ± 8.72 | 30.55 b ± 5.34 |
SEM | 1.939 | 1.834 | 2.917 | 2.225 | 137.5 | 0.011 | 0.001 | 1.540 | 1.158 |
p-value | 0.024 | 0.331 | 0.403 | <0.001 | <0.001 | <0.001 | 0.011 | 0.042 | <0.001 |
Item | Casp 3 ng/g | Casp 8 ng/g | 8-OHdG ng/g | OGG1 ng/g | APEX-1 ng/g | DAO U/g | LA mmol/g | PC nmol/mg Protein | % DNA Methylation |
---|---|---|---|---|---|---|---|---|---|
Treatment 1 | |||||||||
GC | 23.58 a ± 2.66 | 27.12 a ± 5.76 | 28.50 b ± 7.65 | 48.81 a ± 7.92 | 2940.3 a ± 412.6 | 0.159 a ± 0.015 | 0.012 a ± 0.004 | 82.70 ± 14.18 | 36.97 b ± 5.06 |
GP | 19.33 ab ± 6.76 | 26.40 a ± 3.72 | 39.43 a ± 5.55 | 33.61 b ± 8.41 | 2094.6 b ± 430.4 | 0.075 b ± 0.016 | 0.007 b ± 0.004 | 83.47 ± 15.65 | 44.85 a ± 8.95 |
GA | 15.85 b ± 3.33 | 9.43 b ± 4.47 | 34.59 ab ± 6.24 | 24.81 c ± 7.41 | 1422.2 c ± 594.8 | 0.084 b ± 0.038 | 0.010 ab ± 0.005 | 79.39 ± 17.82 | 28.49 c ± 4.70 |
SEM | 1.003 | 1.731 | 1.420 | 2.311 | 143.7 | 0.008 | 0.001 | 2.830 | 1.692 |
p-value | 0.003 | <0.001 | 0.004 | <0.001 | <0.001 | <0.001 | 0.036 | 0.832 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ognik, K.; Konieczka, P.; Stępniowska, A.; Jankowski, J. Oxidative and Epigenetic Changes and Gut Permeability Response in Early-Treated Chickens with Antibiotic or Probiotic. Animals 2020, 10, 2204. https://doi.org/10.3390/ani10122204
Ognik K, Konieczka P, Stępniowska A, Jankowski J. Oxidative and Epigenetic Changes and Gut Permeability Response in Early-Treated Chickens with Antibiotic or Probiotic. Animals. 2020; 10(12):2204. https://doi.org/10.3390/ani10122204
Chicago/Turabian StyleOgnik, Katarzyna, Paweł Konieczka, Anna Stępniowska, and Jan Jankowski. 2020. "Oxidative and Epigenetic Changes and Gut Permeability Response in Early-Treated Chickens with Antibiotic or Probiotic" Animals 10, no. 12: 2204. https://doi.org/10.3390/ani10122204
APA StyleOgnik, K., Konieczka, P., Stępniowska, A., & Jankowski, J. (2020). Oxidative and Epigenetic Changes and Gut Permeability Response in Early-Treated Chickens with Antibiotic or Probiotic. Animals, 10(12), 2204. https://doi.org/10.3390/ani10122204