Defatted Rice Bran Supplementation in Diets of Finishing Pigs: Effects on Physiological, Intestinal Barrier, and Oxidative Stress Parameters
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Animals and Design
2.2. Diets and Feeding Management
2.3. Sample Collection
2.4. Blood Sample Analysis
2.5. Assays of Secretory Immunoglobulin A (SIgA), IgM, and Cytokines Concentration
2.6. RNA Extraction and Gene Expression Analysis
2.7. Statistical Analysis
3. Results
3.1. Blood Cell Counts
3.2. Serum Biochemistry Parameters
3.3. Intestinal Immune Barrier
3.4. Intestinal Chemical Barrier
3.5. Oxidative Stress Index
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Leeson, S. Future considerations in poultry nutrition. Poult. Sci. 2012, 91, 1281–1285. [Google Scholar] [CrossRef]
- Sookwong, P.; Mahatheeranont, S. Some Strategies for Utilization of Rice Bran Functional Lipids and Phytochemicals. J. Oleo Sci. 2018, 67, 669–678. [Google Scholar] [CrossRef] [Green Version]
- Law, B.M.H.; Waye, M.M.Y.; So, W.K.W.; Chair, S.Y. Hypotheses on the Potential of Rice Bran Intake to Prevent Gastrointestinal Cancer through the Modulation of Oxidative Stress. Int. J. Mol. Sci. 2017, 18, 1352. [Google Scholar]
- Wiboonsirikul, J.; Kimura, Y.; Kanaya, Y.; Tsuno, T.; Adachi, S. Production and characterization of functional substances from a by-product of rice bran oil and protein production by a compressed hot water treatment. Biosci. Biotechnol. Biochem. 2008, 72, 384–392. [Google Scholar] [CrossRef]
- Ryan, E.P. Bioactive food components and health properties of rice bran. J. Am. Vet. Med. Assoc. 2011, 238, 593–600. [Google Scholar] [CrossRef]
- Park, H.Y.; Lee, K.W.; Choi, H.D. Rice bran constituents: Immunomodulatory and therapeutic activities. Food Funct. 2017, 8, 935–943. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Hu, S.; Nie, S.; Yu, Q.; Xie, M. Reviews on Mechanisms of In Vitro Antioxidant Activity of Polysaccharides. Oxid. Med. Cell. Longev. 2016, 2016, 5692852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barszcz, M.; Taciak, M.; Skomial, J. The effects of inulin, dried Jerusalem artichoke tuber and a multispecies probiotic preparation on microbiota ecology and immune status of the large intestine in young pigs. Arch. Anim. Nutr. 2016, 70, 278–292. [Google Scholar] [CrossRef] [PubMed]
- Che, L.; Chen, H.; Yu, B.; He, J.; Zheng, P.; Mao, X.; Yu, J.; Huang, Z.; Chen, D. Long-term intake of pea fiber affects colonic barrier function, bacterial and transcriptional profile in pig model. Nutr. Cancer 2014, 66, 388–399. [Google Scholar] [CrossRef] [PubMed]
- Pu, G.; Huang, R.H.; Niu, Q.; Wang, H.; Fan, L.j.; Gao, C.; Niu, P.P.; Zhuang, Z.P.; Wu, C.W.; Zhou, J.; et al. Effects of Dietary Defatted Rice Bran Substitute Corn Levels on Growth Performance, Intestinal Development and Apparent Digestibility of Nutrients of Suhuai Pigs. Acta Veterinaria et Zootechnica Sinica 2019, 50, 758–770. [Google Scholar]
- Allaire, J.M.; Crowley, S.M.; Law, H.T.; Chang, S.Y.; Ko, H.J.; Vallance, B.A. The Intestinal Epithelium: Central Coordinator of Mucosal Immunity. Trends Immunol. 2018, 39, 677–696. [Google Scholar] [CrossRef]
- Onyiah, J.C.; Colgan, S.P. Cytokine responses and epithelial function in the intestinal mucosa. Cell. Mol. Life Sci. 2016, 73, 4203–4212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Li, P.; Zhou, W.; Gao, C.; Liu, H.; Li, H.; Niu, P.; Zhang, Z.; Li, Q.; Zhou, J.; et al. Association of Twelve Candidate Gene Polymorphisms with the Intramuscular Fat Content and Average Backfat Thickness of Chinese Suhuai Pigs. Animals 2019, 9, 858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xun, W.; Shi, L.; Zhou, H.; Hou, G.; Cao, T.; Zhao, C. Effects of curcumin on growth performance, jejunal mucosal membrane integrity, morphology and immune status in weaned piglets challenged with enterotoxigenic Escherichia coli. Int. Immunopharmacol. 2015, 27, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zheng, P.; Yu, B.; He, J.; Yu, J.; Mao, X.B.; Wang, J.X.; Luo, J.Q.; Huang, Z.Q.; Cheng, G.X.; et al. Dietary spray-dried chicken plasma improves intestinal barrier function and modulates immune status in weaning piglets. J. Anim. Sci. 2016, 94, 173–184. [Google Scholar] [CrossRef] [PubMed]
- Xiong, H.; Guo, B.; Gan, Z.; Song, D.; Lu, Z.; Yi, H.; Wu, Y.; Wang, Y.; Du, H. Butyrate upregulates endogenous host defense peptides to enhance disease resistance in piglets via histone deacetylase inhibition. Sci. Rep. 2016, 6, 27070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Wang, F.; Zhou, X.; Cao, Y.; Li, Y.; Li, C. Bama miniature pigs’ liver possess great heat tolerance through upregulation of Nrf2-mediated antioxidative enzymes. J. Therm. Biol. 2017, 67, 15–21. [Google Scholar] [CrossRef]
- Borregaard, N. Neutrophils, from marrow to microbes. Immunity 2010, 33, 657–670. [Google Scholar] [CrossRef] [Green Version]
- Mantovani, A.; Cassatella, M.A.; Costantini, C.; Jaillon, S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat. Rev. Immunol. 2011, 11, 519–531. [Google Scholar] [CrossRef]
- Amulic, B.; Cazalet, C.; Hayes, G.L.; Metzler, K.D.; Zychlinsky, A. Neutrophil function: From mechanisms to disease. Annu. Rev. Immunol. 2012, 30, 459–489. [Google Scholar] [CrossRef]
- Kolaczkowska, E.; Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 2013, 13, 159–175. [Google Scholar] [CrossRef] [PubMed]
- Mayadas, T.N.; Cullere, X.; Lowell, C.A. The multifaceted functions of neutrophils. Annu. Rev. Pathol. 2014, 9, 181–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phutthaphadoong, S.; Yamada, Y.; Hirata, A.; Tomita, H.; Hara, A.; Limtrakul, P.; Iwasaki, T.; Kobayashi, H.; Mori, H. Chemopreventive effect of fermented brown rice and rice bran (FBRA) on the inflammation-related colorectal carcinogenesis in ApcMin/+ mice. Oncol. Rep. 2010, 23, 53–59. [Google Scholar] [PubMed] [Green Version]
- Farid, S.G.; Iqbal, A.; Khan, S.; Morris-Stiff, G. Comment on Mallappa et al.: Preoperative neutrophil to lymphocyte ratio >5 is a prognostic factor for recurrent colorectal cancer. Colorectal Dis. 2013, 15, 909–910. [Google Scholar] [CrossRef] [PubMed]
- Chandrashekara, S.; Mukhtar Ahmad, M.; Renuka, P.; Anupama, K.R.; Renuka, K. Characterization of neutrophil-to-lymphocyte ratio as a measure of inflammation in rheumatoid arthritis. Int. J. Rheum. Dis. 2017, 20, 1457–1467. [Google Scholar] [CrossRef] [PubMed]
- Paramanathan, A.; Saxena, A.; Morris, D.L. A systematic review and meta-analysis on the impact of pre-operative neutrophil lymphocyte ratio on long term outcomes after curative intent resection of solid tumours. Surg. Oncol. 2014, 23, 31–39. [Google Scholar] [CrossRef]
- Casas, G.A.; Stein, H.H. Effects of full fat or defatted rice bran on growth performance and blood characteristics of weanling pigs. J. Anim. Sci. 2016, 94, 4179–4187. [Google Scholar] [CrossRef]
- Praveena, P.E.; Periasamy, S.; Kumar, A.A.; Singh, N. Cytokine profiles, apoptosis and pathology of experimental Pasteurella multocida serotype A1 infection in mice. Res. Vet. Sci. 2010, 89, 332–339. [Google Scholar] [CrossRef]
- McGuckin, M.A.; Linden, S.K.; Sutton, P.; Florin, T.H. Mucin dynamics and enteric pathogens. Nat. Rev. Microbiol. 2011, 9, 265–278. [Google Scholar] [CrossRef]
- Sovran, B.; Lu, P.; Loonen, L.M.; Hugenholtz, F.; Belzer, C.; Stolte, E.H.; Boekschoten, M.V.; van Baarlen, P.; Smidt, H.; Kleerebezem, M.; et al. Identification of Commensal Species Positively Correlated with Early Stress Responses to a Compromised Mucus Barrier. Inflamm. Bowel Dis. 2016, 22, 826–840. [Google Scholar] [CrossRef] [Green Version]
- Montagne, L.; Piel, C.; Lalles, J.P. Effect of diet on mucin kinetics and composition: Nutrition and health implications. Nutr. Rev. 2004, 62, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Baird, L.; Dinkova-Kostova, A.T. The cytoprotective role of the Keap1-Nrf2 pathway. Arch. Toxicol. 2011, 85, 241–272. [Google Scholar] [CrossRef] [PubMed]
- Gloire, G.; Legrand-Poels, S.; Piette, J. NF-kappaB activation by reactive oxygen species: Fifteen years later. Biochem. Pharmacol. 2006, 72, 1493–1505. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.M.; Luo, L.; Ardita, C.S.; Richardson, A.N.; Kwon, Y.M.; Mercante, J.W.; Alam, A.; Gates, C.L.; Wu, H.; Swanson, P.A.; et al. Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species. EMBO J. 2013, 32, 3017–3028. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Wang, S.; Liu, Q.; Wang, X.; Shan, T.; Wang, Y. Cathelicidin-WA attenuates LPS-induced inflammation and redox imbalance through activation of AMPK signaling. Free Radic. Biol. Med. 2018, 129, 338–353. [Google Scholar] [CrossRef]
- Suzuki, T.; Motohashi, H.; Yamamoto, M. Toward clinical application of the Keap1-Nrf2 pathway. Trends Pharmacol. Sci. 2013, 34, 340–346. [Google Scholar] [CrossRef]
- Mezes, M.; Erdelyi, M. [Antioxidant effect of the fibre content of foods]. Orv. Hetil 2018, 159, 709–712. [Google Scholar]
- Zhao, W.; Wang, Y.; Liu, S.; Huang, J.; Zhai, Z.; He, C.; Ding, J.; Wang, J.; Wang, H.; Fan, W.; et al. The dynamic distribution of porcine microbiota across different ages and gastrointestinal tract segments. PLoS ONE 2015, 10, e0117441. [Google Scholar] [CrossRef] [Green Version]
- Looft, T.; Allen, H.K.; Cantarel, B.L.; Levine, U.Y.; Bayles, D.O.; Alt, D.P.; Henrissat, B.; Stanton, T.B. Bacteria, phages and pigs: The effects of in-feed antibiotics on the microbiome at different gut locations. ISME J. 2014, 8, 1566–1576. [Google Scholar] [CrossRef] [Green Version]
- DiBaise, J.K.; Zhang, H.; Crowell, M.D.; Krajmalnik-Brown, R.; Decker, G.A.; Rittmann, B.E. Gut microbiota and its possible relationship with obesity. Mayo Clin. Proc. 2008, 83, 460–469. [Google Scholar] [CrossRef] [Green Version]
Items | Defatted Rice Bran (DFRB), % | ||||
---|---|---|---|---|---|
0 | 7 | 14 | 21 | 28 | |
Ingredients (%) | |||||
Corn | 68.61 | 62.00 | 55.00 | 48.00 | 41.00 |
Wheat bran | 15.40 | 15.80 | 16.15 | 16.67 | 17.21 |
DFRB | 0.00 | 7.00 | 14.00 | 21.00 | 28.00 |
Soybean meal | 13.30 | 11.70 | 10.40 | 8.95 | 7.50 |
Soybean oil | 0.00 | 0.84 | 1.83 | 2.78 | 3.74 |
98.5% Lysine | 0.03 | 0.04 | 0.03 | 0.03 | 0.03 |
Salt (NaCl) | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
Limestone | 0.82 | 0.85 | 0.85 | 0.85 | 0.85 |
CaHPO4 | 0.75 | 0.68 | 0.65 | 0.63 | 0.58 |
60% Choline chloride | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 |
Premix 1 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 |
Measured composition 2 | |||||
Dry matter (DM, %) | 88.56 | 88.68 | 88.93 | 89.16 | 88.46 |
Crude protein (CP, %) | 15.60 | 16.67 | 16.13 | 15.73 | 16.40 |
Crude fiber (CF, %) | 4.38 | 4.72 | 5.06 | 5.38 | 5.58 |
Insoluble detergent fiber (IDF, %) | 16.14 | 17.19 | 18.42 | 19.32 | 23.37 |
Soluble detergent fiber (SDF, %) | 0.52 | 0.56 | 0.68 | 0.73 | 0.82 |
Acid detergent fiber (ADF, %) | 5.53 | 6.25 | 6.53 | 7.08 | 8.13 |
Neutral detergent fiber (NDF, %) | 8.89 | 11.80 | 12.93 | 14.35 | 17.94 |
Ether extract (EE, %) | 5.19 | 5.08 | 5.32 | 5.27 | 5.38 |
Hemicellulose (%) | 3.80 | 5.69 | 7.09 | 8.00 | 10.34 |
Cellulose (%) | 4.06 | 4.43 | 4.71 | 5.09 | 5.79 |
Acid detergent lignin (ADL, %) | 0.46 | 0.54 | 0.72 | 0.96 | 1.13 |
Calculated composition 2 | |||||
Metabolic energy (MJ, %) | 12.13 | 12.13 | 12.22 | 12.27 | 12.31 |
Calcium (%) | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 |
Available phosphorus (%) | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 |
L-lysine (%) | 0.65 | 0.65 | 0.65 | 0.66 | 0.65 |
Methionine + cystine (%) | 0.45 | 0.45 | 0.46 | 0.47 | 0.47 |
Total detergent fiber (TDF, %) | 16.70 | 17.75 | 19.10 | 20.05 | 24.11 |
Gene | Primer Sequences (5 ′-3 ′) 1 | Reference |
---|---|---|
GAPDH | F: GAAGGTCGGAGTGAACGGAT R: CATGGGTAGAATCATACTGGAACA | [14] |
MUC2 | F: CTGCTCCGGGTCCTGTGGGA R: CCCGCTGGCTGGTGCGATAC | [15] |
PBD1 | F: GGCCCTTGAGGATGTGATAAA R: CTGTGGGCATGTCACTTAGAT | [16] |
PR39 | F: CTTCCCAGTAGAGGCATGTTATT R: GCCACAGTTTGAGGTGATTTG | [16] |
Nrf2 | F: CGTGAAGCGACTGAACCT R: ATGTAGCCGAAGAACCT | [17] |
NQO1 | F: TGCCTTCCTTGACTTGCT R: TCCCGGCTTTACATCCTA | [17] |
HO-1 | F: TTCACCTTCCCGAGCAT R: GCCTCTTCTGTCACCCTGT | [17] |
Item | DFRB, % | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
0 | 7 | 14 | 21 | 28 | Linear | Quadratic | ||
Leukocyte count (109 L−1) | 24.07 | 24.69 | 23.51 | 21.90 | 24.04 | 0.75 | 0.594 | 0.774 |
Neutrophil granulocyte count (109 L−1) | 12.60 | 12.87 | 12.12 | 10.90 | 11.56 | 0.49 | 0.101 | 0.350 |
Neutrophils percentage% | 52.35 | 52.13 | 51.55 | 49.77 | 48.09 | 1.10 | 0.014 | 0.007 |
Lymphocytes count (109 L−1) | 10.27 | 10.72 | 10.40 | 9.73 | 11.23 | 0.43 | 0.667 | 0.752 |
Lymphocytes percentage% | 42.67 | 43.42 | 44.24 | 44.43 | 46.71 | 1.19 | 0.016 | 0.062 |
Mononuclear cells count (109 L−1) | 0.67 | 0.64 | 0.56 | 0.79 | 0.79 | 0.05 | 0.612 | 0.665 |
NLR 2 | 1.22 | 1.22 | 1.21 | 1.11 | 1.07 | 0.05 | 0.030 | 0.062 |
Mononuclear cells percentage% | 2.78 | 2.59 | 2.38 | 3.61 | 3.29 | 0.17 | 0.250 | 0.475 |
Eosinophils count (109 L−1) | 0.27 | 0.24 | 0.24 | 0.26 | 0.26 | 0.03 | 0.994 | 0.365 |
Eosinophils percentage% | 1.12 | 0.97 | 1.02 | 1.19 | 1.08 | 0.10 | 0.908 | 0.661 |
Basophilic granulocyte count (109 L−1) | 0.26 | 0.21 | 0.19 | 0.21 | 0.20 | 0.02 | 0.186 | 0.155 |
Basophilic granulocyte percentage% | 1.08 | 0.85 | 0.81 | 0.96 | 0.83 | 0.06 | 0.311 | 0.582 |
Platelet count (109 L−1) | 248.68 | 202.88 | 239.78 | 234.40 | 199.00 | 15.01 | 0.419 | 0.759 |
Mean platelet volume (fL) | 8.07 | 8.00 | 7.44 | 7.89 | 8.06 | 0.13 | 0.900 | 0.419 |
Platelet distribution width | 15.18 | 15.27 | 15.17 | 15.07 | 15.18 | 0.06 | 0.452 | 0.796 |
Thrombocytocrit | 0.20 | 0.16 | 0.18 | 0.19 | 0.16 | 0.01 | 0.456 | 0.799 |
Red blood cell count (1012 L−1) | 7.53 | 7.69 | 7.80 | 7.28 | 7.76 | 0.14 | 0.953 | 0.999 |
Hematocrit | 44.53 | 45.29 | 45.31 | 42.95 | 45.29 | 0.88 | 0.838 | 0.973 |
Mean corpuscular volume (fL) | 59.28 | 58.86 | 58.22 | 58.91 | 58.44 | 0.63 | 0.266 | 0.462 |
Hemoglobin concentration (g L−1) | 130.55 | 137.45 | 137.36 | 127.12 | 138.02 | 2.22 | 0.814 | 0.975 |
Mean erythrocyte hemoglobin Concentration (g L−1) | 293.33 | 304.12 | 302.94 | 298.05 | 304.69 | 2.00 | 0.344 | 0.595 |
Average hemoglobin content of red blood cell (pg) | 17.41 | 17.88 | 17.63 | 17.51 | 17.80 | 0.14 | 0.586 | 0.865 |
Red blood cell distribution width coefficient of variation | 17.05 | 17.24 | 16.91 | 16.68 | 18.14 | 0.36 | 0.440 | 0.398 |
Red blood cell distribution width-standard deviation | 42.18 | 41.93 | 41.80 | 42.67 | 39.67 | 0.69 | 0.300 | 0.386 |
Item | DFRB, % | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
0 | 7 | 14 | 21 | 28 | Linear | Quadratic | ||
Total protein (g L−1) | 76.33 | 76.46 | 74.16 | 76.18 | 73.16 | 0.93 | 0.192 | 0.485 |
Albumin (g L−1) | 33.44 | 34.89 | 35.26 | 34.67 | 35.95 | 0.56 | 0.087 | 0.287 |
Globulin (g L−1) | 42.82 | 41.29 | 39.49 | 42.24 | 36.66 | 1.08 | 0.168 | 0.442 |
A/G 2 | 0.83 | 0.86 | 0.88 | 0.82 | 1.00 | 0.32 | 0.229 | 0.403 |
Glutamic pyruvic transaminase (U L−1) | 63.06 | 68.71 | 59.70 | 65.19 | 59.01 | 2.57 | 0.437 | 0.696 |
Alkaline phosphatase (U L−1) | 110.79 | 132.81 | 129.00 | 125.68 | 132.91 | 6.81 | 0.243 | 0.407 |
Urea (mmol L−1) | 5.90 | 7.03 | 6.95 | 5.78 | 6.40 | 0.24 | 0.913 | 0.757 |
Amylase (U L−1) | 1456.86 | 2318.04 | 2050.74 | 2210.01 | 2611.04 | 136.07 | 0.094 | 0.315 |
Glucose (mmol L−1) | 4.66 | 5.71 | 4.46 | 4.69 | 5.33 | 0.25 | 0.878 | 0.963 |
Total cholesterol (mmol L−1) | 2.61 | 2.63 | 2.63 | 2.78 | 2.71 | 0.07 | 0.125 | 0.399 |
Triglyceride (mmol L−1) | 0.55 | 0.64 | 0.62 | 0.41 | 0.72 | 0.04 | 0.811 | 0.895 |
Item 2 | DFRB, % | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
0 | 7 | 14 | 21 | 28 | Linear | Quadratic | ||
IgA (μg/mL) | 187.78 | 208.27 | 165.68 | 354.75 | 232.41 | 30.37 | 0.391 | 0.741 |
IgM (μg/mL) | 171.69 | 151.28 | 307.30 | 95.32 | 146.92 | 22.69 | 0.738 | 0.815 |
IgG (μg/mL) | 2117.57 | 1953.98 | 1802.16 | 678.50 | 1552.05 | 218.16 | 0.214 | 0.481 |
Item 2 | Intestinal Segment | DFRB, % | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
0 | 7 | 14 | 21 | 28 | Linear | Quadratic | |||
SIgA (ug/mg) | Jejunum | 2.01 | 1.14 | 1.20 | 1.04 | 1.15 | 0.23 | 0.165 | 0.130 |
Colon | 1.11 | 3.19 | 1.38 | 0.92 | 1.17 | 0.33 | 0.283 | 0.247 | |
IgM (ug/mg) | Jejunum | 6.00 | 3.50 | 2.50 | 3.96 | 4.69 | 0.53 | 0.673 | 0.108 |
Colon | 5.59 | 4.48 | 4.72 | 5.44 | 5.12 | 0.65 | 0.991 | 0.656 |
Item 2 | Intestinal Segment | DFRB, % | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
0 | 7 | 14 | 21 | 28 | Linear | Quadratic | |||
IL-10 (pg/mg) | Jejunum | 5.77 | 7.17 | 6.53 | 14.17 | 5.32 | 1.04 | 0.160 | 0.716 |
Colon | 1.73 | 1.13 | 1.73 | 1.32 | 1.49 | 0.09 | 0.778 | 0.896 | |
IL-12 (pg/mg) | Jejunum | 26.60 | 18.00 | 23.56 | 41.03 | 28.33 | 3.56 | 0.400 | 0.755 |
Colon | 29.32 | 16.15 | 24.01 | 16.67 | 16.37 | 2.35 | 0.210 | 0.486 | |
IL-6 (pg/mg) | Jejunum | 0.21 | 0.40 | 0.21 | 0.15 | 0.53 | 0.06 | 0.520 | 0.667 |
Colon | 1.70 | 0.92 | 0.65 | 1.99 | 1.15 | 0.16 | 0.989 | 0.870 | |
IL-1β (pg/mg) | Jejunum | 51.00 | 34.12 | 32.27 | 82.31 | 34.56 | 4.52 | 0.855 | 0.983 |
Colon | 60.62 | 42.43 | 56.03 | 56.09 | 46.56 | 3.49 | 0.620 | 0.904 | |
IFN-γ (pg/mg) | Jejunum | 142.62 | 103.00 | 78.45 | 227.01 | 82.95 | 13.64 | 0.985 | 0.994 |
Colon | 49.51 | 44.82 | 52.42 | 49.14 | 43.76 | 2.97 | 0.603 | 0.690 |
Item 2 | Intestinal Segment | DFRB, % | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
0 | 7 | 14 | 21 | 28 | Linear | Quadratic | |||
MUC2 | Jejunum | 1.00 | 0.93 | 1.23 | 0.76 | 1.31 | 0.11 | 0.383 | 0.408 |
Colon | 1.00 | 1.45 | 2.03 | 0.73 | 3.42 | 0.20 | 0.019 | 0.028 | |
PBD1 | Jejunum | 1.00 | 3.07 | 3.71 | 3.82 | 1.85 | 0.74 | 0.501 | 0.341 |
Colon | 1.00 | 2.33 | 2.67 | 4.22 | 2.09 | 0.66 | 0.290 | 0.367 | |
PR39 | Jejunum | 1.00 | 13.38 | 12.64 | 0.29 | 10.94 | 3.09 | 0.643 | 0.709 |
Colon | 1.00 | 1.26 | 6.57 | 0.77 | 12.78 | 1.79 | 0.057 | 0.104 |
Item 2 | Intestinal Segment | DFRB, % | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
0 | 7 | 14 | 21 | 28 | Linear | Quadratic | |||
Nrf2 | Jejunum | 1.00 | 1.06 | 1.40 | 1.24 | 0.68 | 0.10 | 0.490 | 0.039 |
Colon | 1.00 | 1.22 | 0.96 | 0.62 | 0.68 | 0.07 | 0.010 | 0.447 | |
NQO1 | Jejunum | 1.00 | 0.43 | 0.55 | 0.64 | 0.63 | 0.07 | 0.226 | 0.059 |
Colon | 1.00 | 0.81 | 0.52 | 0.44 | 0.66 | 0.07 | 0.025 | 0.054 | |
HO-1 | Jejunum | 1.00 | 0.39 | 0.46 | 0.42 | 0.47 | 0.09 | 0.079 | 0.081 |
Colon | 1.00 | 0.47 | 0.34 | 0.38 | 0.30 | 0.08 | 0.003 | 0.047 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, L.; Huang, R.; Wu, C.; Cao, Y.; Du, T.; Pu, G.; Wang, H.; Zhou, W.; Li, P.; Kim, S.W. Defatted Rice Bran Supplementation in Diets of Finishing Pigs: Effects on Physiological, Intestinal Barrier, and Oxidative Stress Parameters. Animals 2020, 10, 449. https://doi.org/10.3390/ani10030449
Fan L, Huang R, Wu C, Cao Y, Du T, Pu G, Wang H, Zhou W, Li P, Kim SW. Defatted Rice Bran Supplementation in Diets of Finishing Pigs: Effects on Physiological, Intestinal Barrier, and Oxidative Stress Parameters. Animals. 2020; 10(3):449. https://doi.org/10.3390/ani10030449
Chicago/Turabian StyleFan, Lijuan, Ruihua Huang, Chengwu Wu, Yang Cao, Taoran Du, Guang Pu, Huan Wang, Wuduo Zhou, Pinghua Li, and Sung Woo Kim. 2020. "Defatted Rice Bran Supplementation in Diets of Finishing Pigs: Effects on Physiological, Intestinal Barrier, and Oxidative Stress Parameters" Animals 10, no. 3: 449. https://doi.org/10.3390/ani10030449
APA StyleFan, L., Huang, R., Wu, C., Cao, Y., Du, T., Pu, G., Wang, H., Zhou, W., Li, P., & Kim, S. W. (2020). Defatted Rice Bran Supplementation in Diets of Finishing Pigs: Effects on Physiological, Intestinal Barrier, and Oxidative Stress Parameters. Animals, 10(3), 449. https://doi.org/10.3390/ani10030449