Polymorphism of VRTN Gene g.20311_20312ins291 Was Associated with the Number of Ribs, Carcass Diagonal Length and Cannon Bone Circumference in Suhuai Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Animals and Phenotype Measurement
2.3. DNA Extraction and VRTN Gene g.20311_20312ins291 Genotyping
2.4. Statistical Analyses
3. Results
3.1. Descriptive Statistics for RIB, Carcass Traits, and Body Size/Body Weight Traits in Suhuai Pig Populations
3.2. Correlation Analyses of Carcass Traits in Suhuai Fattening Pigs and Body Size/Body Weight Traits in Suhuai Gilts
3.3. Genetic Parameters of the VRTN Gene g.20311_20312ins291 in Suhuai Pig Populations
3.4. Association Analyses of the Polymorphism of VRTN Gene g.20311_20312ins291 with RIB and Carcass Traits in Suhuai Fattening Pigs and Body Size/Body Weight Traits in Suhuai Gilts
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Burgos, C.; Latorre, P.; Altarriba, J.; Carrodeguas, J.; Varona, L.; López Buesa, P. Allelic frequencies of NR6A1 and VRTN, two genes that affect vertebrae number in diverse pig breeds: A study of the effects of the VRTN insertion on phenotypic traits of a Duroc×Landrace–Large White cross. Meat Sci. 2014, 100, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Borchers, N.; Reinsch, N.; Kalm, E. The number of ribs and vertebrae in a Piétrain cross: Variation, heritability and effects on performance traits. J. Anim. Breed. Genet. 2004, 121, 392–403. [Google Scholar] [CrossRef]
- Fredeen, H.T.; Newman, J.A. Rib and vertebral numbers in swine. II. Genetic aspects. Can. Vet. J. La Rev. Vet. Can. 1962, 42, 240–251. [Google Scholar] [CrossRef]
- Galis, F. Why Do Almost All Mammals Have Seven Cervical Vertebrae? Developmental Constraints, Hox Genes, And Cancer. J. Exp. Zool. 1999, 285, 19–26. [Google Scholar] [CrossRef]
- King, J.W.B.; Roberts, R.C. Carcass length in the bacon pig; its association with vertebrae numbers and prediction from radiographs of the young pig. Anim. Prod. 1960, 2, 59–65. [Google Scholar] [CrossRef]
- Berge, S. Genetical Researches on the Number of Vertebrae in the Pig. Astron. Astrophys. 1948, 553, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Mikawa, S.; Hayashi, T.; Nii, M.; Shimanuki, S.; Morozumi, T.; Awata, T. Two quantitative trait loci on Sus scrofa chromosomes 1 and 7 affecting the number of vertebrae. J. Anim. Sci. 2005, 83, 2247–2254. [Google Scholar] [CrossRef]
- Mikawa, S.; Morozumi, T.; Shimanuki, S.-I.; Hayashi, T.; Uenishi, H.; Domukai, M.; Okumura, N.; Awata, T. Fine mapping of a swine quantitative trait locus for number of vertebrae and analysis of an orphan nuclear receptor, germ cell nuclear factor (NR6A1). Genome Res. 2007, 17, 586–593. [Google Scholar] [CrossRef] [Green Version]
- Mikawa, S.; Sato, S.; Nii, M.; Morozumi, T.; Awata, T. Identification of a second gene associated with variation in vertebral number in domestic pigs. BMC Genet. 2011, 12, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Ren, D.R.; Ren, J.; Ruan, G.F.; Guo, Y.M.; Wu, L.H.; Yang, G.C.; Zhou, L.H.; Li, L.; Zhang, Z.Y.; Huang, L.S. Mapping and fine mapping of quantitative trait loci for the number of vertebrae in a White Duroc × Chinese Erhualian intercross resource population. Anim. Genet. 2012, 43, 545–551. [Google Scholar] [CrossRef]
- Fan, Y.; Xing, Y.; Zhang, Z.; Ai, H.; Ouyang, Z.; Ouyang, J.; Yang, M.; Li, P.; Chen, Y.; Gao, J. A Further Look at Porcine Chromosome 7 Reveals VRTN Variants Associated with Vertebral Number in Chinese and Western Pigs. PLoS ONE 2013, 8, e62534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, Y.; Zhang, H.; Zhang, Z.; Gao, J.; Yang, J.; Wu, Z.; Fan, Y.; Xing, Y.; Li, L.; Xiao, S.; et al. VRTN is Required for the Development of Thoracic Vertebrae in Mammals. Int. J. Biol. Sci. 2018, 14, 667–681. [Google Scholar] [CrossRef] [PubMed]
- Rohrer, G.A.; Nonneman, D.J.; Wiedmann, R.T.; Schneider, J.F. A study of vertebra number in pigs confirms the association of vertnin and reveals additional QTL. BMC Genet. 2015, 16, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.C.; Yue, J.W.; Pu, L.; Wang, L.G.; Liu, X.; Liang, J.; Yan, H.; Zhao, K.B.; Li, N.; Shi, H.B. Genome-wide study refines the quantitative trait locus for number of ribs in a Large White × Minzhu intercross pig population and reveals a new candidate gene. Mol. Genet. Genom. 2016, 291, 1885–1890. [Google Scholar] [CrossRef]
- Park, H.-B.; Han, S.-H.; Lee, J.-B.; Cho, I.-C. Rapid Communication: High-resolution quantitative trait loci analysis identifies LTBP2 encoding latent transforming growth factor beta binding protein 2 associated with thoracic vertebrae number in a large F2 intercross between Landrace and Korean native pigs1. J. Anim. Sci. 2017, 95, 1957–1962. [Google Scholar] [CrossRef] [Green Version]
- Yue, J.; Guo, H.; Zhou, W.; Liu, X.; Wang, L.; Gao, H.; Hou, X.; Zhang, Y.; Yan, H.; Wei, X. Polymorphism Sites of TGFβ3 Gene and Its Association Analysis with Vertebral Number of Porcine. China Anim. Husb. Vet. Med. 2018, 45, 738–744. [Google Scholar]
- Pu, G.; Huang, R.H.; Niu, Q.; Wang, H.; Fan, L.J.; Gao, C.; Niu, P.P.; Zhuang, Z.P.; Wu, C.W.; Zhou, J.; et al. Effects of Dietary Defatted Rice Bran Substitute Corn Levels on Growth Performance, Intestinal Development and Apparent Digestibility of Nutrients of Suhuai Pigs. Acta Vet. Zootech. Sin. 2019, 50, 758–770. [Google Scholar]
- Wang, B.; Li, P.; Zhou, W.; Gao, C.; Liu, H.; Li, H.; Niu, P.; Zhang, Z.; Li, Q.; Zhou, J.; et al. Association of Twelve Candidate Gene Polymorphisms with the Intramuscular Fat Content and Average Backfat Thickness of Chinese Suhuai Pigs. Animals 2019, 9, 858. [Google Scholar] [CrossRef] [Green Version]
- Sambrook, J.; Russell, D.W. Molecular Cloning: A Laboratory Manual, 3rd ed; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2001; Volume 49, pp. 895–909. [Google Scholar]
- Liu, K.; Muse, S.V. PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics 2005, 21, 2128–2129. [Google Scholar] [CrossRef] [Green Version]
- Madsen, P.; Sørensen, P.; Su, G.; Damgaard, L.H.; Thomsen, H.; Labouriau, R. DMU—A Package for Analyzing Multivariate Mixed Models in quantitative Genetics and Genomics. In Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, Minas Gerais, Brazil, 13–18 August 2006. [Google Scholar]
- Nakano, H.; Sato, S.; Uemoto, Y.; Kikuchi, T.; Shibata, T.; Kadowaki, H.; Kobayashi, E.; Suzuki, K. Effect of VRTN gene polymorphisms on Duroc pig production and carcass traits, and their genetic relationships. Anim. Sci. J. 2015, 86, 125–131. [Google Scholar] [CrossRef]
- Jian, Y.E.; Xiao-Xiang, H.U.; Sheng-Li, Q.U.; Zeng, J.Y.; Zhang, C.H.; Cai, G.Y.; Liu, D.W.; Zheng, E.Q.; Wang, A.G.; Zhen-Fang, W.U. Estimation of Genetic Parameters of Type Traits and It′s Correlation with Production Traits in Large White Pigs. Chin. J. Anim. Sci. 2016, 52, 6–8. [Google Scholar]
- Zhan-wei, Z.; Di-sheng, F.; Rong-rong, D.; Ming, Y.; Shao-yun, L.; Zhen-fang, W.; Jie, Y.; En-qin, Z. Estimation of genetic parameters of body measurements traits and the relationship with growth traits in an American Duroc population. Guangdong Agric. Sci. 2018, 45, 121–125. [Google Scholar]
- Huang, J.; Zhang, M.; Ye, R.; Ma, Y.; Lei, C. Effects of increased vertebral number on carcass weight in PIC pigs. Anim. Sci. J. 2017, 88, 2057–2062. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Huang, L.; Yang, M.; Fan, Y.; Li, L.; Fang, S.; Deng, W.; Cui, L.; Zhang, Z.; Ai, H.; et al. Possible introgression of the VRTN mutation increasing vertebral number, carcass length and teat number from Chinese pigs into European pigs. Sci. Rep. 2016, 6, 19240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Wang, M.; Yuan, J.; Zhou, X.; Liu, B. Association of polymorphisms in NR6A1, PLAG1 and VRTN with the number of vertebrae in Chinese Tongcheng × Large White crossbred pigs. Anim. Genet. 2018, 49, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Hirose, K.; Mikawa, S.; Okumura, N.; Noguchi, G.; Fukawa, K.; Kanaya, N.; Mikawa, A.; Arakawa, A.; Ito, T.; Hayashi, Y.; et al. Association of swine vertnin(VRTN) gene with production traits in Duroc pigs improved by closed nucleus breeding system. Anim. Sci. J. 2013, 84, 213–221. [Google Scholar] [CrossRef]
- Okumura, N.; Matsumoto, T.; Hayashi, T.; Hirose, K.; Fukawa, K.; Itou, T.; Uenishi, H.; Mikawa, S.; Awata, T. Genomic regions affecting backfat thickness and cannon bone circumference identified by genome-wide association study in a Duroc pig population. Anim. Genet. 2012, 44, 454–457. [Google Scholar] [CrossRef]
- Uemoto, Y.; Nagamine, Y.; Kobayashi, E.; Sato, S.; Tayama, T.; Suda, Y.; Shibata, T.; Suzuki, K. Quantitative trait loci analysis on Sus scrofa chromosome 7 for meat production, meat quality, and carcass traits within a Duroc purebred population. J. Anim. Sci. 2008, 86, 2833–2839. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, L.; Yan, H.; Liu, X.; Li, N.; Liang, J.; Pu, L.; Zhang, Y.; Shi, H.; Zhao, K.; et al. Genome-Wide Association Studies Identify the Loci for 5 Exterior Traits in a Large White × Minzhu Pig Population. PLoS ONE 2014, 9, e103766. [Google Scholar] [CrossRef]
- Ji, J.; Zhou, L.; Guo, Y.; Huang, L.; Ma, J. Genome-wide association study identifies 22 new loci for body dimension and body weight traits in a White Duroc × Erhualian F2 intercross population. Asian Australas. J. Anim. Sci. 2017, 30, 1066–1073. [Google Scholar] [CrossRef] [Green Version]
Populations | Traits | Numbers | Ranges | Mean ± SE | CVs, % | Medians |
---|---|---|---|---|---|---|
SH-F | RIB | 335 | 28.00–34.00 | 30.51 ± 0.13 | 11.08 | 30.00 |
CSL (cm) | 69.00–108.00 | 88.63 ± 0.32 | 10.57 | 88.20 | ||
CDL (cm) | 58.00–93.00 | 75.03 ± 0.29 | 7.25 | 75.00 | ||
CWT (kg) | 40.05–84.40 | 55.96 ± 0.19 | 6.00 | 59.23 | ||
SH-G | CC (cm) | 320 | 75.00–108.00 | 89.80 ± 0.27 | 6.57 | 88.70 |
AC (cm) | 80.00–120.00 | 101.16 ± 0.34 | 7.36 | 100.00 | ||
CBC (cm) | 11.00–20.00 | 14.67 ± 0.06 | 8.39 | 14.50 | ||
RC (cm) | 50.00–90.00 | 72.67 ± 0.30 | 8.81 | 72.00 | ||
BL (cm) | 70.00–115.00 | 96.16 ± 0.31 | 7.01 | 95.00 | ||
BW (kg) | 36.80–85.00 | 57.81 ± 0.35 | 12.68 | 57.60 |
Traits | RIB | CSL | CDL | CWT |
---|---|---|---|---|
RIB | 0.60 ** (0.25) | 0.58 ** (0.29) | 0.09 (0.35) | |
CSL | 0.28 ** | 0.83 ** (0.12) | 0.68 ** (0.17) | |
CDL | 0.25 ** | 0.71 ** | 0.95 ** (0.12) | |
CWT | 0.04 | 0.51 ** | 0.53 ** |
Traits | CC | CBC | AC | RC | BL | BW |
---|---|---|---|---|---|---|
CC | 0.64 ** (0.13) | 0.98 ** (0.03) | 0.63 ** (0.12) | 0.92 ** (0.08) | 0.93 ** (0.05) | |
CBC | 0.49 ** | 0.65 ** (0.15) | 0.89 ** (0.08) | 0.22 ** (0.19) | 0.15 * (0.17) | |
AC | 0.80 ** | 0.48 ** | 0.61 ** (0.15) | 0.94 ** (0.06) | 0.89 ** (0.07) | |
RC | 0.49 ** | 0.46 ** | 0.42 ** | 0.59 ** (0.16) | 0.25 ** (0.14) | |
BL | 0.64 ** | 0.43 ** | 0.64 ** | 0.41 ** | 0.82 ** (0.09) | |
BW | 0.72 ** | 0.40 ** | 0.68 ** | 0.33 ** | 0.60 ** |
Groups | Numbers | Genotype Frequencies | Allele Frequencies | Ho | He | Ne | PIC | |||
---|---|---|---|---|---|---|---|---|---|---|
ins/ins | ins/del | del/del | ins | del | ||||||
SH-F | 335 | 0.3463 (116) | 0.4955 (166) | 0.1582 (53) | 0.5940 | 0.4060 | 0.5177 | 0.4823 | 1.9317 | 0.3660 |
SH-G | 320 | 0.3375 (108) | 0.4750 (152) | 0.1875 (60) | 0.5750 | 0.4250 | 0.5113 | 0.4887 | 1.9560 | 0.3693 |
T-Ps | 655 | 0.3420 (224) | 0.4855 (318) | 0.1725 (113) | 0.5847 | 0.4153 | 0.5143 | 0.4857 | 1.9442 | 0.3677 |
Populations | Traits | VRTN Genotypes | p Values | ||
---|---|---|---|---|---|
ins/ins | ins/del | del/del | |||
SH-F | (n = 116) | (n = 166) | (n = 53) | ||
RIB | 31.00 ± 1.21 A | 30.46 ± 1.08 B | 29.55 ± 1.15 C | 0.00 | |
CSL (cm) | 88.99 ± 1.30 | 88.17 ± 1.25 | 87.93 ± 1.45 | 0.06 | |
CDL (cm) | 75.60 ± 1.27 A,a | 74.50 ± 1.23 A,B,b | 74.00 ± 1.40 B,c | 0.00 | |
CWT (kg) | 61.77 ± 1.56 | 59.63 ± 1.26 | 59.06 ± 1.10 | 0.57 | |
SH-G | (n = 108) | (n = 152) | (n = 60) | ||
CC (cm) | 89.27 ± 0.70 | 88.22 ± 0.62 | 88.21 ± 0.83 | 0.26 | |
AC (cm) | 100.21 ± 0.76 | 99.63 ± 0.60 | 99.10 ± 0.92 | 0.50 | |
CBC (cm) | 15.38 ± 0.13 | 15.12 ± 0.11 | 14.95 ± 0.15 | 0.04 | |
RC (cm) | 73.38 ± 0.58 | 72.66 ± 0.50 | 71.32 ± 0.71 | 0.07 | |
BL (cm) | 94.60 ± 0.71 | 94.98 ± 0.63 | 93.81 ± 0.87 | 0.41 | |
BW (kg) | 57.03 ± 0.89 | 56.28 ± 0.80 | 55.35 ± 1.07 | 0.32 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, N.; Liu, C.; Lan, T.; Zhang, Q.; Cao, Y.; Pu, G.; Niu, P.; Zhang, Z.; Li, Q.; Zhou, J.; et al. Polymorphism of VRTN Gene g.20311_20312ins291 Was Associated with the Number of Ribs, Carcass Diagonal Length and Cannon Bone Circumference in Suhuai Pigs. Animals 2020, 10, 484. https://doi.org/10.3390/ani10030484
Jiang N, Liu C, Lan T, Zhang Q, Cao Y, Pu G, Niu P, Zhang Z, Li Q, Zhou J, et al. Polymorphism of VRTN Gene g.20311_20312ins291 Was Associated with the Number of Ribs, Carcass Diagonal Length and Cannon Bone Circumference in Suhuai Pigs. Animals. 2020; 10(3):484. https://doi.org/10.3390/ani10030484
Chicago/Turabian StyleJiang, Nengjing, Chenxi Liu, Tingxu Lan, Qian Zhang, Yang Cao, Guang Pu, Peipei Niu, Zongping Zhang, Qiang Li, Juan Zhou, and et al. 2020. "Polymorphism of VRTN Gene g.20311_20312ins291 Was Associated with the Number of Ribs, Carcass Diagonal Length and Cannon Bone Circumference in Suhuai Pigs" Animals 10, no. 3: 484. https://doi.org/10.3390/ani10030484
APA StyleJiang, N., Liu, C., Lan, T., Zhang, Q., Cao, Y., Pu, G., Niu, P., Zhang, Z., Li, Q., Zhou, J., Li, X., Hou, L., Huang, R., & Li, P. (2020). Polymorphism of VRTN Gene g.20311_20312ins291 Was Associated with the Number of Ribs, Carcass Diagonal Length and Cannon Bone Circumference in Suhuai Pigs. Animals, 10(3), 484. https://doi.org/10.3390/ani10030484