Genome-Wide Analyses Identifies Known and New Markers Responsible of Chicken Plumage Color
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. DNA Samples, Genotyping and Quality Control
2.2. Genome-Wide Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Leroy, G.; Besbes, B.; Boettcher, P.; Hoffmann, I.; Capitan, A.; Baumung, R. Rare phenotypes in domestic animals: Unique resources for multiple applications. Anim. Genet. 2016, 47, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Kijas, J.W.; Serrano, M.; McCulloch, R.; Li, Y.; Salces Ortiz, J.; Calvo, J.H.; Pérez-Guzmán, M.D. The International Sheep Genomics Consortium. Genome wide association for a dominant pigmentation gene in sheep. J. Anim. Breed. Genet. 2013, 130, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Schiavo, G.; Bertolini, F.; Utzeri, V.J.; Ribani, A.; Geraci, C.; Santoro, L.; Ovilo, C.; Fernandez, A.I.; Gallo, M.; Fontanesi, L. Taking advantage from phenotype variability in a local animal genetic resource: Identification of genomic regions associated with the hairless phenotype in Casertana pigs. Anim. Genet. 2018, 49, 321–325. [Google Scholar] [CrossRef]
- Mastrangelo, S.; Sottile, G.; Sutera, A.M.; Di Gerlando, R.; Tolone, M.; Moscarelli, A.; Sardina, M.T.; Portolano, B. Genome-wide association study reveals the locus responsible for microtia in Valle del Belice sheep breed. Anim. Genet. 2018, 49, 636–640. [Google Scholar] [CrossRef]
- Zanetti, E.; De Marchi, M.; Dalvit, C.; Cassandro, M. Genetic characterization of local Italian breeds of chickens undergoing in situ conservation. Poult. Sci. 2010, 89, 420–427. [Google Scholar] [CrossRef]
- De Marchi, M.; Dalvit, C.; Targhetta, C.; Cassandro, M. Assessing genetic variability in two ancient chicken breeds of Padova area. Ital. J. Anim. Sci. 2005, 4 (Suppl. 3), 151–153. [Google Scholar] [CrossRef]
- Viale, E.; Zanetti, E.; Özdemir, D.; Broccanello, C.; Dalmasso, A.; De Marchi, M.; Cassandro, M. Development and validation of a novel SNP panel for the genetic characterization of Italian chicken breeds by next-generation sequencing discovery and array genotyping. Poult. Sci. 2017, 96, 3858–3866. [Google Scholar] [CrossRef]
- Bai, H.; Sun, Y.; Liu, N.; Xue, F.; Li, Y.; Xu, S.; Ye, J.; Zhang, L.; Chen, Y.; Chen, J. Single SNP-and pathway-based genome-wide association studies for beak deformity in chickens using high-density 600K SNP arrays. BMC Genom. 2018, 19, 501. [Google Scholar] [CrossRef]
- Wang, Q.; Pi, J.; Shen, J.; Pan, A.; Qu, L. Genome-wide association study confirms that the chromosome Z harbours a region responsible for rumplessness in Hongshan chickens. Anim. Genet. 2018, 49, 326–328. [Google Scholar] [CrossRef]
- Yang, L.; Du, X.; Wei, S.; Gu, L.; Li, N.; Gong, Y.; Li, S. Genome-wide association analysis identifies potential regulatory genes for eumelanin pigmentation in chicken plumage. Anim. Genet. 2017, 48, 611–614. [Google Scholar] [CrossRef]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience 2015, 4, 7. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, J.R.; Armengol, L.; Sole, X.; Guino, E.; Mercader, J.M.; Estivill, X.; Moreno, V. SNPASSOC: An R package to perform whole genome association studies. Bioinformatics 2007, 23, 654–655. [Google Scholar] [CrossRef] [PubMed]
- Turner, S.D. qqman: An R package for visualizing GWAS results using QQ and manhattan plots. Biorxiv 2014, 2, 005165. [Google Scholar]
- VanLiere, J.M.; Rosenberg, N.A. Mathematical properties of the r2 measure of linkage disequilibrium. Theor. Popul. Biol. 2008, 74, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Mastrangelo, S.; Ben Jemaa, S.; Sottile, G.; Casu, S.; Portolano, B.; Ciani, E.; Pilla, F. Combined approaches to identify genomic regions involved in phenotypic differentiation between low divergent breeds: Application in Sardinian sheep populations. J. Anim. Breed. Genet. 2019, 136, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Wang, P.; Fu, W.; Dong, T.; Qi, C.; Liu, L.; Guo, G.; Li, C.; Ciu, X.; Zhang, S.; et al. Genome-wide association study for pigmentation traits in Chinese Holstein population. Anim. Genet. 2014, 45, 740–744. [Google Scholar] [CrossRef]
- Edea, Z.; Dadi, H.; Dessie, T.; Kim, I.H.; Kim, K.S. Association of MITF loci with coat color spotting patterns in Ethiopian cattle. Genes Genom. 2017, 39, 285–293. [Google Scholar] [CrossRef]
- Mastrangelo, S.; Sottile, G.; Sardina, M.T.; Sutera, A.M.; Tolone, M.; Di Gerlando, R.; Portolano, B. A combined genome-wide approach identifies a new potential candidate marker associated with the coat color sidedness in cattle. Livest. Sci. 2019, 225, 91–95. [Google Scholar] [CrossRef]
- Muniz, M.M.M.; Caetano, A.R.; McManus, C.; Cavalcanti, L.C.G.; Façanha, D.A.E.; Leite, J.H.G.M.; Facò, O.; Paiva, S.R. Application of genomic data to assist a community- based breeding program: A preliminary study of coat color genetics in Morada Nova sheep. Livest. Sci. 2016, 190, 89–93. [Google Scholar] [CrossRef]
- Kumar, C.; Song, S.; Dewani, P.; Kumar, M.; Parkash, O.; Ma, Y.; Jiang, L. Population structure, genetic diversity and selection signatures within seven indigenous Pakistani goat populations. Anim. Genet. 2018, 49, 592–604. [Google Scholar] [CrossRef]
- Nazari-Ghadikolaei, A.; Mehrabani-Yeganeh, H.; Miarei-Aashtiani, S.R.; Staiger, E.A.; Rashidi, A.; Huson, H.J. Genome-wide association studies identify candidate genes for coat color and Mohair Traits in the Iranian Markhoz Goat. Front. Genet. 2018, 9, 105. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.M.; Coville, J.L.; Coquerelle, G.; Gourichon, D.; Oulmouden, A.; Tixier-Boichard, M. Complete association between a retroviral insertion in the tyrosinase gene and the recessive white mutation in chickens. BMC Genom. 2006, 7, 19. [Google Scholar]
- Liu, W.B.; Chen, S.R.; Zheng, J.X.; Qu, L.J.; Xu, G.Y.; Yang, N. Developmental phenotypic-genotypic associations of tyrosinase and melanocortin 1 receptor genes with changing profiles in chicken plumage pigmentation. Poult. Sci. 2010, 89, 1110–1114. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, F.; Cao, J.; Liu, X. Skin transcriptome profiles associated with skin color in chickens. PLoS ONE 2015, 10, e0127301. [Google Scholar] [CrossRef]
- Beleza, S.; Johnson, N.A.; Candille, S.I.; Absher, D.M.; Coram, M.A.; Lopes, J.; Campos, J.; Araùjo, I.I.; Anderson, T.M.; Vilhjàlmsson, B.J.; et al. Genetic architecture of skin and eye color in an African-European admixed population. PLoS Genet. 2013, 9, e1003372. [Google Scholar] [CrossRef]
- Lloyd-Jones, L.R.; Robinson, M.R.; Moser, G.; Zeng, J.; Beleza, S.; Barsh, G.S.; Tang, H.; Visscher, P.M. Inference on the genetic basis of eye and skin color in an admixed population via Bayesian linear mixed models. Genetics 2017, 206, 1113–1126. [Google Scholar] [CrossRef]
- Lona-Durazo, F.; Hernandez-Pacheco, N.; Fan, S.; Zhang, T.; Choi, J.; Kovacs, M.A.; Loftus, S.K.; Le, P.; Edwards, M.; Fortes-Lima, C.A.; et al. Meta-analysis of GWA studies provides new insights on the genetic architecture of skin pigmentation in recently admixed populations. BMC Genet. 2019, 20, 59. [Google Scholar] [CrossRef]
- Miao, Y.; Soudy, F.; Xu, Z.; Liao, M.; Zhao, S.; Li, X. Candidate Gene Identification of Feed Efficiency and Coat Color Traits in a C57BL/6J× Kunming F2 Mice Population Using Genome-Wide Association Study. BioMed Res. Int. 2017, 2017. [Google Scholar] [CrossRef]
- Pfeffer, S.R. Rab GTPases: Specifying and deciphering organelle identity and function. Trends Cell Biol. 2001, 11, 487–491. [Google Scholar] [CrossRef]
- Wasmeier, C.; Romao, M.; Plowright, L.; Bennett, D.C.; Raposo, G.; Seabra, M.C. Rab38 and Rab32 control post-Golgi trafficking of melanogenic enzymes. J. Cell Biol. 2006, 175, 271–281. [Google Scholar] [CrossRef]
- Brooks, B.P.; Larson, D.M.; Chan, C.C.; Kjellstrom, S.; Smith, R.S.; Crawford, M.A.; Lamoreux, L.; Huizing, M.; Hess, R.; Jiao, X. Analysis of ocular hypopigmentation in Rab38cht/cht mice. Investig. Ophthalmol. Vis. Sci. 2007, 48, 3905–3913. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kumano, K.; Masuda, S.; Sata, M.; Saito, T.; Lee, S.Y.; Sakata-Yanagimoto, M.; Tomita, T.; Iwatsubo, T.; Natsugari, H.; Kurokawa, M.; et al. Both Notch1 and Notch2 contribute to the regulation of melanocyte homeostasis. Pigment. Cell Melanoma Res. 2008, 21, 70–78. [Google Scholar] [CrossRef]
- Park, M.N.; Choi, J.A.; Lee, K.T.; Lee, H.J.; Choi, B.H.; Kim, H.; Kim, T.H.; Cho, S.; Lee, T. Genome-wide association study of chicken plumage pigmentation. Asian-Aust. J. Anim. Sci. 2013, 26, 1523. [Google Scholar] [CrossRef] [PubMed]
- Johansson, A.M.; Nelson, R.M. Characterization of genetic diversity and gene mapping in two Swedish local chicken breeds. Front. Genet. 2015, 6, 44. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Shah, T.M.; Patel, N.V.; Patel, A.B.; Upadhyay, M.R.; Mohapatra, A.; Singh, K.M.; Deshpande, S.D.; Joshi, C.G. A genome-wide approach to screen for genetic variants in broilers (Gallus gallus) with divergent feed conversion ratio. Mol. Genet. Genom. 2016, 291, 1715–1725. [Google Scholar] [CrossRef]
- Lee, J.; Karnuah, A.B.; Rekaya, R.; Anthony, N.B.; Aggrey, S.E. Transcriptomic analysis to elucidate the molecular mechanisms that underlie feed efficiency in meat-type chickens. Mol. Genet. Genom. 2015, 290, 1673–1682. [Google Scholar] [CrossRef]
- Lyu, S.J.; Tian, Y.D.; Wang, S.H.; Han, R.L.; Mei, X.X.; Kang, X.T. A novel 2-bp indel within Krüppel-like factor 15 gene (KLF15) and its associations with chicken growth and carcass traits. Brit. Poult. Sci. 2014, 55, 427–434. [Google Scholar] [CrossRef]
Nearest Gene | ||||||
GGA | SNP | Position (bp) | p-Value | FST | Name | Distance (kb) |
1 | AX-75371751 | 184995531 | 5.45e-11 | 0.745 | MAML2 | 2.01 |
1 | AX-75373909 | 185836576 | 5.45e-11 | 0.773 | LOC107052349 | 2.90 |
1 | AX-75374539 | 186058014 | 5.45e-11 | 0.858 | CCDC67 | 29.43 |
1 | AX-75375587 | 186464423 | 5.45e-11 | 0.858 | FAT3 | Within |
1 | AX-75376255 | 186722445 | 5.45e-11 | 0.886 | ||
1 | AX-75376262 | 186735600 | 5.45e-11 | 0.886 | ||
1 | AX-75378645 | 187660456 | 9.01e-13 | 0.809 | NAALAD2 | Within |
1 | AX-75378836 | 187723578 | 9.01e-13 | 0.809 | FOLH1 | 2.90 |
1 | AX-75378888 | 187743605 | 9.01e-13 | 0.809 | FOLH1 | 22.92 |
1 | AX-75379333 | 187911192 | 9.01e-13 | 0.809 | NOX4 | 8.02 |
1 | AX-75379334 | 187911433 | 9.01e-13 | 0.809 | NOX4 | 8.26 |
1 | AX-75379450 | 187960805 | 9.01e-13 | 0.809 | TYR | Within |
1 | AX-77278759 | 188025840 | 9.01e-13 | 0.809 | GRM5 | Within |
1 | AX-75379693 | 188066880 | 9.01e-13 | 0.809 | ||
1 | AX-75379724 | 188079273 | 9.01e-13 | 0.809 | ||
1 | AX-75379753 | 188089989 | 9.01e-13 | 0.809 | ||
1 | AX-75379761 | 188093458 | 9.01e-13 | 0.809 | ||
1 | AX-75379775 | 188096972 | 9.01e-13 | 0.809 | ||
1 | AX-75379792 | 188102761 | 9.01e-13 | 0.809 | ||
1 | AX-75379800 | 188106002 | 9.01e-13 | 0.809 | ||
1 | AX-75379813 | 188112765 | 9.01e-13 | 0.809 | ||
1 | AX-75380172 | 188238879 | 9.01e-13 | 0.809 | ||
1 | AX-75380766 | 188476552 | 9.01e-13 | 0.809 | RAB38 | 88.89 |
1 | AX-75380808 | 188490865 | 9.01e-13 | 0.809 | RAB38 | 103.21 |
1 | AX-80852333 | 188493037 | 9.01e-13 | 0.809 | RAB38 | 105.38 |
1 | AX-75380927 | 188538625 | 9.01e-13 | 0.809 | TMEM135 | 61.51 |
1 | AX-75380931 | 188540546 | 9.01e-13 | 0.809 | TMEM135 | 59.59 |
3 | AX-76506116 | 55929533 | 5.45e-11 | 0.745 | HBS1L | 9.40 |
3 | AX-76506117 | 55930178 | 5.45e-11 | 0.745 | HBS1L | 9.40 |
8 | AX-77109355 | 4012906 | 2e-10 | 0.757 | CRIP1 | 7.01 |
8 | AX-77109358 | 4014014 | 2e-10 | 0.757 | CRIP1 | 8.12 |
8 | AX-77109696 | 4164384 | 2e-10 | 0.757 | SEC22B | Within |
8 | AX-77109700 | 4167984 | 2e-10 | 0.757 | ||
8 | AX-77109855 | 4230320 | 2e-10 | 0.757 | NOTCH2 | Within |
8 | AX-77109898 | 4249450 | 2e-10 | 0.757 | ||
12 | AX-75680106 | 10597665 | 2e-10 | 0.755 | KLF15 | 37.98 |
12 | AX-75680164 | 10627473 | 2e-10 | 0.755 | KLF15 | 8.17 |
12 | AX-75680170 | 10629579 | 2e-10 | 0.755 | KLF15 | 6.07 |
21 | AX-76239008 | 2640299 | 2e-10 | 0.757 | C21H1ORF159 | 0.53 |
21 | AX-76239099 | 2657895 | 2e-10 | 0.757 | C21H1ORF159 | 1.85 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mastrangelo, S.; Cendron, F.; Sottile, G.; Niero, G.; Portolano, B.; Biscarini, F.; Cassandro, M. Genome-Wide Analyses Identifies Known and New Markers Responsible of Chicken Plumage Color. Animals 2020, 10, 493. https://doi.org/10.3390/ani10030493
Mastrangelo S, Cendron F, Sottile G, Niero G, Portolano B, Biscarini F, Cassandro M. Genome-Wide Analyses Identifies Known and New Markers Responsible of Chicken Plumage Color. Animals. 2020; 10(3):493. https://doi.org/10.3390/ani10030493
Chicago/Turabian StyleMastrangelo, Salvatore, Filippo Cendron, Gianluca Sottile, Giovanni Niero, Baldassare Portolano, Filippo Biscarini, and Martino Cassandro. 2020. "Genome-Wide Analyses Identifies Known and New Markers Responsible of Chicken Plumage Color" Animals 10, no. 3: 493. https://doi.org/10.3390/ani10030493
APA StyleMastrangelo, S., Cendron, F., Sottile, G., Niero, G., Portolano, B., Biscarini, F., & Cassandro, M. (2020). Genome-Wide Analyses Identifies Known and New Markers Responsible of Chicken Plumage Color. Animals, 10(3), 493. https://doi.org/10.3390/ani10030493