Negative Energy Balance Influences Nutritional Quality of Milk from Czech Fleckvieh Cows due Changes in Proportion of Fatty Acids
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Herd Management
2.2. Samples Collection and Analyses
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Singhal, S.; Baker, R.D.; Baker, S.S. A comparison of the nutritional value of cow´s milk and nondairy beverages. J. Pediatr. Gastr. Nutr. 2017, 64, 799–805. [Google Scholar] [CrossRef] [PubMed]
- Parodi, P.W. Milk fat in human nutrition. Aust. J. Dairy Technol. 2004, 59, 3–59. [Google Scholar]
- Samková, E.; Špička, J.; Pešek, M.; Pelikánová, T.; Hanuš, O. Animal factors affecting fatty acid composition of cow milk fat: A review. S. Afr. J. Anim. Sci. 2012, 42, 83–100. [Google Scholar] [CrossRef]
- Mele, M.; Macciotta, N.P.P.; Cecchinato, A.; Conte, G.; Schiavon, S.; Bittante, G. Multivariate factor analysis of detailed milk fatty acid profile: Effects of dairy system, feeding, herd, parity, and stage of lactation. J. Dairy Sci. 2016, 99, 9820–9833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staňková, B.; Kremmyda, L.S.; Tvrzická, E.; Žák, A. Fatty Acid Composition of Commercially Available Nutrition Supplements. Czech J. Food Sci. 2013, 31, 241–248. [Google Scholar] [CrossRef] [Green Version]
- Marci, E.V.; Lifshitz, F.; Alsina, E.; Juiz, N.; Zaqo, V.; Lezón, C.; Rodriquez, P.N.; Schreier, L.; Boyer, P.M.; Friedman, S.M. Monounsaturated fatty acids-rich diets in hypercholesterolemic-growing rats. Int. J. Food Sci. Nutr. 2015, 66, 400–408. [Google Scholar] [CrossRef]
- Tripathi, M.K. Effect of nutrition on production, composition, fatty acids and nutraceutical properties of milk. J. Adv. Dairy Res. 2014, 2, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Bhagwat, A.M.; De Baets, B.; Steen, A.; Vlaeminck, B.; Fievez, V. Prediction of ruminal volatile fatty acid proportion of lactating dairy cows based on milk odd- and branched-chain fatty acid profiles: New models, better predictions. J. Dairy Sci. 2012, 95, 3926–3937. [Google Scholar] [CrossRef]
- Bauman, D.E.; Lock, A.L. Milk fatty acid composition: Challenges and opportunities related to human health. In Proceedings of the XXVI World Buiatrics Congress, Santiago, Chile, 14–18 November 2010; pp. 14–18. [Google Scholar]
- Kus-Yamashita, M.M.M.; Mancini Filho, J.; Mcdonald, B.; Ravacci, G.; Rogero, M.M.; Santos, R.D.; Waitzberg, D.; Soledad Reyes, M.; Yehuda, S.; Gierke, J.; et al. Polyunsaturated Fatty Acids: Health Impacts. Eur. J. Nutr. Food Saf. 2016, 6, 111–131. [Google Scholar] [CrossRef]
- Hammad, S.; Pu, S.; Jones, P.J. Current evidence supporting the link between dietary fatty acids and cardiovascular disease. Lipids 2016, 51, 507–517. [Google Scholar] [CrossRef]
- Zárate, R.; El Jaber-Vazdekis, N.; Tejera, N.; Pérez, J.A.; Rodríguez, C. Significance of long chain polyunsaturated fatty acids in human health. Clin. Transl. Med. 2017, 6, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aldai, N.; de Renobales, M.; Barron, L.J.R.; Kramer, J.K. What are the trans fatty acids issues in foods after discontinuation of industrially produced trans fats? Ruminant products, vegetable oils, and synthetic supplements. Eur. J. Lipid Sci. Technol. 2013, 115, 1378–1401. [Google Scholar] [CrossRef]
- Rego, O.A.; Alves, S.P.; Antunes, L.M.S.; Rosa, H.J.D.; Alfaia, C.F.M.; Prates, J.A.M.; Cabrita, A.R.J.; Fonseca, A.J.M.; Bessa, R.J.B. Rumen biohydrogenation-derived fatty acids in milk fat from grazing dairy cows supplemented with rapeseed, sunflower, or linseed oils. J. Dairy Sci. 2009, 92, 4530–4540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stádník, L.; Ducháček, J.; Okrouhlá, M.; Ptáček, M.; Beran, J.; Stupka, R.; Zita, L. The effect of parity on the proportion of important health fatty acids in raw milk of Holstein cows. Mljekarstvo 2013, 63, 195–202. [Google Scholar]
- Atasever, S.; Stádník, L. Factors affecting daily milk yield, fat and protein percentage, and somatic cell count in primiparous Holstein cows. Indian J. Anim. Res. 2015, 49, 313–316. [Google Scholar] [CrossRef]
- Otwinowska-Mindur, A.; Ptak, E.; Grzesiak, A. Factors affecting the freezing point of milk from Polish Holstein-Friesian cows. Ann. Anim. Sci. 2017, 17, 873–885. [Google Scholar] [CrossRef] [Green Version]
- Kadlecová, V.; Němečková, D.; Ječmínková, K.; Stádník, L. Association of bovine DGAT1 and leptin genes polymorphism with milk production traits and energy balance indicators in primiparous Holstein cows. Mljekarstvo 2014, 64, 19–26. [Google Scholar]
- Fleming, A.; Schenkel, F.S.; Malchiodi, F.; Ali, R.A.; Mallard, B.; Sargozaei, M.; Jamrozik, J.; Johnston, J.; Miglior, F. Genetic correlations of mid-infrared-predicted milk fatty acid groups with milk production traits. J. Dairy Sci. 2018, 101, 4295–4306. [Google Scholar] [CrossRef]
- Thorup, V.M.; Chagunda, M.G.G.; Fischer, A.; Weisbjerg, M.R.; Friggens, N.C. Robustness and sensitivity of a blueprint for on-farm estimation of dairy cow energy balance. J. Dairy Sci. 2018, 101, 6002–6018. [Google Scholar] [CrossRef]
- Kuhla, B.; Metges, C.C.; Hammon, H.M. Endogenous and dietary lipids influencing feed intake and energy metabolism of periparturient dairy cows. Domest. Anim. Endocrinol. 2016, 56, S2–S10. [Google Scholar] [CrossRef]
- Colakoglu, H.E.; Polat, I.M.; Vural, M.R.; Kuplulu, S.; Pekcan, M.; Yazlik, M.O.; Baklaci, C. Associations between leptin, body condition score, and energy metabolites in Holstein primiparous and multiparous cows from 2 to 8 weeks postpartum. Rev. Med. Vet. 2017, 168, 93–101. [Google Scholar]
- Weber, C.; Hametner, C.; Tuchscherer, A.; Losand, B.; Kanitz, E.; Otten, W.; Singh, S.P.; Bruckmaier, R.M.; Becker, F.; Kanitz, W.; et al. Variation in fat mobilization during early lactation differently affects feed intake, body condition, and lipid and glucose metabolism in high-yielding dairy cows. J. Dairy Sci. 2013, 96, 165–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mann, S.; Nydam, D.V.; Lock, A.L.; Overton, T.R.; McArt, J.A.A. Short communication: Association of milk fatty acids with early lactation hyperketonemia and elevated concentration of nonesterified fatty acids. J. Dairy Sci. 2016, 99, 5851–5857. [Google Scholar] [CrossRef] [PubMed]
- Beran, J.; Stádník, L.; Ducháček, J.; Okrouhlá, M.; Doležalová, M.; Kadlecová, V.; Ptáček, M. Relationships among the cervical mucus urea and acetone, accuracy of insemination timing, and sperm survival in Holstein cows. Anim. Reprod. Sci. 2013, 142, 28–34. [Google Scholar] [CrossRef]
- Akbar, H.; Grala, T.M.; Vailati Riboni, M.; Cardoso, F.C.; Verkerk, G.; McGowan, J.; Macdonald, K.; Webster, J.; Schutz, K.; Meier, S.; et al. Body condition score at calving affects systemic and hepatic transcriptome indicators of inflammation and nutrient metabolism in grazing dairy cows. J. Dairy Sci. 2015, 98, 1019–1032. [Google Scholar] [CrossRef]
- Garnsworthy, P.C.; Masson, L.L.; Lock, A.L.; Mottram, T.T. Variation of milk citrate with stage of lactation and de novo fatty acid synthesis in dairy cows. J. Dairy Sci. 2006, 89, 1604–1612. [Google Scholar] [CrossRef] [Green Version]
- Larsen, T.; Moyes, K.M. Are free glucose and glucose-6-phosphate in milk indicators of specific physiological states in the cow? Animal 2015, 9, 86–93. [Google Scholar] [CrossRef] [Green Version]
- Xu, Ch.; Xia, Ch.; Sun, Y.; Xiao, X.; Wang, G.; Fan, Z.; Shu, S.; Zhang, H.; Xu, Ch.; Yang, W. Metabolic profiles using 1H-nuclear magnetic resonance spectroscopy in postpartum dairy cows with ovarian inactivity. Theriogenology 2016, 86, 1475–1481. [Google Scholar] [CrossRef] [Green Version]
- Stádník, L.; Ducháček, J.; Beran, J.; Toušová, R.; Ptáček, M. Relationships between milk fatty acids composition in early lactation and subsequent reproductive performance in Czech Fleckvieh cows. Anim. Reprod. Sci. 2015, 155, 75–79. [Google Scholar] [CrossRef]
- Vukasinovic, N.; Bacciu, N.; Przybyla, C.A.; Boddhireddy, P.; DeNise, S.K. Development of genetic and genomic evaluation for wellness traits in US Holstein cows. J. Dairy Sci. 2017, 100, 428–438. [Google Scholar] [CrossRef]
- Gonzalez-Peña, D.; Vukasinovic, N.; Brooker, J.J.; Przybyla, C.A.; Baktula, A.; DeNise, S.K. Genomic evaluation for wellness traits in US Jersey cattle. J. Dairy Sci. 2020, 103, 1735–1748. [Google Scholar] [CrossRef] [PubMed]
- Haiger, A. Life performance—The “Natural Selection Index”. Int. J. Biotech. Bioeng. 2018, 4, 102–105. [Google Scholar]
- Obućinski, D.; Soleša, D.; Kučević, D.; Prodanović, R.; Tomaš Simin, M.; Ljubojević Pelić, D.; Duragić, O.; Puvača, N. Management of blood lipid profile and oxidative status in Holstein and Simmental dairy cows during lactation. Mljekarstvo 2019, 69, 116–124. [Google Scholar] [CrossRef]
- Fürst, C.; Pfeiffer, C.; Fürst-Waltl, B. Fit, vital und leistungsstark-die neuen Zuchtziele für Fleckvieh und Braunvieh. In Proceedings of the ZAR-SeminAR, Hoffterhof, Salzburg, Austria, 3 March 2016; pp. 41–48. [Google Scholar]
- CRV, E-CHAPTERS. Available online: https://www.crv4all-international.com/downloads/background-information/e-chapters/ (accessed on 18 December 2019).
- VanRaden, P.M.; Cole, J.B.; Gaddis, K.P. Net Merit as a Measure of Lifetime Profit: 2014 Revision; Animal Improvement Programs Laboratory, ARS-USDA: Beltsville, MD, USA, 2018. Available online: https://www.aipl.arsusda.gov/reference/nmcalc-2018.htm (accessed on 18 December 2019).
- Essl, A. Longevity in dairy cattle breeding: A review. Livest. Prod. Sci. 1998, 57, 79–89. [Google Scholar] [CrossRef]
- Loor, J.J.; Bertoni, G.; Hosseini, A.; Roche, J.R.; Trevisi, E. Functional welfare—Using biochemical and moleculartechnologies to understand better the welfare state ofperipartal dairy cattle. Anim. Prod. Sci. 2013, 53, 931–953. [Google Scholar] [CrossRef]
- Ferguson, J.D.; Galligano, D.T.; Thomsen, N. Principal descriptors of body condition score in Holstein cows. J. Dairy Sci. 1994, 77, 2695–2703. [Google Scholar] [CrossRef]
- Genčurová, V. The Study of Relationships of Direct and Indirect Analytical Methods for the Control of Basic Components and Properties of Milk. PhD Thesis, Czech University of Life Sciences Prague, Prague, Czech Republic, 2008; 126p. [Google Scholar]
- ICAR (International Committee for Animal Recording). International Agreement of Recording Practices: Guidelines Approved by General Assembly; ICAR: Cork, Ireland, 2012; 580p. [Google Scholar]
- Kontkanen, H.; Rokka, S.; Kemppinen, A.; Miettinen, H.; Hellström, J.; Kruus, K.; Marnila, P.; Alatossava, T.; Korhonen, H. Enzymatic and physical modification of milk fat: A review. Int. Dairy J. 2011, 21, 3–13. [Google Scholar] [CrossRef]
- Pešek, M.; Samková, E.; Špička, J. Fatty acids and composition of their important groups in milk fat of Czech Pied cattle. Czech J. Anim. Sci. 2006, 51, 181–188. [Google Scholar] [CrossRef] [Green Version]
- SAS (Statistical Analysis System). SAS/STAT User’s Guide: Statistics; Version 9.3. Edition; SAS Inc.: Cary, NC, USA, 2011. [Google Scholar]
- Samková, E.; Čertíková, J.; Špička, J.; Hanuš, O.; Pelikánová, T.; Kvač, M. Eighteen-carbon fatty acids in milk fat of Czech Fleckvieh and Holstein cows following feeding with fresh lucerne (Medicago sativa L.). Anim. Sci. Pap. Rep. 2014, 32, 209–218. [Google Scholar]
- Hanuš, O.; Frelich, J.; Tomášek, M.; Vyletělová, M.; Genčurová, V.; Kučera, J.; Třináctý, J. The analysis of relationships between chemical composition, physical, technological and health indicators and freezing point in raw cow milk. Czech J. Anim. Sci. 2010, 55, 11–29. [Google Scholar] [CrossRef] [Green Version]
- O´Hara, E.A.; Omazic, A.; Olsson, I.; Båge, R.; Emanuelson, U.; Holtenius, K. Effects of dry period length on milk production and energy balance in two cow breeds. Animal 2018, 12, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Bűnemann, K.; von Doosten, D.; Frahm, J.; Kersten, S.; Meyer, U.; Hummel, J.; Zeyner, A.; Dänicke, S. Effects of body condtion and concentrate proportion of the ration on mobilization of fat depots and energy condition in dairy cows during early lactation based on ultrasonic measurements. Animals 2019, 94, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Młynek, K.; Głowińska, B.; Salomończyk, E.; Tkaczuk, J.; Styś, W. The effect of daily milk production on the milk composition and energy management indicators in Holstein-Friesian and Simmental cows. Turk. J. Vet. Anim. Sci. 2018, 42, 223–229. [Google Scholar] [CrossRef]
- Hanuš, O.; Křížová, L.; Samková, E.; Špička, J.; Kučera, J.; Klimešová, M.; Roubal, P.; Jedelská, R. The effect of cattle breed, season and type of diet on the fatty acid profile of raw milk. Arch. Anim. Breed. 2016, 59, 373–380. [Google Scholar] [CrossRef]
- Lin, Y.; O´Mahony, J.A.; Kelly, A.L.; Guinee, T.P. Seasonal variation in the composition and processing characteristics of herd milk with varying proportions of milk from spring-calving and autumn-calving cows. J. Dairy Res. 2017, 84, 1–9. [Google Scholar] [CrossRef]
- Dunshea, F.R.; Walker, G.P.; Williams, R.; Doyle, P.T. Mineral and citrate concentrations in milk are affected by seasons, stage of lactation and management practices. Agriculture 2019, 9, 25. [Google Scholar] [CrossRef] [Green Version]
- Bastin, C.; Gengler, N.; Soyeurt, H. Phenotypic and genetic variability of production traits and milk fatty acid content across days in milk for Walloon Holstein first-parity cows. J. Dairy Sci. 2011, 94, 4152–4163. [Google Scholar] [CrossRef] [Green Version]
- Roche, J.R.; Friggens, N.C.; Kay, J.K.; Fisher, M.W.; Stafford, K.J.; Berry, D.P. Invited review: Body condition score and its association with dairy cow productivity, health, and welfare. J. Dairy Sci. 2009, 92, 5769–5801. [Google Scholar] [CrossRef] [Green Version]
- Ducháček, J.; Stádník, L.; Ptáček, M.; Beran, J.; Okrouhlá, M.; Čítek, J.; Stupka, R. Effect of cow energy status on the hypercholesterolaemic fatty acid proportion in raw milk. Czech J. Food Sci. 2014, 32, 273–279. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, M.S.; Azeemi, T.A. Dietary manipulations for enhancing cardio-protective fatty acids in the milk of dairy cows. In Proceedings of the International Conference on Applied Life Sciences, Konya, Turkey, 10–12 September 2012; pp. 423–429. [Google Scholar]
- Hayes, B.J.; Lewin, H.A.; Goddard, M.E. The future of livestock breeding: Genomic selection for efficiency, reduced emissions intensity, and adaptation. Trends Genet. 2013, 29, 206–214. [Google Scholar] [CrossRef]
- Morvay, Y.; Bannink, A.; France, J.; Kebreab, E.; Dijkstra, J. Evaluation of models to predict the stoichiometry of volatile fatty acid profiles in rumen fluid of lactating Holstein cows. J. Dairy Sci. 2011, 94, 3063–3080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gross, J.J.; Bruckmaier, R.M. Repeatability of metabolic responses to a nutrient deficiency in early and mid lactation and implications for robustness of dairy cows. J. Dairy Sci. 2015, 98, 8634–8643. [Google Scholar] [CrossRef]
- Roche, J.R.; Berry, D.P.; Delaby, L.; Dillon, P.G.; Horan, B.; Macdonald, K.A.; Neal, M. Review: New considerations to refine breeding objectives of dairy cows for increasing robustness and sustainability of grass-based milk production systems. Animal 2018, 12, S350–S362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefani, G.; El Faro, L.; Santan Júnior, M.L.; Tonhati, H. Association of longevity with type traits, milk yield and udder health in Holstein cows. Livest. Sci. 2018, 218, 1–7. [Google Scholar] [CrossRef]
- Cole, J.B.; VanRaden, P.M. Symposium review: Possibilities in an age of genomics: The future of selection indices. J. Dairy Sci. 2018, 101, 3686–3701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kul, E.; Şahin, A.; Atasever, S.; Uğurlutepe, E.; Soydaner, M. The effects of somatic cell count on milk yield and milk composition in Holstein cows. Vet. Arh. 2019, 89, 143–154. [Google Scholar] [CrossRef]
Groups of DEC | PAR | DEC | MON | b*(DIM) | |||
---|---|---|---|---|---|---|---|
≤ −1 (n = 86 Animals with Four Repetition) | −0.75 to −0.5 (n = 114 Animals with Four Repetition) | ≥ −0.25 (n = 48 Animals with Four Repetition) | |||||
SFA | 69.46 ± 0.30C | 71.18 ± 0.25B | 72.65 ± 0.40A | xx | xx | xx | xx |
HCFA | 40.81± 0.22B,b | 41.48 ± 0.18a | 42.13 ± 0.28A | xx | xx | xx | xx |
VFA | 13.40 ± 0.32B | 14.77 ± 0.26A | 15.87 ± 0.41A | NS | xx | xx | NS |
UFA | 30.51 ± 0.30A | 28.78 ± 0.25B | 27.33 ± 0.40C | xx | xx | xx | xx |
MUFA | 26.72 ± 0.29A | 25.15 ± 0.24B,a | 23.90 ± 0.38B,b | xx | xx | xx | xx |
PUFA | 3.79 ± 0.05A,b | 3.64 ± 0.04a | 3.43 ± 0.07B,b | xx | xx | xx | xx |
Groups of CAC | PAR | CAC | MON | b*(DIM) | |||
---|---|---|---|---|---|---|---|
< 10.36 (n = 278) | 10.36–12.60 (n = 376) | > 12.60 (n = 289) | |||||
SFA | 72,39 ± 0.34A | 70,76 ± 0.30A,a | 69.69 ± 0.34B,b | xx | xx | xx | x |
HCFA | 42.74 ± 0.24A | 41.06 ± 0.20B | 40.40 ± 0.24C | NS | xx | xx | xx |
VFA | 15.00 ± 0.35 | 14.44 ± 0.30 | 13.92 ± 0.35 | NS | NS | xx | NS |
UFA | 27.58 ± 0.34B | 29.22 ± 0.30b | 30.27 ± 0.34A,a | xx | xx | xx | xx |
MUFA | 23.92 ± 0.32C | 25.55 ± 0.28B | 26.63 ± 0.33A | xx | xx | xx | x |
PUFA | 3.61 ± 0.06 | 3.66 ± 0.05 | 3.67 ± 0.06 | xx | NS | xx | xx |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ducháček, J.; Stádník, L.; Ptáček, M.; Beran, J.; Okrouhlá, M.; Gašparík, M. Negative Energy Balance Influences Nutritional Quality of Milk from Czech Fleckvieh Cows due Changes in Proportion of Fatty Acids. Animals 2020, 10, 563. https://doi.org/10.3390/ani10040563
Ducháček J, Stádník L, Ptáček M, Beran J, Okrouhlá M, Gašparík M. Negative Energy Balance Influences Nutritional Quality of Milk from Czech Fleckvieh Cows due Changes in Proportion of Fatty Acids. Animals. 2020; 10(4):563. https://doi.org/10.3390/ani10040563
Chicago/Turabian StyleDucháček, Jaromír, Luděk Stádník, Martin Ptáček, Jan Beran, Monika Okrouhlá, and Matúš Gašparík. 2020. "Negative Energy Balance Influences Nutritional Quality of Milk from Czech Fleckvieh Cows due Changes in Proportion of Fatty Acids" Animals 10, no. 4: 563. https://doi.org/10.3390/ani10040563
APA StyleDucháček, J., Stádník, L., Ptáček, M., Beran, J., Okrouhlá, M., & Gašparík, M. (2020). Negative Energy Balance Influences Nutritional Quality of Milk from Czech Fleckvieh Cows due Changes in Proportion of Fatty Acids. Animals, 10(4), 563. https://doi.org/10.3390/ani10040563