Copy Number Variations and Expression Levels of Guanylate-Binding Protein 6 Gene Associated with Growth Traits of Chinese Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Phenotypes
2.2. DNA and RNA Extractions
2.3. Primers Design for Quantitative Polymerase Chain Reaction Amplification
2.4. Identification of CNV and Expression Levels for GBP6
2.5. Statistical Analysis
2.6. Bioinformatics Comparisons of GBP6 Associated with Growth Traits
3. Results
3.1. Animal Phenotypes
3.2. Distributions of the CNV in Six Breeds
3.3. Identified CNV Types of GBP6 Gene Associated with Growth Traits
3.4. Gene Expression Levels of GBP6
3.5. Comparative Validation of GBP6 with other Studies Associated with Growth Traits
4. Discussion
4.1. Domestic Beef Cattle in China
4.2. The CNV Distributions with Biological Features of GBP6
4.3. The Identified CNVs and Expression Levels of GBP6 Associated with Growth Traits
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Animal QTLdb | Animal QTLs Database |
ANOVA | Analysis of variance |
BTF3 | Basic transcription factor 3 |
BoH | Body height |
BoL | Body length |
BoW | Body weight |
CaC | Cannon circumference |
cDNA | Complementary DNA |
ChC | Chest circumference |
ChD | Chest depth |
ChW | Chest width |
CrH | Cross height |
Ct | Average threshold cycles |
CNV | Copy number variation |
CNVR | Copy number variation region |
DAVID | Database for Annotation, Visualization and Integrated Discovery |
DN | Denan cattle |
EMD | Emerin gene |
eQTL | Expression quantitative trait locus |
GBP | Guanylate-binding protein |
GBP6 | Guanylate-binding protein 6 |
GDP | Guanosine-5’-diphosphate |
GIS | Geographic information system |
GMP | Guanosine-5’-monophosphate |
GTP | Guanosine-5’-triphosphate |
GWAS | Genome-wide association studies |
HSD | Honestly significant difference |
HuW | Hucklebone width |
IBS | Illustrator for Biological Sequences |
kDa | kilodalton |
LD | Linkage disequilibrium |
LRP10 | Lipoprotein receptor-related protein 10 gene |
NY | Nanyang cattle |
QC | Qinchuan cattle |
qPCR | Quantitative polymerase chain reaction |
QTL | Quantitative trait locus |
RuL | Rump length |
SNP | Single nucleotide polymorphism |
SV | Structural variation |
WaC | Waist circumference |
WaL | Waist length |
XJ | Xiajia cattle |
XN | Xianan cattle |
ZS | Zaosheng cattle |
References
- Abyzov, A.; Li, S.; Gerstein, M.B. Understanding genome structural variations. Oncotarget 2016, 7, 7370–7371. [Google Scholar] [CrossRef] [PubMed]
- Feuk, L.; Carson, A.R.; Scherer, S.W. Structural variation in the human genome. Nat. Rev. Genet. 2006, 7, 85–97. [Google Scholar] [CrossRef]
- Redon, R.; Ishikawa, S.; Fitch, K.R.; Feuk, L.; Perry, G.H.; Andrews, T.D.; Fiegler, H.; Shapero, M.H.; Carson, A.R.; Chen, W.; et al. Global variation in copy number in the human genome. Nature 2006, 444, 444–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ragoussis, J. Genotyping Technologies for Genetic Research. Annu. Rev. Genom. Hum. Genet. 2009, 10, 117–133. [Google Scholar] [CrossRef] [PubMed]
- Altshuler, D.M.; Durbin, R.M.; Abecasis, G.R.; Bentley, D.R.; Chakravarti, A.; Clark, A.G.; Donnelly, P.; Eichler, E.E.; Flicek, P.; Gabriel, S.B.; et al. An integrated map of genetic variation from 1092 human genomes. Nature 2012, 491, 56–65. [Google Scholar]
- Belmont, J.W.; Boudreau, A.; Leal, S.M.; Hardenbol, P.; Pasternak, S.; Wheeler, D.A.; Willis, T.D.; Yu, F.; Yang, H.; Gao, Y.; et al. A haplotype map of the human genome. Nature 2005, 437, 1299–1320. [Google Scholar]
- Malhotra, D.; McCarthy, S.; Michaelson, J.J.; Vacic, V.; Burdick, K.E.; Yoon, S.; Cichon, S.; Corvin, A.; Gary, S.; Gershon, E.S.; et al. High frequencies of de novo cnvs in bipolar disorder and schizophrenia. Neuron 2011, 72, 951–963. [Google Scholar] [CrossRef] [Green Version]
- Marshall, C.R.; Scherer, S.W. Detection and characterization of copy number variation in autism spectrum disorder. Methods Mol. Biol. 2011, 838, 115–135. [Google Scholar]
- Dauber, A.; Yu, Y.; Turchin, M.C.; Chiang, C.W.; Meng, Y.A.; Demerath, E.W.; Patel, S.R.; Rich, S.S.; Rotter, J.I.; Schreiner, P.J.; et al. Genome-wide association of copy-number variation reveals an association between short stature and the presence of low-frequency genomic deletions. Am. J. Hum. Genet. 2011, 89, 751–759. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Byers, S. Copy Number Variation in Chickens: A Review and Future Prospects. Microarrays 2014, 3, 24–38. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Xu, L.; Zhou, Y.; Liu, M.; Wang, L.; Kijas, J.W.; Zhang, H.; Li, L.; Liu, G.E. Diversity of copy number variation in a worldwide population of sheep. Genomics 2018, 110, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Fadista, J.; Nygaard, M.; Holm, L.E.; Thomsen, B.; Bendixen, C. A snapshot of CNVs in the pig genome. PLoS ONE 2008, 3, e3916. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Qiao, R.; Wei, R.; Guo, Y.; Ai, H.; Ma, J.; Ren, J.; Huang, L. A comprehensive survey of copy number variation in 18 diverse pig populations and identification of candidate copy number variable genes associated with complex traits. BMC Genom. 2012, 13, 733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, Y.; Su, Y.; Ai, H.; Zhang, Z.; Yang, B.; Ruan, G.; Xiao, S.; Liao, X.; Ren, J.; Huang, L.; et al. A genome-wide association study of copy number variations with umbilical hernia in swine. Anim. Genet. 2016, 47, 298–305. [Google Scholar] [CrossRef]
- Wang, L.; Xu, L.; Liu, X.; Zhang, T.; Li, N.; Hay, E.H.; Zhang, Y.; Yan, H.; Zhao, K.; Liu, G.E.; et al. Copy number variation-based genome wide association study reveals additional variants contributing to meat quality in Swine. Sci. Rep. 2015, 5, 12535. [Google Scholar] [CrossRef] [Green Version]
- Revilla, M.; Puig-Oliveras, A.; Castelló, A.; Crespo-Piazuelo, D.; Paludo, E.; Fernández, A.I.; Ballester, M.; Folch, J.M. A global analysis of CNVs in swine using whole genome sequence data and association analysis with fatty acid composition and growth traits. PLoS ONE 2017, 12, e0177014. [Google Scholar] [CrossRef]
- Prinsen, R.T.M.M.; Rossoni, A.; Gredler, B.; Bieber, A.; Bagnato, A.; Strillacci, M.G. A genome wide association study between CNVs and quantitative traits in Brown Swiss cattle. Livest. Sci. 2017, 202, 7–12. [Google Scholar] [CrossRef]
- Da Silva, V.H.; De Almeida Regitano, L.C.; Geistlinger, L.; Pértille, F.; Giachetto, P.F.; Brassaloti, R.A.; Morosini, N.S.; Zimmer, R.; Coutinho, L.L. Genome-wide detection of CNVs and their association with meat tenderness in Nelore cattle. PLoS ONE 2016, 11, e0157711. [Google Scholar] [CrossRef] [Green Version]
- Upadhyay, M.; da Silva, V.H.; Megens, H.J.; Visker, M.H.P.W.; Ajmone-Marsan, P.; Bâlteanu, V.A.; Dunner, S.; Garcia, J.F.; Ginja, C.; Kantanen, J.; et al. Distribution and functionality of copy number variation across European cattle populations. Front. Genet. 2017, 8, 108. [Google Scholar] [CrossRef]
- Zhou, Y.; Connor, E.E.; Wiggans, G.R.; Lu, Y.; Tempelman, R.J.; Schroeder, S.G.; Chen, H.; Liu, G.E. Genome-wide copy number variant analysis reveals variants associated with 10 diverse production traits in Holstein cattle. BMC Genom. 2018, 19, 314. [Google Scholar] [CrossRef]
- Ben Sassi, N.; González-Recio, Ó.; de Paz-del Río, R.; Rodríguez-Ramilo, S.T.; Fernández, A.I. Associated effects of copy number variants on economically important traits in Spanish Holstein dairy cattle. J. Dairy Sci. 2016, 99, 6371–6380. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Utsunomiya, Y.T.; Xu, L.; abdel Hay, E.H.; Bickhart, D.M.; Alexandre, P.A.; Rosen, B.D.; Schroeder, S.G.; Carvalheiro, R.; de Rezende Neves, H.H.; et al. Genome-wide CNV analysis reveals variants associated with growth traits in Bos indicus. BMC Genom. 2016, 17, 419. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Lv, J.; Zhang, L.; Li, M.; Zhou, Y.; Lan, X.; Lei, C.; Chen, H. Association study and expression analysis of CYP4A11 gene copy number variation in Chinese cattle. Sci. Rep. 2017, 7, 46599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, G.M.; Zheng, L.; He, H.; Song, C.C.; Zhang, Z.J.; Cao, X.K.; Lei, C.Z.; Lan, X.Y.; Qi, X.L.; Chen, H.; et al. Associations of GBP2 gene copy number variations with growth traits and transcriptional expression in Chinese cattle. Gene 2018, 647, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Goshu, H.A.; Wu, X.; Chu, M.; Bao, P.; Ding, X.; Yan, P. Copy number variations of KLF6 modulate gene transcription and growth traits in chinese datong yak (Bos grunniens). Animals 2018, 8, 145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goshu, H.A.; Chu, M.; Wu, X.; Pengjia, B.; Ding, X.Z.; Yan, P. Association study and expression analysis of GPC1 gene copy number variation in Chinese Datong yak (Bos grunniens) breed. Ital. J. Anim. Sci. 2019, 18, 820–832. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.; Xu, J.W.; Li, J.C.; Wang, D.H.; An, Q.M.; Xu, L.N.; Ma, Y.L.; Wang, J.; Peng, S.J.; Lei, C.Z.; et al. Distribution and association study in copy number variation of KCNJ12 gene across four Chinese cattle populations. Gene 2019, 689, 90–96. [Google Scholar] [CrossRef]
- Xu, J.W.; Zheng, L.; Li, L.J.; Yao, Y.F.; Hua, H.; Yang, S.Z.; Wen, Y.F.; Song, C.C.; Cao, X.K.; Liu, K.P.; et al. Novel copy number variation of the KLF3 gene is associated with growth traits in beef cattle. Gene 2019, 680, 99–104. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, L.; Shi, T.; Zhou, Y.; Cai, H.; Lan, X.; Zhang, C.; Lei, C.; Chen, H. Copy number variations of MICAL-L2 shaping gene expression contribute to different phenotypes of cattle. Mamm. Genome 2013, 24, 508–516. [Google Scholar] [CrossRef]
- Xu, Y.; Shi, T.; Cai, H.; Zhou, Y.; Lan, X.; Zhang, C.; Lei, C.; Qi, X.; Chen, H. Associations of MYH3 gene copy number variations with transcriptional expression and growth traits in chinese cattle. Gene 2014, 535, 106–111. [Google Scholar] [CrossRef]
- Shi, T.; Xu, Y.; Yang, M.; Huang, Y.; Lan, X.; Lei, C.; Qi, X.; Yang, X.; Chen, H. Copy number variations at LEPR gene locus associated with gene expression and phenotypic traits in Chinese cattle. Anim. Sci. J. 2015, 87, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Li, B.; Huang, Y.; Yang, M.; Lan, X.; Lei, C.; Qu, W.; Bai, Y.; Chen, H. Copy number variation of bovine MAPK10 modulates the transcriptional activity and affects growth traits. Livest. Sci. 2016, 194, 44–50. [Google Scholar] [CrossRef]
- Schwemmlel, M.; Staeheli, P. The interferon-induced 67-kDa guanylate-binding protein (hGBP1) is a GTPase that converts GTP to GMP. J. Biol. Chem. 1994, 269, 11299–11305. [Google Scholar]
- Wennerberg, K.; Rossman, K.L.; Der, C.J. The Ras superfamily at a glance. J. Cell Sci. 2005, 118, 843–846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngo, C.C.; Man, S.M. Mechanisms and functions of guanylate-binding proteins and related interferon-inducible GTPases: Roles in intracellular lysis of pathogens. Cell. Microbiol. 2017, 19, e12791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, X.K.; Huang, Y.Z.; Ma, Y.L.; Cheng, J.; Qu, Z.X.; Ma, Y.; Bai, Y.Y.; Tian, F.; Lin, F.P.; Ma, Y.L.; et al. Integrating CNVs into meta-QTL identified GBP4 as positional candidate for adult cattle stature. Funct. Integr. Genom. 2018, 18, 559–567. [Google Scholar] [CrossRef]
- Zhang, L.; Jia, S.; Yang, M.; Xu, Y.; Li, C.; Sun, J.; Huang, Y.; Lan, X.; Lei, C.; Zhou, Y.; et al. Detection of copy number variations and their effects in Chinese bulls. BMC Genom. 2014, 15, 480. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Tian, F.; Yu, Y.; Luo, J.; Hu, Q.; Bequette, B.J.; Baldwin, R.L.; Liu, G.; Zan, L.; Updike, M.S.; et al. Muscle transcriptomic analyses in Angus cattle with divergent tenderness. Mol. Biol. Rep. 2011, 39, 4185–4193. [Google Scholar] [CrossRef]
- Gilbert, R.P.; Bailey, D.R.; Shannon, N.H. Linear body measurements of cattle before and after 20 years of selection for postweaning gain when fed two different diets2. J. Anim. Sci. 1993, 71, 1712–1720. [Google Scholar] [CrossRef]
- Rio, D.C.; Ares, M.; Hannon, G.J.; Nilsen, T.W. Purification of RNA Using TRIzol (TRI Reagent); Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2010. [Google Scholar]
- Hou, Y.; Liu, G.E.; Bickhart, D.M.; Cardone, M.F.; Wang, K.; Kim, E.S.; Matukumalli, L.K.; Ventura, M.; Song, J.; VanRaden, P.M.; et al. Genomic characteristics of cattle copy number variations. Genom. 2011, 12, 127. [Google Scholar] [CrossRef] [Green Version]
- Hou, Y.; Bickhart, D.M.; Hvinden, M.L.; Li, C.; Song, J.; Boichard, D.A.; Fritz, S.; Eggen, A.; DeNise, S.; Wiggans, G.R.; et al. Fine mapping of copy number variations on two cattle genome assemblies using high density SNP array. BMC Genom. 2012, 13, 376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bickhart, D.M.; Hou, Y.; Schroeder, S.G.; Alkan, C.; Cardone, M.F.; Matukumalli, L.K.; Song, J.; Schnabel, R.D.; Ventura, M.; Taylor, J.F.; et al. Copy number variation of individual cattle genomes using next-generation sequencing. Genome Res. 2012, 22, 778–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bae, J.S.; Cheong, H.S.; Kim, L.H.; NamGung, S.; Park, T.J.; Chun, J.Y.; Kim, J.Y.; Pasaje, C.F.A.; Lee, J.S.; Shin, H.D. Identification of copy number variations and common deletion polymorphisms in cattle. BMC Genom. 2010, 11, 232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goshu, H.A.; Chu, M.; Xiaoyun, W.; Pengjia, B.; Zhi, D.X.; Yan, P. Genomic copy number variation of the CHKB gene alters gene expression and affects growth traits of Chinese domestic yak (Bos grunniens) breeds. Mol. Genet. Genom. 2019, 294, 549–561. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.E.; Hou, Y.; Zhu, B.; Cardone, M.F.; Jiang, L.; Cellamare, A.; Mitra, A.; Alexander, L.J.; Coutinho, L.L.; Dell’Aquila, M.E.; et al. Analysis of copy number variations among diverse cattle breeds. Genome Res. 2010, 20, 693–703. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Liu, M.; Li, B.; Zhou, Y.; Huang, Y.; Lan, X.; Qu, W.; Qi, X.; Bai, Y.; Chen, H. Polymorphisms of FLII implicate gene expressions and growth traits in Chinese cattle. Mol. Cell. Probes 2016, 30, 266–272. [Google Scholar] [CrossRef]
- Saremi, B.; Sauerwein, H.; Dänicke, S.; Mielenz, M. Technical note: Identification of reference genes for gene expression studies in different bovine tissues focusing on different fat depots. J. Dairy Sci. 2012, 95, 3131–3138. [Google Scholar] [CrossRef] [Green Version]
- Tukey, J.W. Comparing Individual Means in the Analysis of Variance. Biometrics 1949, 5, 99. [Google Scholar] [CrossRef]
- Zhang, H.; Meltzer, P.; Davis, S. RCircos: An R package for Circos 2D track plots. BMC Bioinform. 2013, 14, 244. [Google Scholar] [CrossRef] [Green Version]
- Hao, D.; Thomsen, B.; Bai, J.; Peng, S.; Lan, X.; Huang, Y.; Wang, X.; Chen, H. Expression Profiles of the MXD3 Gene and Association of Sequence Variants with Growth Traits in Xianan and Qinchuan Cattle. Vet. Med. Sci. 2020, 10, 1002. [Google Scholar] [CrossRef] [Green Version]
- Fouilloux, M.N.; Renand, G.; Gaillard, J.; Ménissier, F. Genetic parameters of beef traits of Limousin and Charolais progeny-ested AI sires. Genet. Sel. Evol. 1999, 31, 465. [Google Scholar] [CrossRef]
- Ott, J.; Kamatani, Y.; Lathrop, M. Family-based designs for genome-wide association studies. Nat. Rev. Genet. 2011, 12, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ma, P.; Liu, J.; Zhang, Q.; Zhang, Y.; Ding, X.; Jiang, L.; Wang, Y.; Zhang, Y.; Sun, D.; et al. Genome-wide association study in Chinese Holstein cows reveal two candidate genes for somatic cell score as an indicator for mastitis susceptibility. BMC Genet. 2015, 16, 111. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Pressoir, G.; Briggs, W.H.; Bi, I.V.; Yamasaki, M.; Doebley, J.F.; McMullen, M.D.; Gaut, B.S.; Nielsen, D.M.; Holland, J.B.; et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 2005, 38, 203–208. [Google Scholar] [CrossRef]
- Goddard, M.E.; Hayes, B.J. Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nat. Rev. Genet. 2009, 10, 381–391. [Google Scholar] [CrossRef]
- Mills, R.E.; Walter, K.; Stewart, C.; Handsaker, R.E.; Chen, K.; Alkan, C.; Abyzov, A.; Yoon, S.C.; Ye, K.; Cheetham, R.K.; et al. Mapping copy number variation by population-scale genome sequencing. Nature 2011, 470, 59–65. [Google Scholar] [CrossRef]
- Haraksingh, R.R.; Snyder, M.P. Impacts of variation in the human genome on gene regulation. J. Mol. Biol. 2013, 425, 3970–3977. [Google Scholar] [CrossRef] [Green Version]
- Stranger, B.E.; Forrest, M.S.; Dunning, M.; Ingle, C.E.; Beazlsy, C.; Thorne, N.; Redon, R.; Bird, C.P.; De Grassi, A.; Lee, C.; et al. Relative impact of nucleotide and copy number variation on gene phenotypes. Science 2007, 315, 848–853. [Google Scholar] [CrossRef] [Green Version]
- Luo, R.; Sanders, S.J.; Tian, Y.; Voineagu, I.; Huang, N.; Chu, S.H.; Klei, L.; Cai, C.; Ou, J.; Lowe, J.K.; et al. Genome-wide transcriptome profiling reveals the functional impact of rare de novo and recurrent CNVs in autism spectrum disorders. Am. J. Hum. Genet. 2012, 91, 38–55. [Google Scholar] [CrossRef] [Green Version]
- Rockman, M.V.; Kruglyak, L. Genetics of global gene expression. Nat. Rev. Genet. 2006, 7, 862–872. [Google Scholar] [CrossRef]
- Gamazon, E.R.; Stranger, B.E. The impact of human copy number variation on gene expression. Briefings Funct. Genom. 2015, 14, 352–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gene | Pairs of Primer Sequence (5’–3’) | Length (bp) |
---|---|---|
GBP6 (1) | F-TCCTCTAGGGTCATGTTAC, R-GGATGGGTTTGAAGTTAT | 90 |
GBP6 (2) | F-TAATGTACTTTCTAGGGTGAC, R-GCCTGGTGGTTGATGGTG | 110 |
BTF3 | F-AACCAGGAGAAACTCGCCAA, R-TTCGGTGAAATGCCCTCTCG | 166 |
LRP10 | F-CCAGAGGATGAGGACGATGT, R-ATAGGGTTGCTGTCCCTGTG | 139 |
EMD | F- GCCCTCAGCTTCACTCTCAGA, R- GAGGCGTTCCCGATCCTT | 100 |
Phenotype | Mean ± SE (Cattle Number) | ||
---|---|---|---|
NY (112) | QC (105) | XN (213) | |
BoH (cm) | 126.81 ± 0.60 (58) | 129.42 ± 0.58 (95) | 135.52 ± 0.33 (198) |
BoL (cm) | 136.90 ± 0.89 (58) | 137.39 ± 0.77 (95) | 158.93 ± 0.51 (198) |
BoW (kg) | 373.10 ± 5.52 (58) | 395.31± 6.17 (95) | 548.88 ± 3.93 (198) |
CaC (cm) | 0 | 0 | 19.62 ± 0.13 (198) |
ChC (cm) | 169.67 ± 1.21 (58) | 175.70 ± 1.01 (95) | 193.68 ± 0.64 (198) |
ChD (cm) | 0 | 62.03 ± 0.47 (95) | 0 |
ChW(cm) | 0 | 37.62 ± 0.46 (95) | 0 |
CrH (cm) | 0 | 126.76 ± 0.59 (95) | 138.59 ± 0.28 (198) |
HuW(cm) | 25.86 ± 0.27 (58) | 22.42 ± 0.43 (95) | 0 |
RuL (cm) | 0 | 43.93 ± 0.29 (95) | 0 |
WaL(cm) | 0 | 42.40 ± 0.35 (95) | 0 |
WaC (cm) | 0 | 0 | 215.42 ± 1.45 (167) |
Breed | Phenotype | CNV type (Mean ± SE) | p-Value | ||
---|---|---|---|---|---|
Loss | Medium | Gain | |||
NY | BoH(cm) | 126.59 ± 0.51 | 126.96 ± 0.61 | 126.58 ± 0.71 | 0.96 |
NY | BoL(cm) | 137.95 ± 0.73 | 136.89 ±0.91 | 135.96 ± 1.03 | 0.79 |
NY | BoW(cm) | 381.00 ± 2.77 | 376.71 ± 5.57 | 355.33 ± 6.88 | 0.25 |
NY | ChC(cm) | 171.27 ± 0.98 | 169.87 ± 1.16 | 167.62 ± 1.58 | 0.64 |
NY | HuW(cm) | 25.77 ± 0.30 | 26.06 ± 0.26 | 25.38 ±0.32 | 0.63 |
QC | BoH(cm) | 129.12 ± 0.55 | 129.75 ± 0.62 | 128.83 ± 0.50 | 0.79 |
QC | BoL(cm) | 139.19 ± 0.80 | 136.71 ± 0.78 | 137.78 ± 0.75 | 0.50 |
QC | BoW(kg) | 405.50 ± 6.03 | 388.07 ± 5.78 | 405.84 ± 7.13 | 0.38 |
QC | ChC(cm) | 176.88 ± 0.91 | 174.58 ± 0.97 | 177.61 ± 1.17 | 0.41 |
QC | ChD(cm) | 61.75 ± 0.55 | 61.89 ± 0.43 | 62.57 ± 0.53 | 0.82 |
QC | ChW(cm) | 38.19 ± 0.47 | 37.22 ± 0.47 | 38.17 ± 0.45 | 0.60 |
QC | CrH(cm) | 126.69 ± 0.53 | 126.82 ± 0.63 | 126.67 ± 0.55 | 0.99 |
QC | HuW(cm) | 22.69 ± 0.38 | 22.04 ± 0.44 | 23.15 ± 0.44 | 0.54 |
QC | RuL(cm) | 44.12 ± 0.28 | 43.77 ± 0.33 | 44.17 ± 0.22 | 0.82 |
QC | WaL(cm) | 43.12 ± 0.26 | 41.89 ± 0.35 | 43.13 ± 0.40 | 0.22 |
XN | BoH(cm) | 134.29 ± 0.46 | 135.61 ± 0.54 | 136.06 ± 0.40 | 0.13 |
XN | BoL(cm) | 157.39 ± 0.64 | 159.24 ± 0.88 | 159.42 ± 0.61 | 0.30 |
XN | BoW(kg) | 531.59 ± 3.69 a | 548.97 ± 4.01 ab | 557.56 ± 3.86 b | 0.04 |
XN | CaC(cm) | 18.89 ± 0.10 Aa | 19.70 ± 0.12 b | 19.93 ± 0.14 B | 0.01 |
XN | ChC(cm) | 189.93 ± 0.65 a | 194.70 ± 0.58 b | 194.62 ± 0.66 b | 0.01 |
XN | CrH(cm) | 137.88 ± 0.24 | 138.92 ± 0.34 | 138.63 ± 0.23 | 0.40 |
XN | WaC(cm) | 212.10 ± 1.32 | 216.03 ± 1.28 | 216.79 ± 1.39 | 0.44 |
Fixed effect | BoH | BoL | BoW | ChC | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Breed | <0.001 | < 0.001 | <0.001 | <0.001 | ||||||||
A NY | AB QC | B XN | A NY | A QC | B XN | a NY | Ab QC | B XN | A NY | AB QC | B XN | |
CNV type | 0.29 | 0.81 | 0.25 | 0.19 | ||||||||
Breed × CNV type | 0.78 | 0.42 | 0.12 | 0.09 |
Genes | Chromosome | Position | Growth Trait | Breed | Province of China | Association of CNV Type and Expression | Reference | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Body Height | Body Length | Body Weight | Heart Girth | Chest Girth | |||||||
CYP4A11 | 3 | 99,806,653–99,820,785 | ✓ | Qinchuan | Shannxi | Positive | [23] | ||||
CYP4A11 | 3 | 99,806,653–99,820,785 | ✓ | Nanyang | Henan | Positive | [23] | ||||
CYP4A11 | 3 | 99,806,653–99,820,785 | ✓ | ✓ | Jinnan | Jilin | Positive | [23] | |||
GBP2 | 3 | 54,345,493–54,437,452 | ✓ | ✓ | ✓ | Pinan | Henan | [24] | |||
GPC1 | 3 | 120,383,537–120,476,583 | ✓ | ✓ | ✓ | ✓ | Datong yak | Qinghai | Negative | [26] | |
KCNJ12 | 19 | 35,955,260–35,993,796 | ✓ | ✓ | Guangfeng | Jiangxi | Negative | [27] | |||
KCNJ12 | 19 | 35,955,260–35,993,796 | ✓ | ✓ | Jiaxian Red | Henan | Negative | [27] | |||
KLF3 | 6 | 59,587,076–59,614,488 | ✓ | ✓ | Cattle | Positive | [29] | ||||
KLF6 | 13 | 44,945,030–44,952,166 | ✓ | ✓ | ✓ | ✓ | Datong yak | Qinghai | Negative | [25] | |
LEPR | 3 | 80,071,689–80,167,592 | ✓ | ✓ | ✓ | ✓ | Nanyang | Henan | Positive | [31] | |
MAPK10 | 6 | 102,683,802–103,320,828 | ✓ | ✓ | ✓ | Nanyang | Henan | Negative | [32] | ||
MICALL2 | 25 | 42,015,483–42,035,251 | ✓ | ✓ | ✓ | Nanyang | Henan | Negative | [29] | ||
MYH3 | 19 | 30,230,160–30,251,091 | ✓ | ✓ | ✓ | Nanyang | Henan | Negative | [30] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, D.; Wang, X.; Thomsen, B.; Kadarmideen, H.N.; Wang, X.; Lan, X.; Huang, Y.; Qi, X.; Chen, H. Copy Number Variations and Expression Levels of Guanylate-Binding Protein 6 Gene Associated with Growth Traits of Chinese Cattle. Animals 2020, 10, 566. https://doi.org/10.3390/ani10040566
Hao D, Wang X, Thomsen B, Kadarmideen HN, Wang X, Lan X, Huang Y, Qi X, Chen H. Copy Number Variations and Expression Levels of Guanylate-Binding Protein 6 Gene Associated with Growth Traits of Chinese Cattle. Animals. 2020; 10(4):566. https://doi.org/10.3390/ani10040566
Chicago/Turabian StyleHao, Dan, Xiao Wang, Bo Thomsen, Haja N. Kadarmideen, Xiaogang Wang, Xianyong Lan, Yongzhen Huang, Xinglei Qi, and Hong Chen. 2020. "Copy Number Variations and Expression Levels of Guanylate-Binding Protein 6 Gene Associated with Growth Traits of Chinese Cattle" Animals 10, no. 4: 566. https://doi.org/10.3390/ani10040566
APA StyleHao, D., Wang, X., Thomsen, B., Kadarmideen, H. N., Wang, X., Lan, X., Huang, Y., Qi, X., & Chen, H. (2020). Copy Number Variations and Expression Levels of Guanylate-Binding Protein 6 Gene Associated with Growth Traits of Chinese Cattle. Animals, 10(4), 566. https://doi.org/10.3390/ani10040566