Influence of Mushroom Polysaccharide, Nano-Copper, Copper Loaded Chitosan, and Lysozyme on Intestinal Barrier and Immunity of LPS-mediated Yellow-Feathered Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Birds, Diet and Management
2.2. Growth Performance
2.3. Sampling
2.4. Biochemical Indices in Plasma and Jejunal Mucosa
2.5. Quantitative RT-PCR (qPCR)
2.6. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Plasma and Jejunal Mucosa Biochemical Variables
3.3. Gene Expression in Jejunal Mucosa
3.4. Gene Expression in Spleen and Thymus
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Freudenberg, M.A.; Tchaptchet, S.; Keck, S.; Fejer, G.; Huber, M.; Schütze, N.; Beutler, B.; Galanos, C. Lipopolysaccharide sensing an important factor in the innate immune response to Gram-negative bacterial infections: Benefits and hazards of LPS hypersensitivity. Immunobiology 2008, 213, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Su, S.C.; Hua, K.F.; Lee, H.; Chao, L.K.; Tan, S.K.; Yang, S.F.; Hsu, H.Y. LTA and LPS mediated activation of protein kinases in the regulation of inflammatory cytokines expression in macrophages. Clin. Chim. Acta 2006, 374, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, S.; Ide, M.; Shibutani, T.; Ohtaki, H.; Numazawa, S.; Shioda, S.; Yoshida, T. Lipopolysaccharide-induced microglial activation induces learning and memory deficits without neuronal cell deathin rats. J. Neurosci. Res. 2006, 83, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.A.; Li, J.S.; Li, Y.S.; Zhu, N.T.; Liu, F.N.; Tan, L. Intestinal barrier damage caused by trauma and lipopolysaccharide. World J. Gastroenterol. 2004, 10, 2373–2378. [Google Scholar] [CrossRef]
- Cario, E.; Brown, D.; McKee, M.; Lynch-Devaney, K.; Gerken, G.; Podolsky, D.K. Commensal-associated molecular patterns induce selective toll-like receptor-trafficking from apical membrane to cytoplasmic compartments in polarized intestinal epithelium. Am. J. Pathol. 2002, 160, 165–173. [Google Scholar] [CrossRef]
- Inoue, K.I.; Takano, H.; Yanagisawa, R.; Sakurai, M.; Shimada, A.; Sato, H.; Kato, Y.; Yoshikawa, T. Antioxidative role of urinary trypsin inhibitor in acute lung injury induced by lipopolysaccharide. Int. J. Mol. Med. 2005, 16, 1029–1033. [Google Scholar] [CrossRef]
- Zhang, X.; Xiong, H.; Li, H.; Yu, L.; Deng, X. Effects of florfenicol on LPS-induced nitric oxide and prostaglandin E2 production in RAW 264.7 macrophages. Fundam. Clin. Pharmacol. 2011, 25, 591–598. [Google Scholar] [CrossRef]
- Vega, V.L.; Maio, A.D. Geldanamycin treatment ameliorates the response to LPS in murine macrophages by decreasing CD14 surface expression. Mol. Biol. Cell. 2003, 14, 764–773. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Shigemi, H.; Tanaka, Y.; Yamauchi, T.; Ueda, T.; Iwasaki, H. Tetracyclines downregulate the production of LPS-induced cytokines and chemokines in THP-1 cells via ERK, p38, and nuclear factor-κB signaling pathways. Biochem. Biophys. Rep. 2015, 4, 397–404. [Google Scholar] [CrossRef] [Green Version]
- Witte, W. Selective pressure by antibiotic use in livestock. Int. J. Antimicrob. Agents. 2000, 16, 19–24. [Google Scholar] [CrossRef]
- European commission. Regulation (EC) No 1831/2003 on Additives for use in Animal Nutrition. Off. J. Eur. Union 2003, 268, 29–43. [Google Scholar]
- Abouelezz, K.; Abou-Hadied, M.; Yuan, J.; Elokil, A.A.; Wang, G.; Wang, S.; Wang, J.; Bian, G. Nutritional impacts of dietary oregano and Enviva essential oils on the performance, gut microbiota and blood biochemicals of growing ducks. Animal 2019, 13, 2216–2222. [Google Scholar] [CrossRef] [PubMed]
- Makled, M.N.; Abouelezz, K.F.M.; Gad-Elkareem, A.E.G.; Sayed, A.M. Comparative influence of dietary probiotic, yoghurt, and sodium butyrate on growth performance, intestinal microbiota, blood hematology, and immune response of meat-type chickens. Trop. Anim. Health. Prod. 2019, 51, 2333–2342. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Perera, C.; Hemar, Y. Antitumor activity of mushroom polysaccharides: A review. Food. Funct. 2012, 3, 1118–1130. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.C.; Kwakkel, R.P.; Williams, B.A.; Parmentier, H.K.; Li, W.K.; Yang, Z.Q.; Verstegen, M.W. Effects of mushroom and herb polysaccharides on cellular and humoral immune responses of Eimeria tenella-infected chickens. Poult. Sci. 2004, 83, 1124–1132. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.C.; Savelkoul, H.F.; Kwakkel, R.P.; Williams, B.A.; Verstegen, M.W. Immunoactive, medicinal properties of mushroom and herb polysaccharides and their potential use in chicken diets. World. Poult. Sci. J. 2003, 59, 427–440. [Google Scholar] [CrossRef]
- Guo, F.C.; Williams, B.A.; Kwakkel, R.P.; Li, H.S.; Li, X.P.; Luo, J.Y.; Li, W.K.; Verstegen, M.W. Effects of mushroom and herb polysaccharides, as alternatives for an antibiotic, on the cecal microbial ecosystem in broiler chickens. Poult. Sci. 2004, 83, 175–182. [Google Scholar] [CrossRef]
- Swain, P.S.; Rajendran, D.; Rao, S.B.; Dominic, G. Preparation and effects of nano mineral particle feeding in livestock: A review. Vet. World. 2015, 8, 888–891. [Google Scholar] [CrossRef] [Green Version]
- Hassan, S.; Hassan, F.U.; Rehman, M.S. Nano-particles of trace minerals in poultry nutrition: Potential applications and future prospects. Biol. Trace. Elem. Res. 2019, 8, 1–22. [Google Scholar] [CrossRef]
- Dezfoulian, A.H.; Aliarabi, H.; Tabatabaei, M.M.; Zamani, P.; Alipour, D.; Bahari, A.; Fadayifar, A. Influence of different levels and sources of copper supplementation on performance, some blood parameters, nutrient digestibility and mineral balance in lambs. Livest. Sci. 2012, 147, 9–19. [Google Scholar] [CrossRef]
- Robbins, K.R.; Baker, D.H. Effect of sulfur amino acid level and source on the performance of chicks fed high levels of copper. Poult. Sci. 1980, 59, 1246–1253. [Google Scholar] [CrossRef]
- Abegaze Beyene, A.L. The feasibility of using natural rocks as sources of iron, manganese and copper in livestock feeding in Ethiopia. Glob. J. Sci. Front. Res. 2015, 15, 55287307. [Google Scholar]
- Gonzales-Eguia, A.; Fu, C.M.; Lu, F.Y.; Lien, T.F. Effects of nanocopper on copper availability and nutrients digestibility, growth performance and serum traits of piglets. Livest. Sci. 2009, 126, 122–129. [Google Scholar] [CrossRef]
- Swiatkiewicz, S.; Swiatkiewicz, M.; Arczewska-Wlosek, A.; Jozefiak, D. Chitosan and its oligosaccharide derivatives (chito-oligosaccharides) as feed supplements in poultry and swine nutrition. J. Anim. Physiol. Anim. Nutr. 2015, 99, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, S.; Terashima, Y.; Itoh, H. Effects of dietary chitosan on fat deposition and lipase activity in digesta in broiler chickens. Brit. Poult. Sci. 2002, 43, 270–273. [Google Scholar] [CrossRef]
- Swiatkiewicz, S.; Arczewska-Włosek, A.; Józefiak, D. Feed enzymes, probiotic, or chitosan can improve the nutritional efficacy of broiler chicken diets containing a high level of distillers dried grains with solubles. Livest. Sci. 2014, 163, 110–119. [Google Scholar] [CrossRef]
- Menconi, A.; Pumford, N.R.; Morgan, M.J.; Bielke, L.R.; Kallapura, G.; Latorre, J.D.; Wolfenden, A.D.; Hernandez-Velasco, X.; Hargis, B.M.; Tellez, G. Effect of chitosan on Salmonella Typhimurium in broiler chickens. Foodborne. Pathog. Dis. 2014, 11, 165–169. [Google Scholar] [CrossRef] [Green Version]
- Justi, K.C.; Laranjeira, M.C.; Neves, A.; Mangrich, A.S.; Fávere, V.T. Chitosan functionalized with 2 [-bis-(pyridylmethyl) aminomethyl] 4-methyl-6-formyl-phenol: Equilibrium and kinetics of copper (II) adsorption. Polymer 2004, 45, 6285–6290. [Google Scholar] [CrossRef]
- Brunel, F.; El Gueddari, N.E.; Moerschbacher, B.M. Complexation of copper(II) with chitosan nanogels: Toward control of microbial growth. Carbohydr. Polym. 2013, 92, 1348–1356. [Google Scholar] [CrossRef]
- Wang, C.; Wang, M.Q.; Ye, S.S.; Tao, W.J.; Du, Y.J. Effects of copper-loaded chitosan nanoparticles on growth and immunity in broilers. Poult. Sci. 2011, 90, 2223–2228. [Google Scholar] [CrossRef]
- Huang, J.; Yuan, W. Research advances on nutritional physiological functions and application of lysozyme. Agric. Biotechnol. 2014, 6, 57–60. [Google Scholar]
- Ko, K.Y.; Mendoncam, A.F.; Ismail, H.; Ahn, D.U. Ethylenediaminetetraacetate and lysozyme improves antimicrobial activities of ovotransferrin against Escherichia coli O157: H7. Poult. Sci. 2009, 88, 406–414. [Google Scholar] [CrossRef]
- Gong, M.; Anderson, D.; Rathgeber, B.; MacIsaac, J. The effect of dietary lysozyme with EDTA on growth performance and intestinal microbiota of broiler chickens in each period of the growth cycle. J. Appl. Poult. Res. 2017, 26, 1–8. [Google Scholar] [CrossRef]
- Abdel-Latif, M.A.; Ali, H.; Elbestawy, A.R.; Ghanem, R.; Mousa, S.A.; El-Hamid, H.S. Exogenous dietary lysozyme improves the growth performance and gut microbiota in broiler chickens targeting the antioxidant and non-specific immunity mRNA expression. PLoS ONE 2017, 12, e0185153. [Google Scholar] [CrossRef] [PubMed]
- Kvidera, S.K.; Dickson, M.J.; Abuajamieh, M. Intentionally induced intestinal barrier dysfunction causes inflammation, affects metabolism, and reduces productivity in lactating Holstein cows. J. Dairy Sci. 2017, 100, 4113–4127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Zhang, H.; Su, W. Effects of dietary Bacillus amyloliquefaciens supplementation on growth performance, intestinal morphology, inflammatory response, and microbiota of intra-uterine growth retarded weanling piglets. J. Anim. Sci. Biotech. 2018, 9, 480–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, Z.; Ma, X.; Deng, D. Influence of nitrogen levels on nutrient transporters and regulators of protein synthesis in small intestinal enterocytes of piglets. J. Agric. Food Chem. 2019, 67, 2782–2793. [Google Scholar] [CrossRef]
- Feng, A.W.; Gao, W.; Zhou, G.R.; Yu, R.; Li, N.; Huang, X.L.; Li, Q.R.; Li, J.S. Berberine ameliorates COX-2 expression in rat small intestinal mucosa partially through PPARγ pathway during acute endotoxemia. Int. Immunopharmacol. 2012, 12, 182–188. [Google Scholar] [CrossRef]
- Zhang, C.; Sheng, Z.Y.; Hu, S.; Gao, J.C.; Yu, S.; Liu, Y.I. The influence of apoptosis of mucosal epithelial cells on intestinal barrier integrity after scald in rats. Burns 2002, 28, 731–737. [Google Scholar] [CrossRef]
- Serbina, N.V.; Salazar-Mather, T.P.; Biron, C.A.; Kuziel, W.A.; Pamer, E.G. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 2003, 19, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Tian, S.; Guo, R.; Wei, S.; Kong, Y.; Wei, X.; Wang, W.; Shi, X.; Jiang, H. Curcumin protects against the intestinal ischemia-reperfusion injury: Involvement of the tight junction protein ZO-1 and TNF-α related mechanism. Korean. J. Physiol. Pharmacol. 2016, 20, 147–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Mi, S.; Ruan, Z.; Li, J.; Shu, X.; Yao, K.; Jiang, M.; Deng, Z. Dietary Tryptophan Enhanced the Expression of Tight Junction Protein ZO-1 in Intestine. J. Food Sci. 2017, 82, 562–567. [Google Scholar] [CrossRef] [PubMed]
- Levkut, M.; Husáková, E.; Bobíková, K.; Karaffová, V.; Levkutová, M.; Ivanišinová, O.; Grešáková, Ľ.; Čobanová, K.; Reiterová, K.; Levkut, M. Inorganic or organic zinc and MUC-2, IgA, IL-17, TGF-β4 gene expression and sIgA secretion in broiler chickens. Food Agric. Immunol. 2017, 28, 801–811. [Google Scholar] [CrossRef]
- Xiao, L.J.; Zhao, S.; Zhao, E.H. Clinicopathological and prognostic significance of MUC-2, MUC-4 and MUC-5AC expression in japanese gastric carcinomas. Asian Pac. J. Cancer Prev. 2012, 13, 6447–6453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, L.; Liu, Y.; Han, J.; Zhu, H.; Wang, X. Effects of Biotite V supplementation on growth performance and the immunological responses of weaned pigs after an Escherichia coli lipopolysaccharide challenge. Livest. Sci. 2017, 195, 112–117. [Google Scholar] [CrossRef]
- Wu, Q.J.; Zhou, Y.M.; Wu, Y.N.; Zhang, L.L.; Wang, T. The effects of natural and modified clinoptilolite on intestinal barrier function and immune response to LPS in broiler chickens. Vet. Immunol. Immunopathol. 2013, 153, 70–76. [Google Scholar] [CrossRef]
- Ministry of Agriculture, China. Feeding Standard of Chicken, 1st ed.; Standards Press of China: Beijing, China, 2004. [Google Scholar]
- Yang, X.J.; Li, W.L.; Feng, Y.; Yao, J.H. Effects of immune stress on growth performance, immunity, and cecal microflora in chickens. Poult. Sci. 2011, 90, 2740–2746. [Google Scholar] [CrossRef]
- Feng, Y.; Yang, X.J.; Wang, Y.B. Effects of immune stress on performance parameters, intestinal enzyme activity and mRNA expression of intestinal transporters in broiler chickens. Asian-Aust. J. Anim. Sci. 2012, 25, 701–707. [Google Scholar] [CrossRef]
- Rui, L.; Zehe, S.; Jianfei, Z. Dietary L-Theanine alleviated lipopolysaccharide-induced immunological stress in yellow-feathered broilers. Anim. Nutr. 2018, 4, 265–272. [Google Scholar]
- Kim, J.B.; Han, A.R.; Park, E.Y.; Kim, J.Y.; Cho, W.; Lee, J.; Seo, E.K.; Lee, K.T. Inhibition of LPS-induced iNOS, COX-2 and cytokines expression by poncirin through the NF-κB inactivation in RAW 264.7 macrophage cells. Biol. Pharm. Bull. 2007, 30, 2345–2351. [Google Scholar] [CrossRef] [Green Version]
- Dohrman, A.; Miyata, S.; Gallup, M.; Li, J.D.; Chapelin, C.; Coste, A.; Escudier, E.; Nadel, J.; Basbaum, C. Mucin gene (MUC 2 and MUC 5AC) upregulation by Gram-positive and Gram-negative bacteria. Biochim. Biophys. Acta. 1998, 1406, 251–259. [Google Scholar] [CrossRef] [Green Version]
- Thu, N.B.; Trung, T.N.; Khoi, N.M.; Than, N.V.; Soulinho, T.; Nam, N.H.; Phuong, T.T.; Bae, K.H. Zanthoxylum rhetsa Stem Bark Extract Inhibits LPS-induced COX-2 and iNOS expression in RAW 264.7 Cells via the NF-kB Inactivation. Nat. Prod. Sci. 2010, 16, 265–270. [Google Scholar]
- Cheng, G.; Zhao, L.; Li, H. Forsythiaside attenuates lipopolysaccharideinduced inflammatory responses in the bursa of fabricius of chickens by downregulating the NF-κB signaling pathway. Experi. Therap. Medic. 2014, 7, 179–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthews, A.J.; Zheng, S.; DiMenna, L.J.; Chaudhuri, J. Regulation of immunoglobulin class-switch recombination: Choreography of noncoding transcription, targeted DNA deamination, and long-range DNA repair. Adv. Immunol. 2014, 122, 1–57. [Google Scholar]
- Sarker, N.; Tsudzuki, M.; Nishibori, M.; Yasue, H.; Yamamoto, Y. Cell-mediated and humoral immunity and phagocytic ability in chicken lines divergently selected for serum immunoglobulin M and G levels. Poult. Sci. 2000, 79, 1705–1709. [Google Scholar] [CrossRef]
- Qian, Z.; Renhuai, C.; Minghua, H. Immunoenhancement of edible fungal polysaccharides (lentinan, tremellan, and pachymaran) on cyclophosphamide-induced immunosuppression in mouse model. Evidence-Based Compl. Alte. Med. 2017, 2017, 1–7. [Google Scholar]
- Tian, E.J.; Zhou, B.H.; Wang, X.Y.; Zhao, J.; Deng, W.; Wang, H.W. Effect of diclazuril on intestinal morphology and SIgA expression in chicken infected with Eimeria tenella. Parasitol. Res. 2014, 113, 4057–4064. [Google Scholar] [CrossRef]
- Schulte, L.; Eulalio, A.; Mollenkopf, H.J. Analysis of the host microRNA response to Salmonella uncovers the control of major cytokines by the let-7 family. Embo. J. 2011, 30, 1977–1989. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J. Yin and Yang interplay of IFN-γ in inflammation and autoimmune disease. J. Clin. Investig. 2007, 117, 871–873. [Google Scholar] [CrossRef]
- Herrmann, J.L.; Blanchard, H.; Lagrange, P.H.; Brunengo, P. TNFα, IL-1β and IL-6 plasma levels in neutropenic patients after onset of fever and correlation with the C-reactive protein (CRP) kinetic values. Infection 1994, 22, 309–315. [Google Scholar] [CrossRef]
- Hougee, S.; Sanders, A.; Faber, J.; Graus, Y.M.; van den Berg, W.B.; Garssen, J.; Smit, H.F.; Hoijer, M.A. Decreased pro-inflammatory cytokine production by LPS-stimulated PBMC upon in vitro incubation with the flavonoids apigenin, luteolin or chrysin, due to selective elimination of monocytes/macrophages. Biochem. Pharmacol. 2005, 69, 241–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez, S.F.; Fung, C.; Helinski, J.D.; Alluri, R.; Davidson, B.A.; Knight, P.R. Low pH environmental stress inhibits LPS and LTA-stimulated proinflammatory cytokine production in rat alveolar macrophages. BioMed Res. Int. 2013, 2013, 742184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Yin, S.; Chen, Y.; Wu, Y.; Zheng, W.; Dong, H.; Bai, Y.; Qin, Y.; Li, J.; Feng, S.; et al. LPS-induced proinflammatory cytokine expression in human airway epithelial cells and macrophages via NF-κB, STAT3 or AP-1 activation. Mol. Med. Rep. 2018, 17, 5484–5491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Item | Basal Diet |
---|---|
Ingredients (%) | |
Corn | 57.60 |
Soybean meal | 34.20 |
Soybean oil | 2.10 |
DL-Methionine | 0.15 |
Limestone | 1.20 |
Monocalcium phosphate | 1.90 |
NaCl | 0.30 |
Corn cob meal | 1.55 |
Premix 1 | 1.00 |
Total kg | 100.00 |
Nutrient contents 2 | |
AME (MJ/kg) 3 | 12.14 |
Crude Protein % | 21.00 |
Lysine% | 1.16 |
Methionine % | 0.46 |
Calcium % | 1.00 |
Available Phosphorus % | 0.44 |
Gene Name | Sequence | GenBank No. |
---|---|---|
β-actin | F-5′-GAGAAATTGTGCGTGACATCA-3′ | NM_205518 |
R-5′-CCTGAACCTCTCATTGCCA-3′ | ||
ZO-11 | F-5′-CCAAAGACAGCAGGAGGAGA-3′ | XM_015278981.1 |
R-5′-TGGCTAGTTTCTCTCGTGCA-3′ | ||
MUC-22 | F-5′-CATTCAACGAGGAGAGCTGC-3′ | NM_001318434.1 |
R-5′-TTCCTTGCAGCAGGAACAAC-3′ | ||
iNOS3 | F-5′-AGCATAACTCCCGTGTTCCA-3′ | NM_204961.1 |
R-5′-GATTTCCCAGTCTCGGTTGC-3′ | ||
COX-24 | F-5′-TGCAACGATATGGCTGAG-3′ | YP_009558655.1 |
R-5′-CTGCGGATTCGGTTCTGGTAT-3′ | ||
TNF-α5 | F-5′-GAAGCAGCGTTTGGGAGTG-3′ | NM_204267.1 |
R-5′-GTTGTGGGACAGGGTAGGG-3′ | ||
R-5′-CAGGTCGCTGTAGGAATTGC-3′ | ||
IL-1β6 | F-5′-GAAGTGCTTCGTGCTGGAGT-3′ | NM_204524.1 |
R-5′-ACTGGCATCTGCCCAGTTC-3′ | ||
IFN-γ7 | F-5′-GCCGCACATCAAACACATATCT-3′ | NM_205427.1 |
R-5′-TGAGACTGGCTCCTTTTCCTT-3′ |
Variables | Treatments | SEM 2 | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Control | LPS 1 | Antibiotic | Polysaccharide 1 | Polysaccharide 2 | Nano-copper | Copper Loaded Chitosan | Lysozyme | |||
IBW 3 (g) | 48.7 | 48.7 | 48.7 | 48.7 | 48.7 | 48.7 | 48.7 | 48.7 | <0.01 | 0.990 |
FBW 4 (g) | 405.2A | 375.7B | 384.2 | 381.0 | 388.8 | 385.1 | 377.6B | 389.0 | 2.45 | 0.074 |
ADG 5 (g) | 17.0A | 15.6B | 16.0 | 15.8 | 16.2 | 16.0 | 15.7B | 16.2 | 0.12 | 0.074 |
ADFI 6 (g) | 31.4A | 28.8B | 28.8B | 29.0B | 29.7B | 29.8B | 29.2B | 29.8B | 0.17 | <0.001 |
FCR 7 | 1.85 | 1.85 | 1.80 | 1.84 | 1.84 | 1.86 | 1.87 | 1.84 | 0.01 | 0.21 |
Mortality (%) | 0.00 | 1.67 | 0.00 | 0.83 | 0.00 | 0.83 | 0.00 | 0.00 | 0.22 | 0.47 |
Variables | Treatments | SEM 2 | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Control | LPS 1 | Antibiotic | Polysaccharide 1 | Polysaccharide 2 | Nano-Copper | Copper Loaded Chitosan | Lysozyme | |||
Plasma | ||||||||||
DAO3 (U/L) | 0.59 B | 1.72 Aa | 1.72 A | 1.54 A | 1.33 Ab | 1.54 A | 1.60 A | 1.57 A | 0.05 | <0.001 |
iNOS4 (U/mL) | 9.97 B | 13.25 A | 11.03 | 11.51 | 11.36 | 11.97 | 11.55 | 9.43 | 0.28 | 0.022 |
IgG5 (µg/mL) | 745.99 A | 560.11 Bb | 709.71 a | 643.24 | 797.36 a | 644.22 | 762.82 a | 712.52 a | 15.28 | 0.001 |
IFN-γ6 (ng/L) | 54.30 B | 64.19 Aa | 52.66 b | 54.67 b | 48.99 b | 49.20 b | 49.55 b | 47.76 b | 0.79 | <0.001 |
TNF-α7 (ng/L) | 63.92 B | 78.24 Aa | 64.54 b | 63.49 b | 60.41 b | 72.20 | 59.80 b | 50.00 Bb | 1.29 | <0.001 |
Jejunal mucosa | ||||||||||
SIgA8 (µg/mg) | 31.80 B | 28.63 b | 40.88 a | 31.91 | 46.59 Aa | 35.61 | 31.04 | 37.77 a | 1.10 | <0.001 |
IgG (µg/mg) | 237.61 B | 222.88 b | 274.87 | 232.08 | 368.97 Aa | 279.90 | 295.07 | 336.15 Aa | 9.60 | <0.001 |
IgM9 (µg/mg) | 31.61 B | 25.33 b | 29.96 | 31.08 | 38.04 Aa | 28.29 | 35.78 | 37.53 a | 1.03 | 0.014 |
IL-1β10 (ng/g) | 5.77 B | 8.60 Aa | 7.00 | 5.94 b | 5.87 b | 6.62 | 6.90 | 6.48 b | 0.21 | 0.013 |
TNF-α (ng/g) | 14.63 B | 23.65 Aa | 18.77 | 20.36 | 15.56 b | 18.37 | 17.72 | 14.29 b | 0.71 | 0.009 |
Variables | Treatments | SEM 2 | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Control | LPS 1 | Antibiotic | Polysaccharide 1 | Polysaccharide 2 | Nano-Copper | Copper Loaded Chitosan | Lysozyme | |||
ZO-13 | 1.01 | 0.69 | 0.94 | 0.66 | 0.87 | 0.98 | 1.04 | 1.09 | 0.04 | 0.053 |
MUC-24 | 1.08 A | 0.26 B | 0.54 B | 0.47 B | 0.57 B | 0.36 B | 0.38 B | 0.65 | 0.05 | 0.001 |
iNOS5 | 0.94 A | 1.49 a | 1.14 | 1.06 | 0.60 Bb | 1.26 | 1.27 | 0.77 b | 0.07 | 0.013 |
COX-26 | 1.10 B | 2.26 Aa | 1.86 | 1.48 | 1.04 | 1.03 | 1.18 | 0.63 b | 0.13 | 0.026 |
Variables | Treatments | SEM 2 | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Control | LPS 1 | Antibiotic | Polysaccharide 1 | Polysaccharide 2 | Nano-Copper | Copper Loaded Chitosan | Lysozyme | |||
Spleen | ||||||||||
IFN-γ3 | 0.88 | 1.43 | 1.16 | 0.79 | 0.93 | 0.95 | 0.75 | 1.69 | 0.10 | 0.119 |
TNF-α4 | 1.05 B | 1.87 Aa | 1.50 | 1.04 b | 0.97 b | 1.37 | 0.86 b | 1.32 | 0.07 | 0.001 |
IL-1β5 | 1.27 A | 1.84 a | 0.55 Bb | 1.23 | 0.78 b | 1.16 | 0.77 b | 1.02 b | 0.10 | 0.030 |
Thymus | ||||||||||
IFN-γ | 1.04 | 1.18 | 1.41 | 1.40 | 0.98 | 1.47 | 1.36 | 1.55 | 0.09 | 0.682 |
TNF-α | 1.01 | 1.38 | 0.94 | 1.30 | 0.98 | 1.55 | 1.18 | 1.11 | 0.06 | 0.119 |
IL-1β | 1.13 A | 1.68 a | 1.04 b | 1.10 b | 0.96 b | 1.32 | 1.06 b | 0.90 Bb | 0.06 | 0.042 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Q.; Abouelezz, K.F.M.; Li, L.; Gou, Z.; Wang, Y.; Lin, X.; Ye, J.; Jiang, S. Influence of Mushroom Polysaccharide, Nano-Copper, Copper Loaded Chitosan, and Lysozyme on Intestinal Barrier and Immunity of LPS-mediated Yellow-Feathered Chickens. Animals 2020, 10, 594. https://doi.org/10.3390/ani10040594
Fan Q, Abouelezz KFM, Li L, Gou Z, Wang Y, Lin X, Ye J, Jiang S. Influence of Mushroom Polysaccharide, Nano-Copper, Copper Loaded Chitosan, and Lysozyme on Intestinal Barrier and Immunity of LPS-mediated Yellow-Feathered Chickens. Animals. 2020; 10(4):594. https://doi.org/10.3390/ani10040594
Chicago/Turabian StyleFan, Qiuli, K. F. M. Abouelezz, Long Li, Zhongyong Gou, Yibing Wang, Xiajing Lin, Jinling Ye, and Shouqun Jiang. 2020. "Influence of Mushroom Polysaccharide, Nano-Copper, Copper Loaded Chitosan, and Lysozyme on Intestinal Barrier and Immunity of LPS-mediated Yellow-Feathered Chickens" Animals 10, no. 4: 594. https://doi.org/10.3390/ani10040594
APA StyleFan, Q., Abouelezz, K. F. M., Li, L., Gou, Z., Wang, Y., Lin, X., Ye, J., & Jiang, S. (2020). Influence of Mushroom Polysaccharide, Nano-Copper, Copper Loaded Chitosan, and Lysozyme on Intestinal Barrier and Immunity of LPS-mediated Yellow-Feathered Chickens. Animals, 10(4), 594. https://doi.org/10.3390/ani10040594