Feeding Agroindustrial Byproducts to Light Lambs: Influence on Growth Performance, Diet Digestibility, Nitrogen Balance, Ruminal Fermentation, and Plasma Metabolites
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Diets
2.2. Experimental Procedure and Measurements
2.3. Chemical Analyses
2.4. Statistical Analyses
3. Results and Discussion
3.1. Feed Intake, Growht Performance, Diet Digestibility, and Nitrogen Balance
3.2. Ruminal Fermentation and Plasma Metabolites
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gerber, P.J.; Uwizeye, A.; Schulte, R.P.O.; Opio, C.I.; de Boer, I.J.M. Nutrient use efficiency: A valuable approach to benchmark the sustainability of nutrient use in global livestock production? Curr. Opin. Environ. Sustain. 2014, 9, 122–1309. [Google Scholar] [CrossRef]
- Bakshi, M.P.S.; Wadhwa, M.; Makkar, H. Waste to worth: Vegetable wastes as animal feed. Cab. Rev. 2016, 11, 1–26. [Google Scholar] [CrossRef]
- Vasta, V.; Nudda, A.; Cannas, A.; Lanza, M.; Priolo, A. Alternative feed resources and their effects on the quality of meat and milk from small ruminants. Anim. Feed Sci. Technol. 2008, 147, 223–246. [Google Scholar] [CrossRef]
- Correddu, F.; Lunesu, M.F.; Buffa, G.; Atzori, A.S.; Nudda, A.; Battacone, G.; Pulina, G. Can Agro-Industrial By-Products Rich in Polyphenols be Advantageously Used in the Feeding and Nutrition of Dairy Small Ruminants? Animals 2020, 10, 131. [Google Scholar] [CrossRef] [Green Version]
- International Olive Oil Organization. Olive Oil Estimates 2019/20 Crop Year. Available online: https://www.internationaloliveoil.org/olive-oil-estimates-2019-20-crop-year/ (accessed on 10 January 2020).
- MAPA 2020. Ministerio de Agricultura, Pesca y Alimentación. Available online: http://www.mapa.gob.es/ (accessed on 10 January 2020).
- Marcos, C.N.; García-Rebollar, P.; de Blas, C.; Carro, M.D. Variability in the Chemical Composition and In Vitro Ruminal Fermentation of Olive Cake By-Products. Animals 2019, 9, 109. [Google Scholar] [CrossRef] [Green Version]
- UNCTD. United Nations Conference on Trade and Development. 2020. Available online: https://unctad.org/SearchCenter/Pages/results.aspx?k=citrus%20production (accessed on 10 January 2020).
- Bampidis, V.A.; Robinson, P.H. Citrus by-products as ruminant feeds: A review. Anim. Feed Sci. Technol. 2006, 128, 175–217. [Google Scholar] [CrossRef]
- Molina-Alcaide, E.; Yáñez-Ruíz, D.R. Potential use of olive by-products in ruminant feeding: A review. Anim. Feed Sci. Technol. 2008, 147, 247–264. [Google Scholar] [CrossRef]
- Sauvant, D.; Delaby, L.; Noziere, P. INRA Feeding System for Ruminants; Noziere, P., Sauvant, D., Delaby, L., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2017. [Google Scholar]
- Carro, M.D.; Ranilla, M.J.; Giráldez, F.J.; Mantecón, A.R. Effects of malate supplementation on feed intake, digestibility, microbial protein synthesis and plasma metabolites in lambs fed a high-concentrate diet. J. Anim. Sci. 2006, 84, 405–410. [Google Scholar] [CrossRef] [Green Version]
- Haro, A.N.; González, J.; de Evan, T.; de la Fuente, J.; Carro, M.D. Effects of feeding rumen-protected sunflower seed and meal protein on feed intake, diet digestibility, ruminal and cecal fermentation, and growth performance of lambs. Animals 2019, 9, 415. [Google Scholar] [CrossRef] [Green Version]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Robertson, J.B.; Van Soest, P.J. The detergent system of analysis and its application to human foods. In The Analysis of Dietary Fiber in Food; James, W.P.T., Theander, O., Eds.; Marcel Dekker Inc.: New York, NY, USA, 1981; pp. 123–142. [Google Scholar]
- García-Martínez, R.; Ranilla, M.J.; Tejido, M.L.; Carro, M.D. Effects of disodium fumarate on in vitro rumen microbial growth, methane production and fermentation of diets differing in their forage concentrate ratio. Br. J. Nutr. 2005, 94, 71–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weatherburn, M.W. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 1967, 39, 971–974. [Google Scholar] [CrossRef]
- Frank, M.P.; Powers, R.W. Simple and rapid quantitative high-performance liquid chromatographic analysis of plasma amino acids. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 2007, 852, 646–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- SAS Institute. SAS/STAT® Users Guide, Version 9.3; SAS Inst. Inc.: Cary, NC, USA, 2017. [Google Scholar]
- Jiménez, C. Use of Agroindustrial by-Products (Olive Cake, Tomato Pulp and Wine Lees) in Diets for Fattening Lambs: In Vitro Evaluation. Master’s Thesis, Technical University of Madrid, Madrid, Spanish, 2018. [Google Scholar]
- Wilkinson, J.M. Re-defining efficiency of feed use by livestock. Animal 2011, 5, 1014–1022. [Google Scholar] [CrossRef] [Green Version]
- NRC (National Research Council). Nutrient Requirements of Dairy Cattle, 7th ed.; National Academy of Sciences: Washington, DC, USA, 2001. [Google Scholar]
- Manso, T.; Mantecón, A.R.; Giráldez, F.J.; Lavín, P.; Castro, T. Animal performance and chemical body composition of lambs fed diets with different protein supplements. Small Rum. Res. 1998, 29, 185–191. [Google Scholar] [CrossRef]
- Carrasco, S.; Ripoll, G.; Sanz, A.; Álvarez-Rodríguez, J.; Panea, B.; Revilla, R.; Joy, M. Effect of feeding system on growth and carcass characteristics of Churra Tensina light lambs. Livest. Sci. 2009, 121, 56–63. [Google Scholar] [CrossRef]
- Blanco, C.; Giráldez, F.J.; Prieto, N.; Morán, L.; Andrés, S.; Benavides, J.; Tejido, M.L.; Bodas, R. Effects of dietary inclusion of sunflower soap stocks on nutrient digestibility, growth performance, and ruminal and blood metabolites of light fattening lambs. J. Anim. Sci. 2014, 92, 4086–4094. [Google Scholar] [CrossRef] [Green Version]
- Blanco, C.; Bodas, R.; Prieto, N.; Andrés, S.; López, S.; Giráldez, F.J. Concentrate plus ground barley straw pellets can replace conventional feeding systems for light fattening lambs. Small Rum. Res. 2014, 116, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Owaimer, A.; Kraidees, M.; Al-saiady, M.; Zahran, S.; Abouheif, M. Effect of Feeding Olive Cake in Complete Diet on Performance and Nutrient Utilization of Lambs. Asian-Australas J. Anim. Sci. 2004, 17, 491–496. [Google Scholar] [CrossRef]
- Sharif, M.; Ashraf, M.S.; Mushtaq, N.; Nawaz, H.; Mustafa, M.I.; Ahmad, F.; Younas, M.; Javaid, A. Influence of varying levels of dried citrus pulp on nutrient intake, growth performance and economic efficiency in lambs. J. Appl. Anim. Res. 2018, 46, 264–268. [Google Scholar] [CrossRef] [Green Version]
- Awawdeh, M.S.; Dager, H.K.; Obeidat, B.S. Effects of alternative feedstuffs on growth performance, carcass characteristics, and meat quality of growing Awassi lambs. Ital. J. Anim. Sci. 2019, 18, 777–785. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, R.B.; de Frutos Fernández, P.; García, F.J.G.; Angulo, G.H.; Puente, S.L. Effect of sodium bicarbonate supplementation on feed intake, digestibility, digesta kinetics, nitrogen balance and ruminal fermentation in young fattening lambs. Span. J. Agric. Res. 2009, 2, 330–341. [Google Scholar]
- Andrés, S.; Jaramillo, E.; Bodas, R.; Blanco, C.; Benavides, J.; Fernández, P.; González, E.P.; Frutos, J.; Belenguer, A.; Lopéz, S.; et al. Grain grinding size of cereals in complete pelleted diets for growing lambs: Effects on ruminal microbiota and fermentation. Small Rum. Res. 2018, 159, 38–44. [Google Scholar] [CrossRef]
- Benchaar, C.; Hassanat, F.; Gervais, R.; Chouinard, P.Y.; Julien, C.; Petit, V.; Massé, D.I. Effects of increasing amounts of corn dried distillers grains with solubles in dairy cow diets on methane production, ruminal fermentation, digestion, N balance, and milk production. J. Dairy Sci. 2013, 96, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Firkins, J.L.; Yu, Z.; Morrison, M. Ruminal nitrogen metabolism: Perspectives for integration of microbiology and nutrition for dairy cows. J. Dairy Sci. 2007, 90, E1–E16. [Google Scholar] [CrossRef] [PubMed]
- Carrasco, C.; Carro, M.D.; Fuentaja, A.; Medel, P. Performance, carcass and ruminal fermentation characteristics of heifers fed concentrates differing in energy level and cereal type (corn vs. wheat). Span. J. Agric. Res. 2017, 15, 13. [Google Scholar] [CrossRef] [Green Version]
- Bergen, W.G.; Henneman, H.A.; Magee, W.T. Effect of dietary protein level and protein source on plasma and tissue free amino acids in growing sheep. J. Nutr. 1973, 103, 575–585. [Google Scholar] [CrossRef] [Green Version]
- Bergen, W.G. Free amino acids in blood of ruminants-physiological and nutritional regulation. J. Anim. Sci. 1979, 49, 1577–1589. [Google Scholar] [CrossRef]
- Calsamiglia, A.; Ferret, A.; Reynolds, C.K.; Kristensen, N.B.; Van Vuuren, A.M. Strategies for optimizing nitrogen use by ruminants. Animal 2010, 4, 1184–1196. [Google Scholar] [CrossRef]
- Lestingi, A.; Toteda, F.; Vicenti, A.; de De Marzo, D.; Facciolongo, A.M. The Use of Faba Bean and Sweet Lupin Seeds Alone or in Combination for Growing Lambs. 1. Effects on Growth Performance, Carcass Traits, and Blood Parameters. Pakistan J. Zool. 2015, 47, 989–996. [Google Scholar]
- Lobón, S.; Joy, M.; Casasús, I.; Rufino-Moya, P.J.; Blanco, M. Field Pea can be Included in Fattening Concentrate without Deleterious Effects on the Digestibility and Performance of Lambs. Animals 2020, 10, 243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Li, Z.; Moraes, L.E.; Shen, J.; Yu, Z.; Zhu, W. Effects of Incremental Urea Supplementation on Rumen Fermentation, Nutrient Digestion, Plasma Metabolites, and Growth Performance in Fattening Lambs. Animals. 2019, 9, 652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Item | Control | BYP |
---|---|---|
Ingredients (% as fed) | ||
Corn | 33.0 | 26.8 |
Barley | 20.0 | - |
Wheat | 10.0 | 10.0 |
Soybean meal 47% | 12.2 | 10.2 |
Palm meal | 8.8 | - |
Colza meal | 2.5 | 2.5 |
Wheat bran | 10.0 | 3.0 |
Dry citrus pulp | - | 18.0 |
Corn DDGS | - | 18.0 |
Olive cake | - | 8.0 |
Others 1 | 3.5 | 3.5 |
Chemical composition (%, as-fed basis) | ||
Dry matter (DM) | 89.7 | 88.6 |
Ashes | 4.82 | 5.97 |
Crude protein (CP) | 16.2 | 17.5 |
Ether extract (EE) | 3.75 | 6.44 |
Neutral detergent fiber (NDF) | 19.2 | 19.5 |
Acid detergent fiber (ADF) | 7.47 | 9.31 |
Acid detergent lignin | 1.79 | 2.80 |
Non-structural carbohydrates (NSC) 2 | 45.7 | 35.2 |
Forage units for meat production (UFV) 3 | 1.00 | 0.96 |
Item | Control (n = 12) | BYP (n = 12) | SEM 2 | p-Value |
---|---|---|---|---|
Initial body weight (kg) | 13.6 | 13.9 | 0.95 | 0.595 |
Feed intake (g/d) | ||||
Concentrate | 828 | 854 | 77.9 | 0.568 |
Straw | 40.3 | 47.7 | 13.40 | 0.341 |
Total | 869 | 902 | 77.9 | 0.463 |
Final body weight (kg) | 26.2 | 26.4 | 1.25 | 0.744 |
Average daily gain (g/d) | 284 | 288 | 32.9 | 0.844 |
Feed conversion rate (g concentrate/g) | 2.92 | 2.97 | 0.320 | 0.747 |
Carcass traits | ||||
Hot carcass weight (kg) | 14.4 | 14.2 | 0.76 | 0.704 |
Cold carcass weight (kg) | 13.6 | 13.6 | 0.90 | 0.987 |
Cold carcass yield (%) | 51.9 | 51.5 | 2.15 | 0.765 |
Item | Control (n = 9) | BYP (n = 9) | SEM 2 | p-Value |
---|---|---|---|---|
Digestibility (%) | ||||
Dry matter | 79.1 | 74.4 | 0.74 | < 0.001 |
Organic matter | 81.4 | 76.7 | 0.69 | < 0.001 |
Crude protein | 75.2 | 73.1 | 0.97 | 0.141 |
Neutral detergent fiber | 53.3 | 54.8 | 1.80 | 0.570 |
Acid detergent fiber | 47.6 | 52.0 | 1.91 | 0.120 |
Nitrogen (N) balance | ||||
N intake (g/d) | 21.8 | 24.1 | 0.66 | 0.024 |
Fecal N | ||||
g/d | 5.40 | 6.49 | 0.273 | 0.012 |
% of ingested N | 24.8 | 26.9 | 0.969 | 0.141 |
Urinary N | ||||
g/d | 4.73 | 5.17 | 0.598 | 0.616 |
% of ingested N | 21.4 | 21.4 | 2.28 | 0.988 |
Retained N | ||||
g/d | 11.7 | 12.5 | 0.55 | 0.312 |
% of ingested N | 53.8 | 51.7 | 2.21 | 0.519 |
Item | Control (n = 12) | BYP (n = 12) | SEM 2 | p-Value |
---|---|---|---|---|
pH | 5.40 | 5.62 | 0.126 | 0.263 |
NH3-N (mg/l) | 69.2 | 45.7 | 2.17 | 0.003 |
Total volatile fatty acids (VFA; mM) | 140 | 130 | 15.1 | 0.643 |
Molar proportions (mol/100 mol) | ||||
Acetate | 52.8 | 52.8 | 1.71 | 0.987 |
Propionate | 33.2 | 33.6 | 2.17 | 0.900 |
Butyrate | 9.26 | 8.18 | 0.939 | 0.424 |
Isobutyrate | 0.58 | 0.45 | 0.090 | 0.332 |
Isovalerate | 0.67 | 0.54 | 0.104 | 0.388 |
Valerate | 3.01 | 3.80 | 0.297 | 0.073 |
Caproate | 0.56 | 0.68 | 0.131 | 0.516 |
Acetate/propionate ratio (mol/mol) | 1.77 | 1.64 | 0.175 | 0.593 |
Rumen wall colour 3 | 2.19 | 3.19 | 0.402 | 0.092 |
Item | Diet | Day | p-Value | ||||
---|---|---|---|---|---|---|---|
0 | 42 | SEM 2 | Diet | Day | Diet × Day | ||
Amino acid (µmol/L) | |||||||
Aspartic acid | CON | 34.7 | 39.0 | 1.23 | 0.909 | <0.001 | 0.156 |
BYP | 33.1 | 41.4 | |||||
Glutamic acid | CON | 177 | 205 | 22.8 | 0.608 | 0.162 | 0.767 |
BYP | 186 | 227 | |||||
Asparagine | CON | 41.1 | 46.6 | 4.57 | 0.742 | 0.065 | 0.439 |
BYP | 35.7 | 48.8 | |||||
Serine | CON | 57.4 | 75.6 | 6.97 | 0.547 | 0.062 | 0.597 |
BYP | 65.7 | 76.2 | |||||
Glutamine | CON | 57.5 | 69.6 | 6.86 | 0.902 | 0.053 | 0.721 |
BYP | 55.8 | 73.2 | |||||
Histidine | CON | 35.4 | 38.7 | 2.36 | 0.238 | 0.132 | 0.841 |
BYP | 31.5 | 35.8 | |||||
Glycine | CON | 274 | 295 | 32.5 | 0.312 | 0.871 | 0.433 |
BYP | 336 | 303 | |||||
Threonine | CON | 77.8 | 154 | 14.08 | 0.826 | <0.001 | 0.631 |
BYP | 88.5 | 150 | |||||
Arginine | CON | 112 | 139 | 13.5 | 0.368 | 0.343 | 0.340 |
BYP | 112 | 112 | |||||
Alanine | CON | 63.3 | 67.0 | 6.51 | 0.760 | 0.654 | 0.926 |
BYP | 66.7 | 69.2 | |||||
Tyrosine | CON | 58.5 | 72.2 | 6.62 | 0.971 | 0.010 | 0.403 |
BYP | 53.4 | 78.8 | |||||
Cysteine | CON | 203 | 199 | 18.8 | 0.824 | 0.786 | 0.914 |
BYP | 213 | 205 | |||||
Valine | CON | 103 | 155 | 16.5 | 0.280 | <0.001 | 0.267 |
BYP | 102 | 194 | |||||
Methionine | CON | 32.5 | 41.8 | 2.42 | 0.859 | <0.001 | 0.223 |
BYP | 29.7 | 45.5 | |||||
Tryptophan | CON | 28.0 | 35.2 | 1.67 | 0.294 | <0.001 | 0.387 |
BYP | 25.4 | 31.8 | |||||
Phenylalanine | CON | 47.0 | 53.8 | 4.12 | 0.741 | 0.023 | 0.385 |
BYP | 45.2 | 59.6 | |||||
Isoleucine | CON | 57.5 | 70.4 | 7.67 | 0.483 | 0.021 | 0.375 |
BYP | 56.0 | 83.4 | |||||
Leucine | CON | 63.8 | 99.1 | 11.24 | 0.109 | <0.001 | 0.151 |
BYP | 66.7 | 137 | |||||
Lysine | CON | 93.9 | 118 | 10.21 | 0.953 | 0.005 | 0.406 |
BYP | 83.9 | 127 | |||||
Essential AA | CON | 539 | 766 | 63.7 | 0.531 | <0.001 | 0.422 |
BYP | 528 | 865 | |||||
Total AA | CON | 1752 | 2134 | 189.3 | 0.654 | 0.064 | 0.934 |
BYP | 1833 | 2249 |
Item 2 | Diet | Day | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
0 | 21 | 42 | SEMd 3 | SEMsd 3 | Diet | Day | Diet × Day | ||
Urea (mg/100 mL) | CON | 22.9 ab | 20.3 a | 25.4 b | 0.71 | 0.86 | 0.585 | 0.004 | 0.889 |
BYP | 23.1 ab | 22.0 a | 25.8 b | ||||||
Albumine (mg/100 mL) | CON | 2.12 a | 2.30 a | 2.53 b | 0.040 | 0.049 | 0.276 | <0.001 | 0.571 |
BYP | 2.28 a | 2.32 a | 2.59 b | ||||||
Globulins (g/100 mL) | CON | 3.18 | 3.32 | 3.55 | 0.097 | 0.118 | 0.556 | 0.316 | 0.742 |
BYP | 3.16 | 3.27 | 3.30 | ||||||
Total proteins (g/100 mL) | CON | 5.30 a | 5.62 ab | 6.00 b | 0.095 | 0.117 | 0.692 | 0.003 | 0.483 |
BYP | 5.44 ab | 5.38 a | 5.88 b | ||||||
Cholesterol (mg/100 mL) | CON | 54.3 b | 38.8 a | 40.1 a | 1.94 | 2.38 | 0.876 | <0.001 | 0.952 |
BYP | 53.8 b | 37.3 a | 40.6 a | ||||||
LDH (Units/L) | CON | 502 a | 670 b | 653 b | 12.8 | 15.7 | 0.638 | <0.001 | 0.538 |
BYP | 495 a | 706 b | 673 b | ||||||
ALP (Units/L) | CON | 2.15 a | 1.45 a | 5.08 b | 0.293 | 0.359 | 0.592 | <0.001 | 0.922 |
BYP | 2.18 a | 1.70 a | 5.30 b | ||||||
CPK (Units/L) | CON | 102 a | 201 b | 123 a | 9.9 | 12.1 | 0.780 | <0.001 | 0.954 |
BYP | 96.6 a | 203 b | 114 a | ||||||
GOT (Units/L) | CON | 45.2 a | 70.8 b | 72.5 b | 2.18 | 2.675 | 0.522 | <0.001 | 0.889 |
BYP | 45.6 a | 72.5 b | 76.6 b | ||||||
GPT (Units/L) | CON | 5.62 a | 13.1 c | 9.54 b | 0.436 | 0.534 | 0.755 | <0.001 | 0.738 |
BYP | 6.09 a | 12.6 c | 8.92 b | ||||||
GGT (Units/L) | CON | 101 | 98.1 | 106 | 3.43 | 4.20 | 0.114 | 0.215 | 0.223 |
BYP | 102 | 122 | 117 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Evan, T.; Cabezas, A.; de la Fuente, J.; Carro, M.D. Feeding Agroindustrial Byproducts to Light Lambs: Influence on Growth Performance, Diet Digestibility, Nitrogen Balance, Ruminal Fermentation, and Plasma Metabolites. Animals 2020, 10, 600. https://doi.org/10.3390/ani10040600
de Evan T, Cabezas A, de la Fuente J, Carro MD. Feeding Agroindustrial Byproducts to Light Lambs: Influence on Growth Performance, Diet Digestibility, Nitrogen Balance, Ruminal Fermentation, and Plasma Metabolites. Animals. 2020; 10(4):600. https://doi.org/10.3390/ani10040600
Chicago/Turabian Stylede Evan, Trinidad, Almudena Cabezas, Jesús de la Fuente, and María Dolores Carro. 2020. "Feeding Agroindustrial Byproducts to Light Lambs: Influence on Growth Performance, Diet Digestibility, Nitrogen Balance, Ruminal Fermentation, and Plasma Metabolites" Animals 10, no. 4: 600. https://doi.org/10.3390/ani10040600
APA Stylede Evan, T., Cabezas, A., de la Fuente, J., & Carro, M. D. (2020). Feeding Agroindustrial Byproducts to Light Lambs: Influence on Growth Performance, Diet Digestibility, Nitrogen Balance, Ruminal Fermentation, and Plasma Metabolites. Animals, 10(4), 600. https://doi.org/10.3390/ani10040600