Fermentative Quality and Animal Acceptability of Ensiled Persimmon Skin with Absorbents for Practical Use in Ruminant Feed
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiment 1. PS Silage
2.1.1. Silage Preparation
2.1.2. Chemical and Microbial Analysis of Silage
2.2. Experiment 2. Batch Culture Trial
2.3. Experiment 3. Feeding Trials
2.3.1. Pretest
2.3.2. Main test
2.4. Calculations and Statistical Analysis
3. Results
3.1. Experiment 1. PS Silage
3.2. Experiment 2. Batch Culture Trial
3.3. Experiment 3. Feeding Trials
4. Discussion
4.1. Experiment 1. PS Silage
4.2. Experiment 2. Batch Culture Trial
4.3. Experiment 3. Feeding Trials
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- JETRO (Japan External Trade Organization). Export Environment Survey (Fruit in South Korea). 2016. Available online: https://www.jetro.go.jp/ext_images/_Reports/02/2017/9df0eb8777e82226/2016rp-kr201703r.pdf (accessed on 16 January 2020).
- Ranjit, N.; Taylor, C.; Kung Jr, L. Effect of Lactobacillus buchneri 40788 on the fermentation, aerobic stability and nutritive value of maize silage. Grass Forage Sci. 2002, 57, 73–81. [Google Scholar] [CrossRef]
- Muck, R.E. Effects of corn silage inoculants on aerobic stability. Trans. ASAE 2004, 47, 1011. [Google Scholar] [CrossRef] [Green Version]
- Mousa, S.A.; Malik, P.K.; Kolte, A.P.K.P.; Bhatta, R.; Kasuga, S.; Uyeno, Y. Evaluation of in vitro ruminal fermentation of ensiled fruit byproducts and their potential for feed use. Asian-Aust. J. Anim. Sci. 2019, 32, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Uyeno, Y.; Konaka, R.; Shirota, M.; Kobayashi, S. Ensiling fruit byproducts with inoculum of lactic acid bacteria strains. Anim. Nutr. Feed Technol. 2016, 16, 515–519. [Google Scholar] [CrossRef]
- Fransen, S.; Strubi, F.J. Relationships among absorbents on the reduction of grass silage effluent and silage quality. J. Dairy Sci. 1998, 81, 2633–2644. [Google Scholar] [CrossRef]
- Okine, A.R.; Hanada, M.; Yimamu, A.; Okamoto, M. Potential water retention capacity as a factor in silage effluent control: Experiments with high moisture by-product feedstuffs. Asian-Aust. J. Anim. Sci. 2012, 25, 471–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okine, A.R.; Yimamu, A.; Hanada, M.; Izumita, M.; Zunong, M.; Okamoto, M. Ensiling characteristics of daikon (Raphanus sativus) by-product and its potential as an animal feed resource. Anim. Feed Sci. Technol. 2007, 136, 248–264. [Google Scholar] [CrossRef]
- Maeda, Y.; Nishimura, K.; Kurosu, K.; Mizuguchi, H.; Sato, S.; Terada, F.; Kushibiki, S. Effect of feeding wood kraft pulp on the growth performance, feed digestibility, blood components, and rumen fermentation in Japanese Black fattening steers. Anim. Sci. J. 2019, 90, 523–532. [Google Scholar] [CrossRef] [Green Version]
- Nishimura, K.; Kurosu, K.; Terada, F.; Mizuguchi, H.; Sato, S.; Kushibiki, S. Effect of wood kraft pulp feed on digestibility, ruminal characteristics, and milk production performance in lactating dairy cows. Anim. Sci. J. 2018, 90, 189–195. [Google Scholar] [CrossRef] [Green Version]
- Kido, K.; Tejima, S.; Haramiishi, M.; Uyeno, Y.; Ide, Y.; Kurosu, K.; Kushibiki, S. Provision of beta-glucan prebiotics (cellooligosaccharides and kraft pulp) to calves from pre-to post-weaning period on pasture. Anim. Sci. J. 2019, 90, 1537–1543. [Google Scholar] [CrossRef]
- Krueger, W.K.; Gutierrez-Bañuelos, H.; Carstens, G.E.; Min, B.R.; Pinchak, W.E.; Gomez, R.R.; Anderson, R.C.; Krueger, N.A.; Forbes, T.D.A. Effects of dietary tannin source on performance, feed efficiency, ruminal fermentation, and carcass and non-carcass traits in steers fed a high-grain diet. Anim. Feed Sci. Technol. 2010, 159, 1–9. [Google Scholar] [CrossRef]
- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists, Ed.; AOAC Inc.: Arlington, VA, USA, 1990. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- NARO (National Agriculture and Food Research Organization). Standard Tables of Feed Composition in Japan; Japan Livestock Industry Association: Tokyo, Japan, 2009. [Google Scholar]
- Abrar, A.; Kondo, M.; Kitamura, T.; Ban-Tokuda, T.; Matsui, H. Effect of supplementation of rice bran and fumarate alone or in combination on in vitro rumen fermentation, methanogenesis and methanogens. Anim. Sci. J. 2016, 87, 398–404. [Google Scholar] [CrossRef] [PubMed]
- AFFRCS (Agriculture, Forestry and Fisheries Research Council Secretariat). Equations to predict energy requirements. In Japanese Feeding Standard for Sheep; AFFRCS, Ed.; Japan Livestock Industry Association: Tokyo, Jarpan, 1996; pp. 1–126. [Google Scholar]
- Özkul, H.; Kılıç, A.; Polat, M. Evaluation of mixtures of certain market wastes as silage. Asian-Aust. J. Anim. Sci. 2011, 24, 1243–1248. [Google Scholar] [CrossRef]
- Wambacq, E.; Vanhoutte, I.; Audenaert, K.; De Gelder, L.; Haesaert, G. Occurrence, prevention and remediation of toxigenic fungi and mycotoxins in silage: A review. J. Sci. Food Agric. 2016, 96, 2284–2302. [Google Scholar] [CrossRef]
- Oladosu, Y.; Rafii, M.Y.; Abdullah, N.; Magaji, U.; Hussin, G.; Ramli, A.; Miah, G. Fermentation quality and additives: A case of rice straw silage. BioMed Res. Int. 2016, 2016, 7985167. [Google Scholar] [CrossRef] [Green Version]
- Tabacco, E.; Righi, F.; Quarantelli, A.; Borreani, G. Dry matter and nutritional losses during aerobic deterioration of corn and sorghum silages as influenced by different lactic acid bacteria inocula. J. Dairy Sci. 2011, 94, 1409–1419. [Google Scholar] [CrossRef]
- Nishino, N.; Wada, H.; Yoshida, M.; Shiota, H. Microbial counts, fermentation products, and aerobic stability of whole crop corn and a total mixed ration ensiled with and without inoculation of Lactobacillus casei or Lactobacillus buchneri. J. Dairy Sci. 2004, 87, 2563–2570. [Google Scholar] [CrossRef]
- Gandra, J.R.; Oliveira, E.R.; Gandra, E.R.d.S.; Takiya, C.S.; Goes, R.H.T.B.d.; Oliveira, K.M.P.; Silveira, K.A.; Araki, H.M.C.; Orbach, N.D.; Vasquez, D.N. Inoculation of Lactobacillus buchneri alone or with Bacillus subtilis and total losses, aerobic stability, and microbiological quality of sunflower silage. J. Appl. Anim. Res. 2017, 45, 609–614. [Google Scholar] [CrossRef]
- Holzer, M.; Mayrhuber, E.; Danner, H.; Braun, R. The role of Lactobacillus buchneri in forage preservation. Trends Biotechnol. 2003, 21, 282–287. [Google Scholar] [CrossRef]
- Krooneman, J.; Faber, F.; Alderkamp, A.; Elferink, S.O.; Driehuis, F.; Cleenwerck, I.; Swings, J.; Gottschal, J.; Vancanneyt, M. Lactobacillus diolivorans sp. nov., a 1, 2-propanediol-degrading bacterium isolated from aerobically stable maize silage. Int. J. Syst. Evol. Microbiol. 2002, 52, 639–646. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.B.; Kim, D.H.; Lee, H.J.; Amanullah, S.M.; Kim, S.C. Effects of fermented persimmon extract supplements on chemical composition and fermentation characteristics of barley silage. Anim. Sci. J. 2013, 84, 403–408. [Google Scholar] [CrossRef]
- Uyeno, Y. Selective inhibition of harmful rumen microbes. In Rumen Microbiology: From Evolution to Revolution; Puniya, A.K., Singh, R., Kamra, D.N., Eds.; Springer-Verlag GmbH: Berlin, Germany, 2015; pp. 199–211. [Google Scholar]
- Cao, Y.; Takahashi, T.; Horiguchi, K.i.; Yoshida, N.; Zhou, D. In vitro ruminal dry matter digestibility and methane production of fermented total mixed ration containing whole-crop rice and rice bran. Grassl. Sci. 2012, 58, 133–139. [Google Scholar] [CrossRef]
- Cao, Y.; Takahashi, T.; Horiguchi, K.i.; Yoshida, N. Effect of adding lactic acid bacteria and molasses on fermentation quality and in vitro ruminal digestion of total mixed ration silage prepared with whole crop rice. Grassl. Sci. 2010, 56, 19–25. [Google Scholar] [CrossRef]
- Wang, C.; Uyeno, Y.; Jayanegara, A.; Kondo, M.; Ban-Tokuda, T.; Matsui, H. Changes in in vitro rumen fermentation characteristics of different compositions of total mixed rations (TMR) and the ensiled TMRs. Adv. Anim. Vet. Sci. 2016, 4, 179–182. [Google Scholar]
- Russell, J.B.; Rychlik, J.L. Factors that alter rumen microbial ecology. Science 2001, 292, 1119–1122. [Google Scholar] [CrossRef]
- Dehority, B.A. Cellurose digesting rumen bacteria. In Rumen Microbiology; Dehority, B.A., Ed.; Nottingham University Press: Nottingham, UK, 2003; pp. 177–208. [Google Scholar]
- Yáñez-Ruiz, D.R.; Bannink, A.; Dijkstra, J.; Kebreab, E.; Morgavi, D.P.; O’Kiely, P.; Reynolds, C.K.; Schwarm, A.; Shingfield, K.J.; Yu, Z. Design, implementation and interpretation of in vitro batch culture experiments to assess enteric methane mitigation in ruminants—A review. Anim. Feed Sci. Technol. 2016, 216, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-Y.; Song, Y.-M.; Kang, Y.-S.; Kim, C.-H.; Lee, S.-D.; Chowdappa, R.; Ha, J.-H.; Kang, S.-M. The effect of fermented persimmon shell diet supplementation on the growth performance and blood parameters in finishing pigs. Anim. Sci. J. 2006, 77, 314–319. [Google Scholar] [CrossRef]
Items | PSS | Tall Fescue Hay | Concentrate Mixture | Test Feed | |
---|---|---|---|---|---|
Control Period | PSS Period | ||||
DM (g/kg FM) | 320 | 890 | 870 | 884 | 668 |
OM (g/kg DM) | 945 | 935 | 960 | 941 | 943 |
CP (g/kg DM) | 30 | 45 | 220 | 90 | 85 |
CFat (g/kg DM) | 16 | 10 | 25 | 14 | 15 |
NDF (g/kg DM) | 533 | 650 | 100 | 540 | 517 |
NFC (g/kg DM) | 366 | 230 | 615 | 297 | 326 |
TDN (g/kg DM) | 580 | 500 | 840 | 580 | 590 |
DE (MJ/kg DM) | 10.9 | 9.2 | 15.6 | 10.8 | 11.0 |
Ensiling Period | Treatment | Contrast | ||||
---|---|---|---|---|---|---|
CON | LB | KP | WB | BP | ||
pH | ||||||
Day 0 | 6.32 ± 0.07 aA | 6.27 ± 0.02 aA | 6.37 ± 0.04 aA | 6.31 ± 0.01 aA | 5.79 ± 0.03 bA | Trt, p < 0.001 |
Day 14 | 3.72 ± 0.02 aB | 3.63 ± 0.02 aB | 3.68 ± 0.02 aB | 3.50 ± 0.03 bC | 3.71 ± 0.01 aBC | Time, p < 0.001 |
Day 28 | 3.63 ± 0.04 bcB | 3.57 ± 0.01 cBC | 3.68 ± 0.03 bB | 3.58 ± 0.01 cC | 3.76 ± 0.02 aB | Trt×Time, |
Day 60 | 3.58 ± 0.04 cB | 3.53 ± 0.02 cC | 3.56 ± 0.01 cC | 3.78 ± 0.01 aB | 3.68 ± 0.01 bC | p < 0.001 |
Yeast (log10 CFU/g FM) | ||||||
Day 0 | 4.53 ± 0.05 B | 4.38 ± 0.01 A | 4.25 ± 0.05 A | 4.43 ± 0.02 A | 4.23 ± 0.07 A | Trt, p < 0.001 |
Day 14 | 5.35 ± 0.40 aA | 3.18 ± 0.18 bB | 2.05 ± 0.05 cC | ND dB | ND dB | Time, p < 0.001 |
Day 28 | 5.00 ± 0.70 aAB | 3.38 ± 0.02 bB | 2.51 ± 0.03 bB | ND cB | ND cB | Trt×Time, |
Day 60 | 4.25 ± 0.23 aBC | ND bC | ND bD | ND bB | ND bB | p < 0.001 |
Lactic acid bacteria (log10 CFU/g FM) | ||||||
Day 0 | 6.14 ± 0.12 cC | 7.27 ± 0.03 aC | 7.35 ± 0.04 aC | 6.93 ± 0.00 bC | 7.32 ± 0.03 aC | Trt, p < 0.001 |
Day 14 | 7.89 ± 0.02 cA | 8.52 ± 0.09 aAB | 8.95 ± 0.03 aA | 8.37 ± 0.04 bA | 8.09 ± 0.07 bAB | Time, p < 0.001 |
Day 28 | 7.77 ± 0.07 cA | 8.86 ± 0.02 aA | 8.92 ± 0.05 aA | 8.04 ± 0.07 bB | 8.17 ± 0.06 bA | Trt×Time, |
Day 60 | 6.48 ± 0.17 cB | 8.45 ± 0.01 aB | 8.50 ± 0.04 aB | 8.15 ± 0.05 bB | 7.85 ± 0.09 bB | p < 0.001 |
Items | Treatment | Contrast | ||||
---|---|---|---|---|---|---|
CON | LB | KP | WB | BP | ||
DM (g/kg FM) | ||||||
Day 0 | 288 ± 5 c | 280 ± 5 c | 365 ± 6 b | 409 ± 3 a | 359 ± 7 b | Trt, p < 0.001 Time, p = 0.07 Trt×Time, p = 0.72 |
Day 60 | 281 ± 14 c | 261 ± 9 c | 323 ± 26 b | 388 ± 31 a | 355 ± 4 b | |
NDF (g/kg DM) | ||||||
Day 0 | 236 ± 4 c | 236 ± 4 c | 377 ± 11 a | 336 ± 3 b | 327 ± 6 b | Trt, p < 0.001 Time, p = 0.73 Trt×Time, p = 0.06 |
Day 60 | 196 ± 62 cd | 167 ± 34 d | 494 ± 23 a | 338 ± 21 b | 287 ± 37 c | |
After 60 days ensiling | ||||||
Lactate (g/100 g DM) | 3.51 ± 0.19 b | 3.39 ± 0.17 b | 2.99 ± 0.11 c | 4.39 ± 0.29 a | 4.88 ± 0.31 a | p = < 0.001 |
Acetate (g/100 g DM) | 3.52 ± 0.09 | 6.07 ± 0.27 | 4.15 ± 0.07 | 4.76 ± 1.03 | 5.16 ± 1.47 | p = 0.08 |
NH3-N (mg/g Total N) | 0.31 ± 0.11 | 0.20 ± 0.18 | 0.09 ± 0.07 | 0.06 ± 0.07 | 0.48 ± 0.15 | p = 0.07 |
Effluent (mL/100 g FM) | 21.3 ± 1.3 a | 17.5 ± 2.5 a | 0 b | 0 b | 0 b | p < 0.001 |
DM loss in effluent (g/100 g DM) | 12.1 ± 0.4 a | 12.0 ± 0.5 a | 0 b | 0 b | 0 b | p < 0.001 |
Gas (g/100 g FM) | 0.37 ± 0.02 a | 0.33 ± 0.03 ab | 0.22 ± 0.03 bc | 0.27 ± 0.04 abc | 0.17 ± 0.04 c | p = 0.045 |
Items | BD | PSA | PSS | p |
---|---|---|---|---|
Total gas production (mL) | 13.9 ± 1.5 | 16.6 ± 0.9 | 15.1 ± 1.3 | 0.118 |
Total VFA (mmol/L) | 91.6 ± 7.5 | 80.5 ± 4.8 | 94.2 ± 8.2 | 0.108 |
Acetate (mol /100 mol total VFA) | 52.3 ± 1.2 a | 46.7 ± 0.2 b | 52.4 ± 0.4 a | <0.001 |
Propionate (mol /100 mol total VFA) | 35.3 ± 2.6 b | 39.9 ± 1.3 a | 40.6 ± 0.8 a | 0.019 |
Butyrate (mol /100 mol total VFA) | 12.2 ± 3.5 a | 13.3 ± 1.2 a | 6.9 ± 0.5 b | 0.019 |
NH3–N (mg/L) | 35.8 ± 1.4 a | 18.6 ± 5.5 b | 32.3 ± 3.3 ab | 0.004 |
Methane (mmol/L) | 10.3 ± 1.1 a | 10.1 ± 0.7 a | 1.7 ± 0.4 b | <0.001 |
Total bacteria (109 copies/mL) | 4.92 ± 0.98 a | 2.67 ± 0.25 b | 4.64 ± 1.16 a | 0.037 |
Fibrobacter (% total bacteria) | 1.93 ± 0.40 b | 2.88 ± 0.38 a | 0.93 ± 0.15 c | <0.001 |
Archaea (108 copies/mL) | 1.53 ± 0.34 | 1.71 ± 0.34 | 0.68 ± 0.03 | 0.057 |
Items | Control Period | PSS Period | p |
---|---|---|---|
DM intake (kg/day) | 1.29 ± 0.10 | 1.40 ± 0.04 | 0.441 |
Organic matter intake (kg/day) | 1.21 ± 0.09 | 1.31 ± 0.04 | 0.428 |
Crude protein intake (g/day) | 95.9 ± 7.0 | 100.9 ± 3.1 | 0.693 |
NDF intake (g/day) | 723.6 ± 62.9 | 747.3 ± 21.7 | 0.905 |
Time spent eating (min/kg ingested DM) | 164 ± 5 a | 130 ± 8 b | 0.011 |
Time spent ruminating (min/kg ingested DM) | 414 ± 11 | 413 ± 14 | 0.950 |
Body weight change in each period (kg) | -1.00 ± 1.05 | -1.50 ± 0.62 | 0.717 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelazeem, S.; Takeda, K.-i.; Kurosu, K.; Uyeno, Y. Fermentative Quality and Animal Acceptability of Ensiled Persimmon Skin with Absorbents for Practical Use in Ruminant Feed. Animals 2020, 10, 612. https://doi.org/10.3390/ani10040612
Abdelazeem S, Takeda K-i, Kurosu K, Uyeno Y. Fermentative Quality and Animal Acceptability of Ensiled Persimmon Skin with Absorbents for Practical Use in Ruminant Feed. Animals. 2020; 10(4):612. https://doi.org/10.3390/ani10040612
Chicago/Turabian StyleAbdelazeem, Shimaa, Ken-ichi Takeda, Kazuhiro Kurosu, and Yutaka Uyeno. 2020. "Fermentative Quality and Animal Acceptability of Ensiled Persimmon Skin with Absorbents for Practical Use in Ruminant Feed" Animals 10, no. 4: 612. https://doi.org/10.3390/ani10040612
APA StyleAbdelazeem, S., Takeda, K.-i., Kurosu, K., & Uyeno, Y. (2020). Fermentative Quality and Animal Acceptability of Ensiled Persimmon Skin with Absorbents for Practical Use in Ruminant Feed. Animals, 10(4), 612. https://doi.org/10.3390/ani10040612