A Review of Enteric Methane Emission Measurement Techniques in Ruminants
Abstract
:Simple Summary
Abstract
1. Introduction
2. Measurement Techniques
2.1. Respiration Chamber
2.2. Sulfur Hexafluoride Tracer Technique
2.3. GreenFeed
2.4. Sniffer Technique
2.5. Ventilated Hood
2.6. Facemask
2.7. Laser CH4 detector
2.8. Portable Accumulation Chamber
3. General Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wei, T.; Glomsrød, S.; Zhang, T. Extreme weather, food security and the capacity to adapt—The case of crops in China. Food Secur. 2017, 9, 523–535. [Google Scholar] [CrossRef] [Green Version]
- Leisner, C.P. Review: Climate change impacts on food security- focus on perennial cropping systems and nutritional value. Plant Sci. 2020, 293, 110412. [Google Scholar] [CrossRef] [PubMed]
- Zervas, G.; Tsiplakou, E. An assessment of GHG emissions from small ruminants in comparison with GHG emissions from large ruminants and monogastric livestock. Atmos. Environ. 2012, 49, 13–23. [Google Scholar] [CrossRef]
- Emec, S.; Bilge, P.; Seliger, G. Design of production systems with hybrid energy and water generation for sustainable value creation. Clean Technol. Environ. 2015, 17, 1807–1829. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate change 2014: Synthesis report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; Available online: https://www.ipcc.ch/report/ar5/syr/ (accessed on 28 March 2020).
- Beauchemin, K.A.; Kreuzer, M.; O’Mara, F.; McAllister, T.A. Nutritional management for enteric methane abatement: A review. Aust. J. Exp. Agric. 2008, 48, 21–27. [Google Scholar] [CrossRef]
- Hook, S.E.; Wright, A.D.; McBride, B.W. Methanogens: Methane producers of the rumen and mitigation strategies. Archaea 2010, 945785. [Google Scholar] [CrossRef] [Green Version]
- Processes of the Methane Production in Ruminants. Available online: https://www.sciencenews.org/sites/default/files/sn-2015/112815_cow_digestion_730_free.png (accessed on 29 May 2020).
- Goopy, J.P.; Chang, C.; Tomkins, N. A comparison of methodologies for measuring methane emissions from ruminants. In Methods for Measuring Greenhouse Gas Balances and Evaluating Mitigation Options in Smallholder Agriculture; Rosenstock, T.S., Rufino, M.C., Butterbach-Bahl, K., Wollenberg, L., Richards, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.G.; Annett, R.; Yan, T. Effects of forage types on digestibility, methane emissions, and nitrogen utilization efficiency in two genotypes of hill ewes. J. Anim. Sci. 2017, 95, 3762–3771. [Google Scholar] [CrossRef]
- Yan, T.; Mayne, C.S.; Gordon, F.G.; Porter, M.G.; Agnew, R.E.; Patterson, D.C.; Ferris, C.P.; Kilpatrick, D.J. Mitigation of enteric methane emissions through improving efficiency of energy utilization and productivity in lactating dairy cows. J. Dairy Sci. 2010, 93, 2630–2638. [Google Scholar] [CrossRef]
- Global Research Alliance. Technical Manual on Respiration Chamber Design; Pinares-Patiño, C.S., Waghorn, G., Eds.; Ministry of Agriculture and Forestry: Wellington, New Zealand, 2018. Available online: https://globalresearchalliance.org/wp-content/uploads/2018/02/LRG-Manual-Facility-BestPract-Sept-2018.pdf (accessed on 28 March 2020).
- Johnson, K.A.; Huyler, M.T.; Westberg, H.H.; Lamb, B.K.; Zimmerman, P. Measurement of methane emissions from ruminant livestock using a sulfur hexafluoride tracer technique. Environ. Sci. Technol. 1994, 28, 359–362. [Google Scholar] [CrossRef]
- Pinares-Patiño, C.S.; Lassey, K.R.; Martin, R.J.; Molano, G.; Fernandez, M.; MacLean, S.; Sandoval, E.; Luo, D.; Clark, H. Assessment of the sulphur hexafluoride (SF6) tracer technique using respiration chambers for estimation of methane emissions from sheep. Anim. Feed Sci. Technol. 2011, 166–167, 201–209. [Google Scholar] [CrossRef]
- Lassey, K.R. On the importance of background sampling in applications of the SF6 tracer technique to determine ruminant methane emissions. Anim. Feed Sci. Technol. 2013, 180, 115–120. [Google Scholar] [CrossRef]
- Hristov, A.N.; Oh, J.; Giallongo, F.; Frederick, T.; Weeks, H.; Zimmerman, P.R.; Harper, M.T.; Hristova, R.A.; Zimmerman, R.S.; Branco, A.F. The use of an automated system (GreenFeed) to monitor enteric methane and carbon dioxide emissions from ruminant animals. J. Vis. Exp. 2015, 103, e52904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammond, K.J.; Humphries, D.J.; Crompton, L.A.; Green, C.; Reynolds, C.K. Methane emissions from cattle: Estimates from short-term measurements using a GreenFeed system compared with measurements obtained using respiration chambers or sulphur hexafluoride tracer. Anim. Feed Sci. Technol. 2015, 203, 41–52. [Google Scholar] [CrossRef]
- Garnsworthy, P.C.; Craigon, J.; Hernandez-Medrano, J.H.; Saunders, N. On-farm methane measurements during milking correlate with total methane production by individual dairy cows. J. Dairy Sci. 2012, 95, 3166–3180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garnsworthy, P.C.; Craigon, J.; Hernandez-Medrano, J.H.; Saunders, N. Variation among individual dairy cows in methane measurements made on farm during milking. J. Dairy Sci. 2012, 95, 3181–3189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castelán Ortega, O.A.; Pedraza Beltrán, P.E.; Hernández Pineda, G.S.; Benaouda, M.; González Ronquillo, M.; Molina, L.T.; Ku Vera, J.C.; Montelongo Pérez, H.D.; Vázquez Carrillo, M.F. Construction and operation of a respiration chamber of the head-box type for methane measurement from cattle. Animals 2020, 10, 227. [Google Scholar] [CrossRef] [Green Version]
- Place, S.E.; Pan, Y.; Zhao, Y.; Mitloehner, F.M. Construction and operation of a ventilated hood system for measuring greenhouse gas and volatile organic compound emissions from cattle. Animals 2011, 1, 433–446. [Google Scholar] [CrossRef] [Green Version]
- Oss, D.B.; Marcondes, M.I.; Machado, F.S.; Pereira, L.G.R.; Tomich, T.R.; Ribeiro, G.O.; Chizzotti, M.L.; Ferreira, A.L.; Campos, M.M.; Mauricio, R.M. An evaluation of the face mask system based on short-term measurements compared with the sulfur hexafluoride (SF6) tracer, and respiration chamber techniques for measuring CH4 emissions. Anim. Feed Sci. Technol. 2016, 216, 49–57. [Google Scholar] [CrossRef]
- Silveira, S.R.; Terry, S.A.; Biffin, T.E.; Maurício, R.M.; Pereira, L.G.R.; Ferreira, A.L.; Ribeiro, R.S.; Sacramento, J.P.; Tomich, T.R.; Machado, F.S.; et al. Replacement of soybean meal with soybean cake reduces methane emissions in dairy cows and an assessment of a face-mask technique for methane measurement. Front. Vet. Sci. 2019, 6, 295. [Google Scholar] [CrossRef] [Green Version]
- Chagunda, M.G.G.; Ross, D.; Rooke, J.; Yan, T.; Douglas, J.L.; Poret, L.; McEwan, N.R.; Teeranavattanakul, P.; Roberts, D.J. Measurement of enteric methane from ruminants using a hand-held laser methane detector. Acta Agric. Scand. A Anim. 2013, 63, 68–75. [Google Scholar] [CrossRef]
- Chagunda, M.G.G. Opportunities and challenges in the use of the laser methane detector to monitor enteric methane emissions from ruminants. Animal 2013, 7, 394–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goopy, J.P.; Woodgate, R.; Donaldson, A.; Robinson, D.L.; Hegarty, R.S. Validation of a short-term methane measurement using portable static chambers to estimate daily methane production in sheep. Anim. Feed Sci. Technol. 2011, 166–167, 219–226. [Google Scholar] [CrossRef]
- Robinson, D.L.; Goopy, J.P.; Hegarty, R.S.; Oddy, V.H. Comparison of repeated measurements of methane production in sheep over 5 years and a range of measurement protocols. J. Anim. Sci. 2015, 93, 4637–4650. [Google Scholar] [CrossRef] [PubMed]
- Hammond, K.J.; Hoskin, S.O.; Burke, J.L.; Waghorn, G.C.; Koolaard, J.P.; Muetzel, S. Effects of feeding fresh white clover (Trifolium repens) or perennial ryegrass (Lolium perenne) on enteric methane emissions from sheep. Anim. Feed Sci. Technol. 2011, 166–167, 398–404. [Google Scholar] [CrossRef]
- Zhao, Y.G.; Aubry, A.; O’Connell, N.E.; Annett, R.; Yan, T. Effects of breed, sex, and concentrate supplementation on digestibility, enteric methane emissions, and nitrogen utilization efficiency in growing lambs offered fresh grass. J. Anim. Sci. 2015, 93, 5764–5773. [Google Scholar] [CrossRef] [PubMed]
- Hynes, D.N.; Stergiadis, S.; Gordon, A.; Yan, T. Effects of concentrate crude protein content on nutrient digestibility, energy utilization, and methane emissions in lactating dairy cows fed fresh-cut perennial grass. J. Dairy Sci. 2016, 99, 8858–8866. [Google Scholar] [CrossRef] [Green Version]
- Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef]
- Storm, I.M.L.D.; Hellwing, A.L.F.; Nielsen, N.I.; Madsen, J. Methods for measuring and estimating methane emission from ruminants. Animals 2012, 2, 160–183. [Google Scholar] [CrossRef] [Green Version]
- Jiao, H.P.; Yan, T.; McDowell, D.A.; Carson, A.F.; Ferris, C.P.; Easson, D.L.; Wills, D. Enteric methane emissions and efficiency of use of energy in Holstein heifers and steers at age of six months. J. Anim. Sci. 2013, 91, 356–362. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.G.; O’Connell, N.E.; Yan, T. Prediction of enteric methane emissions from sheep offered fresh perennial ryegrass (Lolium perenne) using data measured in indirect open-circuit respiration chambers. J. Anim. Sci. 2016, 94, 2425–2435. [Google Scholar] [CrossRef]
- Yang, C.T.; Wang, C.M.; Zhao, Y.G.; Chen, T.B.; Aubry, A.; Gordon, A.W.; Yan, T. Updating maintenance energy requirement for the current sheep flocks and the associated effect of nutritional and animal factors. Animal 2019, 14, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Bhatta, R.; Enishi, O.; Kurihara, M. Measurement of methane production from ruminants. Asian Austral. J. Anim. 2007, 20, 1305–1318. [Google Scholar] [CrossRef]
- Blaxter, K.L.; Clapperton, J.L. Prediction of the amount of methane produced by ruminants. Br. J. Nutr. 1965, 19, 511–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garnsworthy, P.C.; Difford, G.F.; Bell, M.J.; Bayat, A.R.; Huhtanen, P.; Kuhla, B.; Lassen, J.; Peiren, N.; Pszczola, M.; Sorg, D.; et al. Comparison of methods to measure methane for use in genetic evaluation of dairy cattle. Animals 2019, 9, 837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alemu, A.W.; Vyas, D.; Manafiazar, G.; Basarab, J.A.; Beauchemin, K.A. Enteric methane emissions from low– and high–residual feed intake beef heifers measured using GreenFeed and respiration chamber techniques1,2. J. Anim. Sci. 2017, 95, 3727–3737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abecia, L.; Toral, P.G.; Martín-García, A.I.; Martínez, G.; Tomkins, N.W.; Molina-Alcaide, E.; Newbold, C.J.; Yáñez-Ruiz, D.R. Effect of bromochloromethane on methane emission, rumen fermentation pattern, milk yield, and fatty acid profile in lactating dairy goats. J. Dairy Sci. 2012, 95, 2027–2036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Barbería, F.J.; Mayes, R.W.; Giráldez, J.; Sánchez-Pérez, D. Ericaceous species reduce methane emissions in sheep and red deer: Respiration chamber measurements and predictions at the scale of European heathlands. Sci. Total Environ. 2020, 714, 136738. [Google Scholar] [CrossRef]
- Zhao, Y.G.; Aubry, A.; Annett, R.; O’Connell, N.E.; Yan, T. Enteric methane emissions and nitrogen utilisation efficiency for two genotype of hill hoggets offered fresh, ensiled and pelleted ryegrass. Livest. Sci. 2016, 188, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.F.; Ferris, C.P.; McDowell, D.A.; Yan, T. Effects of diet forage proportion on maintenance energy requirement and the efficiency of metabolizable energy use for lactation by lactating dairy cows. J. Dairy Sci. 2015, 98, 8846–8855. [Google Scholar] [CrossRef] [Green Version]
- Yan, T.; Gordon, F.J.; Ferris, C.P.; Agnew, R.E.; Porter, M.G.; Patterson, D.C. The fasting heat production and effect of lactation on energy utilisation by dairy cows offered forage-based diets. Livest. Prod. Sci. 1997, 52, 177–186. [Google Scholar] [CrossRef]
- Moss, A.R.; Givens, D.I.; Garnsworthy, P.C. The effect of supplementing grass silage with barley on digestibility, in sacco degradability, rumen fermentation and methane production in sheep at two levels of intake. Anim. Feed Sci. Technol. 1995, 55, 9–33. [Google Scholar] [CrossRef]
- Deramus, H.A.; Clement, T.C.; Giampola, D.D.; Dickison, P.C. Methane emissions of beef cattle on forages: Efficiency of grazing management systems. J. Environ. Qual. 2003, 32, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Sejian, V.; Lal, R.; Lakritz, J.; Ezeji, T. Measurement and prediction of enteric methane emission. Int. J. Biometeorol. 2011, 55, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Wang, M.; Zhang, X.M.; Yang, H.M.; Wen, J.N.; Ma, Z.Y.; Feng, B.L.; Deng, J.P.; Tan, Z.L. Technical note: Evaluation of interval between measurements and calculation method for the quantification of enteric methane emissions measured by respiration chamber. J. Dairy Sci. 2019, 102, 6242–6247. [Google Scholar] [CrossRef] [PubMed]
- Hellwing, A.L.F.; Lund, P.; Weisbjerg, M.R.; Brask, M.; Hvelplund, T. Technical note: Test of a low-cost and animal-friendly system for measuring methane emissions from dairy cows. J. Dairy Sci. 2012, 95, 6077–6085. [Google Scholar] [CrossRef]
- Gardiner, T.D.; Coleman, M.D.; Innocenti, F.; Tompkins, J.; Connor, A.; Garnsworthy, P.C.; Moorby, J.M.; Reynolds, C.K.; Waterhouse, A.; Wills, D. Determination of the absolute accuracy of UK chamber facilities used in measuring methane emissions from livestock. Measurement 2015, 66, 272–279. [Google Scholar] [CrossRef]
- Lassey, K.R. Livestock methane emission: From the individual grazing animal through national inventories to the global methane cycle. Agric. For. Meteorol. 2007, 142, 120–132. [Google Scholar] [CrossRef]
- Williams, S.R.O.; Moate, P.J.; Hannah, M.C.; Ribaux, B.E.; Wales, W.J.; Eckard, R.J. Background matters with the SF6 tracer method for estimating enteric methane emissions from dairy cows: A critical evaluation of the SF6 procedure. Anim. Feed Sci. Technol. 2011, 170, 265–276. [Google Scholar] [CrossRef]
- Clark, H. Nutritional and host effects on methanogenesis in the grazing ruminant. Animal 2013, 7, 41–48. [Google Scholar] [CrossRef]
- Pinares-Patiño, C.S.; Clark, H. Reliability of the sulfur hexafluoride tracer technique for methane emission measurement from individual animals: An overview. Aust. J. Exp. Agric. 2008, 48, 223–229. [Google Scholar] [CrossRef]
- Deighton, M.H.; O’Loughlin, B.M.; Williams, S.R.O.; Moate, P.J.; Kennedy, E.; Boland, T.M.; Eckard, R.J. Declining sulphur hexafluoride permeability of polytetrafluoroethylene membranes causes overestimation of calculated ruminant methane emissions using the tracer technique. Anim. Feed Sci. Technol. 2013, 183, 86–95. [Google Scholar] [CrossRef]
- Swainson, N.M.; Brookes, I.M.; Hoskin, S.O.; Clark, H. Post-experiment correction for release rate in permeation tubes improves the accuracy of the sulphur hexafluoride (SF6) tracer technique in deer. Anim. Feed Sci. Technol. 2011, 166–167, 192–197. [Google Scholar] [CrossRef]
- Kaharabata, S.K.; Schuepp, P.H.; Desjardins, R.L. Estimating methane emissions from dairy cattle housed in a barn and feedlot using an atmospheric tracer. Environ. Sci. Technol. 2000, 34, 3296–3302. [Google Scholar] [CrossRef]
- Hammond, K.J.; Crompton, L.A.; Bannink, A.; Dijkstra, J.; Yáñez-Ruiz, D.; O’Kiely, P.; Kebreab, E.; Eugène, M.; Yu, Z.; Shingfield, K.J.; et al. Review of current in vivo measurement techniques for quantifying enteric methane emission from ruminants. Anim. Feed Sci. Technol. 2016, 219, 13–30. [Google Scholar] [CrossRef] [Green Version]
- Munoz, C.; Yan, T.; Wills, D.A.; Murray, S.; Gordon, A.W. Comparison of the sulfur hexafluoride tracer and respiration chamber techniques for estimating methane emissions and correction for rectum methane output from dairy cows. J. Dairy Sci. 2012, 95, 3139–3148. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, P.R.; Zimmerman, R.S. Method and System for Monitoring and Reducing Ruminant Methane Production. US Patent US 8307785 B2, 13 November 2012. Available online: http://www.freepatentsonline.com/8307785.pdf (accessed on 2 June 2020).
- Cottle, D.J.; Velazco, J.; Hegarty, R.S.; Mayer, D.G. Estimating daily methane production in individual cattle with irregular feed intake patterns from short-term methane emission measurements. Animal 2015, 9, 1949–1957. [Google Scholar] [CrossRef] [Green Version]
- Huhtanen, P.; Cabezas-Garcia, E.H.; Utsumi, S.; Zimmerman, S. Comparison of methods to determine methane emissions from dairy cows in farm conditions. J. Dairy Sci. 2015, 98, 3394–3409. [Google Scholar] [CrossRef] [Green Version]
- Patra, A.K. Recent advances in measurement and dietary mitigation of enteric methane emissions in ruminants. Front. Vet. Sci. 2016, 3, 39. [Google Scholar] [CrossRef] [Green Version]
- Hristov, A.N.; Oh, J.; Giallongo, F.; Frederick, T.; Harper, M.T.; Weeks, H.; Branco, A.F.; Price, W.J.; Moate, P.J.; Deighton, M.H.; et al. Short communication: Comparison of the GreenFeed system with the sulfur hexafluoride tracer technique for measuring enteric methane emissions from dairy cows. J. Dairy Sci. 2016, 99, 5461–5465. [Google Scholar] [CrossRef] [Green Version]
- Branco, A.F.; Giallongo, F.; Frederick, T.; Weeks, H.; Oh, J.; Hristov, A.N. Effect of technical cashew nut shell liquid on rumen methane emission and lactation performance of dairy cows. J. Dairy Sci. 2015, 98, 4030–4040. [Google Scholar] [CrossRef] [Green Version]
- Rischewski, J.; Bielak, A.; Nürnberg, G.; Derno, M.; Kuhla, B. Rapid Communication: Ranking dairy cows for methane emissions measured using respiration chamber or GreenFeed techniques during early, peak, and late lactation1. J. Anim. Sci. 2017, 95, 3154–3159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huhtanen, P.; Ramin, M.; Hristov, A.N. Enteric methane emission can be reliably measured by the GreenFeed monitoring unit. Livest. Sci. 2019, 222, 31–40. [Google Scholar] [CrossRef]
- Hristov, A.N.; Kebreab, E.; Niu, M.; Oh, J.; Bannink, A.; Bayat, A.R.; Boland, T.M.; Brito, A.F.; Casper, D.P.; Crompton, L.A.; et al. Symposium review: Uncertainties in enteric methane inventories, measurement techniques, and prediction models. J. Dairy Sci. 2018, 101, 6655–6674. [Google Scholar] [CrossRef] [PubMed]
- Velazco, J.I.; Mayer, D.G.; Zimmerman, S.; Hegarty, R.S. Use of short-term breath measures to estimate daily methane production by cattle. Animal 2015, 10, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Waghorn, G.C.; Jonker, A.; Macdonald, K.A. Measuring methane from grazing dairy cows using GreenFeed. Anim. Prod. Sci. 2016, 56, 252–257. [Google Scholar] [CrossRef]
- Arbre, M.; Rochette, Y.; Guyader, J.; Lascoux, C.; Gómez, L.M.; Eugène, M.; Morgavi, D.P.; Renand, G.; Doreau, M.; Martin, C. Repeatability of enteric methane determinations from cattle using either the SF6 tracer technique or the GreenFeed system. Anim. Prod. Sci. 2016, 56, 238–243. [Google Scholar] [CrossRef]
- Bell, M.J.; Potterton, S.L.; Craigon, J.; Saunders, N.; Wilcox, R.H.; Hunter, M.; Goodman, J.R.; Garnsworthy, P.C. Variation in enteric methane emissions among cows on commercial dairy farms. Animal 2014, 8, 1540–1546. [Google Scholar] [CrossRef]
- Wu, L.; Koerkamp, P.W.G.G.; Ogink, N. Uncertainty assessment of the breath methane concentration method to determine methane production of dairy cows. J. Dairy Sci. 2018, 101, 1554–1564. [Google Scholar] [CrossRef] [Green Version]
- Troy, S.M.; Duthie, C.A.; Ross, D.W.; Hyslop, J.J.; Roehe, R.; Waterhouse, A.; Rooke, J.A. A comparison of methane emissions from beef cattle measured using methane hoods with those measured using respiration chambers. Anim. Feed Sci. Technol. 2016, 211, 227–240. [Google Scholar] [CrossRef]
- Crompton, L.A.; Mills, J.A.N.; Reynolds, C.K.; France, J. Fluctuations in methane emission in response to feeding pattern in lactating dairy cows. In Modelling Nutrient Digestion and Utilization in Farm Animals; Sauvant, D., Van Milgen, J., Faverdin, P., Friggens, N., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2010; pp. 176–180. [Google Scholar]
- Ricci, P.; Chagunda, M.G.G.; Rooke, J.; Houdijk, J.G.M.; Duthie, C.A.; Hyslop, J.; Roehe, R.; Waterhouse, A. Evaluation of the laser methane detector to estimate methane emissions from ewes and steers. J. Anim. Sci. 2014, 92, 5239–5250. [Google Scholar] [CrossRef]
- Sorg, D.; Mühlbach, S.; Rosner, F.; Kuhla, B.; Derno, M.; Meese, S.; Schwarm, A.; Kreuzer, M.; Swalve, H. The agreement between two next-generation laser methane detectors and respiration chamber facilities in recording methane concentrations in the spent air produced by dairy cows. Comput. Electron. Agric. 2017, 143, 262–272. [Google Scholar] [CrossRef]
- Chagunda, M.G.G.; Yan, T. Do methane measurements from a laser detector and an indirect open-circuit respiration calorimetric chamber agree sufficiently closely? Anim. Feed Sci. Technol. 2011, 165, 8–14. [Google Scholar] [CrossRef]
- Rey, J.; Atxaerandio, R.; Ruiz, R.; Ugarte, E.; González-Recio, O.; Garcia-Rodriguez, A.; Goiri, I. Comparison between non-invasive methane measurement techniques in cattle. Animals 2019, 9, 563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pickering, N.K.; Chagunda, M.G.G.; Banos, G.; Mrode, R.; Wall, E. Genetic parameters for predicted methane production and laser methane detector measurements. J. Anim. Sci. 2015, 93, 11–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonker, A.; Hickey, S.M.; Rowe, S.J.; Janssen, P.H.; Shackell, G.; Elmes, S.; Bain, W.E.; Wing, J.; Greer, G.J.; Bryson, B. Genetic parameters of methane emissions determined using portable accumulation chambers in lambs and ewes grazing pasture and genetic correlations with emissions determined in respiration chambers. J. Anim. Sci. 2018, 96, 3031–3042. [Google Scholar] [CrossRef] [PubMed]
- Hegarty, R.S. Applicability of short-term emission measurements for on-farm quantification of enteric methane. Animal 2013, 7, 401–408. [Google Scholar] [CrossRef] [Green Version]
- Robinson, D.L.; Cameron, M.; Donaldson, A.J.; Dominik, S.; Oddy, V.H. One-hour portable chamber methane measurements are repeatable and provide useful information on feed intake and efficiency. J. Anim. Sci. 2016, 94, 4376–4387. [Google Scholar] [CrossRef]
- Bickell, S.; Robinson, D.; Toovey, A.; Goopy, J.; Hegarty, R.; Revell, D.; Vercoe, P. Four week repeatability of daily and one hour CH4 production of mature Merino wethers fed ad libitum. Proc. Assoc. Advmt. Anim. Breed. Genet. 2011, 19, 415–418. [Google Scholar]
- IPCC. Chapter 10: Emissions from livestock and manure management. In 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Calvo Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize, S., Osako, A., Pyrozhenko, Y., Shermanau, P., Federici, S., Eds.; IPCC: Geneva, Switzerland, 2019; Available online: https://www.ipcc-nggip.iges.or.jp/public/2019rf/pdf/4_Volume4/19R_V4_Ch10_Livestock.pdf (accessed on 2 June 2020).
- Hammond, K.J.; Burke, J.L.; Koolaard, J.P.; Muetzel, S.; Pinares-Patiño, C.S.; Waghorn, G.C. Effects of feed intake on enteric methane emissions from sheep fed fresh white clover (Trifolium repens) and perennial ryegrass (Lolium perenne) forages. Anim. Feed Sci. Technol. 2013, 179, 121–132. [Google Scholar] [CrossRef]
- McCaughey, W.P.; Wittenberg, K.; Corrigan, D. Impact of pasture type on methane production by lactating beef cows. Can. J. Anim. Sci. 1999, 79, 221–226. [Google Scholar] [CrossRef]
- Pinares-Patiño, C.S.; D’Hour, P.; Jouany, J.P.; Martin, C. Effects of stocking rate on methane and carbon dioxide emissions from grazing cattle. Agric. Ecosyst. Environ. 2007, 121, 30–46. [Google Scholar] [CrossRef]
- Boland, T.M.; Quinlan, C.; Pierce, K.M.; Lynch, M.B.; Kelly, A.K.; Purcell, P.J. The effect of pasture pre-grazing vegetation mass on methane emissions, ruminal fermentation, and average daily gain of grazing beef heifers. J. Anim. Sci. 2013, 91, 3867–3874. [Google Scholar] [CrossRef] [PubMed]
Method | Indoor/Grazing | CH4/Multi-Gas | Rumen/Hindgut | Continuous/Short-Term | Flux/Concentration |
---|---|---|---|---|---|
Respiration chambers | Indoor | CH4, multi-gas | Rumen, hindgut | Continuous | Flux |
Sulphur hexafluoride tracer | Indoor, grazing | CH4 | Rumen | Continuous | Flux |
GreenFeed | Indoor, grazing | CH4, multi-gas | Rumen | Short-term | Flux |
Sniffer method | Indoor | CH4, multi-gas | Rumen | Short-term | Concentration |
Ventilated hood | Indoor | CH4, multi-gas | Rumen | Continuous | Flux |
Facemask | Indoor | CH4, multi-gas | Rumen | Short-term | Flux |
Laser CH4 detector | Indoor, grazing | CH4 | Rumen | Short-term | Concentration |
Portable accumulation chamber | Indoor | CH4, multi-gas | Rumen, hindgut | Short-term | Concentration |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Nan, X.; Yang, L.; Zheng, S.; Jiang, L.; Xiong, B. A Review of Enteric Methane Emission Measurement Techniques in Ruminants. Animals 2020, 10, 1004. https://doi.org/10.3390/ani10061004
Zhao Y, Nan X, Yang L, Zheng S, Jiang L, Xiong B. A Review of Enteric Methane Emission Measurement Techniques in Ruminants. Animals. 2020; 10(6):1004. https://doi.org/10.3390/ani10061004
Chicago/Turabian StyleZhao, Yiguang, Xuemei Nan, Liang Yang, Shanshan Zheng, Linshu Jiang, and Benhai Xiong. 2020. "A Review of Enteric Methane Emission Measurement Techniques in Ruminants" Animals 10, no. 6: 1004. https://doi.org/10.3390/ani10061004
APA StyleZhao, Y., Nan, X., Yang, L., Zheng, S., Jiang, L., & Xiong, B. (2020). A Review of Enteric Methane Emission Measurement Techniques in Ruminants. Animals, 10(6), 1004. https://doi.org/10.3390/ani10061004