Organic Acids Mixture as a Dietary Additive for Pigs—A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Modes of Action of Organic Acids
2.1. Effect of Organic Acids on Antimicrobial Activity and Lowering pH
2.2. Effect of Organic Acids on Nutrient Digestibility
2.3. Effect of Organic Acids on Pathogenic Bacteria
3. Protected Organic Acids
4. The Application of Organic Acids in Swine
4.1. Organic Acid Usage in Swine to Improve Performance
4.2. Organic Acids Usage in Swine to Improve Nutrient Digestibility
4.3. Effect of Organic Acids on Gut Microflora
4.4. Effect of Organic Acids on Fecal Gas Emission
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jensen, B.B. The impact of feed additives on the microbial ecology of the gut in young pigs. J. Anim. Feed Sci. 1998, 7, 45–64. [Google Scholar] [CrossRef]
- Roselli, M.; Finamore, A.; Britti, M.S.; Bosi, P.; Oswald, I.; Mengheri, E. Alternatives to in-feed antibiotics in pigs: Evaluation of probiotics, zinc or organic acids as protective agents for the intestinal mucosa. A comparison of in vitro and in vivo results. Anim. Res. 2005, 54, 203–218. [Google Scholar] [CrossRef]
- Budiño, F.E.L.; Thomaz, M.C.; Kronka, R.N.; Nakaghi, L.S.O.; Tucci, F.M.; Fraga, A.L.; Scandolera, A.J.; Huaynate, R.A.R. Effect of probiotic and prebiotic inclusion in weaned piglet diets on structure and ultra-structure of small intestine. Braz. Arch. Biol. Technol. 2005, 48, 921–929. [Google Scholar] [CrossRef]
- Cromwell, G.L. Why and how antibiotics are used in swine production. Anim. Biotechnol. 2002, 13, 7–27. [Google Scholar] [CrossRef]
- Kim, Y.Y.; Kil, D.Y.; Oh, H.K.; Han, I.K. Acidifier as an alternative material to antibiotics in animal feed. Asian Australas. J. Anim. Sci. 2005, 18, 1048–1060. [Google Scholar] [CrossRef]
- Nguyen, D.H.; Lee, K.Y.; Mohammadigheisar, M.; Kim, I.H. Evaluation of the blend of organic acids and medium-chain fatty acids in matrix coating as antibiotic growth promoter alternative on growth performance, nutrient digestibility, blood profiles, excreta microflora, and carcass quality in broilers. Poult. Sci. 2018, 97, 4351–4358. [Google Scholar] [CrossRef]
- Partanen, K.H.; Mroz, Z. Organic acids for performance enhancement in pig diets. Nutr. Res. Rev. 1999, 12, 117–145. [Google Scholar] [CrossRef] [Green Version]
- Thompson, J.L.; Lawrence, T.L.J. Dietary manipulation of gastric pH in the profilaxis of enteric disease in weaned pigs. Some field observations. Vet. Rec. 1981, 109, 120–122. [Google Scholar]
- Tsiloyiannis, V.K.; Kyriakis, S.C.; Vlemmas, J.; Sarris, K. The effect of organic acids on the control of porcine post-weaning diarrhea. Res. Vet. Sci. 2001, 70, 287–293. [Google Scholar] [CrossRef]
- Lei, X.J.; Park, J.W.; Baek, D.H.; Kim, J.K.; Kim, I.H. Feeding the blend of organic acids and medium chain fatty acids reduces the diarrhea in piglets orally challenged with enterotoxigenic Escherichia coli K88. Anim. Feed Sci. Technol. 2017, 224, 46–51. [Google Scholar] [CrossRef]
- Hossain, M.M.; Jayaraman, B.; Kim, S.C.; Lee, K.Y.; Kim, I.H.; Nyachoti, C.M. Effects of a matrix-coated organic acids and medium-chain fatty acids blend on performance, and in vitro fecal noxious gas emissions in growing pigs fed in-feed antibiotic-free diets. Can. J. Anim. Sci. 2018, 98, 433–442. [Google Scholar] [CrossRef] [Green Version]
- Dibner, J.J.; Buttin, P. Use of organic acids as a model to study the impact of gut microflora on nutrition and metabolism. J. Appl. Poult. Res. 2002, 11, 453–463. [Google Scholar] [CrossRef]
- Suiryanrayna, M.V.; Ramana, J.V. A review of the effects of dietary organic acids fed to swine. J. Anim. Sci. Biotechnol. 2015, 6, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravindran, V.; Kornegay, E.T. Acidification of weaner pig diets: A review. J. Sci. Food Agric. 1993, 62, 313–322. [Google Scholar] [CrossRef]
- De Lange, C.F.M.; Pluske, J.; Gong, J.; Nyachoti, C.M. Strategic use of feed ingredients and feed additives to stimulate gut health and development in young pigs. Livest. Sci. 2010, 134, 124–134. [Google Scholar] [CrossRef]
- Theobald, P. Principles of Using Organic Acids in Animal Nutrition. 2015. Available online: https://pdfs.semanticscholar.org/3529/208446f1fd200efad0050191b0e3effd420c.pdf (accessed on 1 March 2020).
- Van Immerseel, F.; Russell, J.B.; Flythe, M.D.; Gantois, I.; Timbermont, L.; Pasmans, F.; Haesebrouck, F.; Ducatelle, R. The use of organic acids to combat Salmonella in poultry: A mechanistic explanation of the efficacy. Avian Pathol. 2006, 35, 182–188. [Google Scholar] [CrossRef] [Green Version]
- Stratford, M.; Eklund, T. Organic acids and esters. In Food Preservatives; Springer: Boston, MA, USA, 2003; pp. 48–84. [Google Scholar]
- Khan, S.H.; Iqbal, J. Recent advances in the role of organic acids in poultry nutrition. J. Appl. Anim. Res. 2016, 44, 359–369. [Google Scholar] [CrossRef]
- Afsharmanesh, M.; Pourreza, J. Effects of calcium, citric acid, ascorbic acid, vitamin D3 on the efficacy of microbial phytase in broiler starters fed wheat-based diets I. Performance, bone mineralization and ileal digestibility. Int. J. Poult. Sci. 2005, 4, 418–424. [Google Scholar]
- Van Der Sluis, W. Water quality is important but often overestimated. World Poult 2002, 18, 26–32. [Google Scholar]
- Adil, S.; Banday, T.; Bhat, G.A.; Mir, M.S.; Rehman, M. Effect of dietary supplementation of organic acids on performance, intestinal histomorphology, and serum biochemistry of broiler chicken. Vet. Med. Int. 2010, 2010, 479–485. [Google Scholar] [CrossRef] [Green Version]
- Mroz, Z.; Jongbloed, A.W.; Partanen, K.H.; Vreman, K.; Kemme, P.A.; Kogut, J. The effects of calcium benzoate in diets with or without organic acids on dietary buffering capacity, apparent digestibility, retention of nutrients, and manure characteristics in swine. J. Anim. Sci. 2000, 78, 2622–2632. [Google Scholar] [CrossRef] [PubMed]
- Boling, S.D.; Webel, D.M.; Mavromichalis, I.; Parsons, C.M.; Baker, D.H. The effects of citric acid on phytate-phosphorus utilization in young chicks and pigs. J. Anim. Sci. 2000, 78, 682–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Partanen, K.; Jalava, T.; Valaja, J.; Perttila, S.; Siljander-Rasi, H.; Lindeberg, H. Effect of dietary carbadox or formic acid and fibre level on ileal and faecal nutrient digestibility and microbial metabolite concentrations in ileal digesta of the pig. Anim. Feed Sci. Technol. 2001, 93, 137–155. [Google Scholar] [CrossRef]
- Partanen, K. Organic acids-their efficacy and modes of action in pigs. In Gut Environment of Pigs; Piva, A., Bach Knudsen, K.E., Lindberg, J.E., Eds.; Nottingham University Press: Nottingham, UK, 2001; pp. 201–217. [Google Scholar]
- Davidson, P.M.; Doyle, M.; Beuchat, L.; Montville, T. Food microbiology—Fundamentals and frontiers; ASM Press: Washington, DC, USA, 2001; pp. 593–627. [Google Scholar]
- Mani-Lopez, E.; García, H.S.; López-Malo, A. Organic acids as antimicrobials to control Salmonella in meat and poultry products. Food Res. Int. 2012, 45, 713–721. [Google Scholar] [CrossRef]
- Aydin, A.; Pekel, A.Y.; Issa, G.; Demirel, G.; Patterson, P.H. Effects of dietary copper, citric acid, and microbial phytase on digesta pH and ileal and carcass microbiota of broiler chickens fed a low available phosphorus diet. J. Appl. Poult. Res. 2010, 19, 422–431. [Google Scholar] [CrossRef]
- Kim, D.W.; Kim, J.H.; Kim, S.K.; Kang, G.H.; Kang, H.K.; Lee, S.J.; Kim, S.H. A study on the efficacy of dietary supplementation of organic acid mixture in broiler chicks. Anim. Feed Sci. Technol. 2009, 51, 207–216. [Google Scholar]
- Van Dam, H.; Na, L.B.; K-Sorb, B.T.; K-Benz, M.M.; Corrosive, H. Organic acids and their salts. Feed Mix. 2006, 14, 28. [Google Scholar]
- Skřivanová, E.; Marounek, M.; Benda, V.; Březina, P. Susceptibility of Escherichia coli, Salmonella sp and Clostridium perfringens to organic acids and monolaurin. Vet. Med. Praha 2006, 51, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Van Immerseel, F.; Cauwerts, K.; Devriese, L.A.; Haesebrouck, F.; Ducatelle, R. Feed additives to control Salmonella in poultry. World’s Poult. Sci. J. 2002, 58, 501–513. [Google Scholar] [CrossRef]
- Hassan, H.M.A.; Mohamed, M.A.; Youssef, A.W.; Hassan, E.R. Effect of using organic acids to substitute antibiotic growth promoters on performance and intestinal microflora of broilers. Asian Australas. J. Anim. Sci. 2010, 23, 1348–1353. [Google Scholar] [CrossRef]
- Upadhaya, S.D.; Lee, K.Y.; Kim, I.H. Protected organic acid blends as an alternative to antibiotics in finishing pigs. Asian Australas. J. Anim. Sci. 2014, 27, 1600–1607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Upadhaya, S.D.; Lee, K.Y.; Kim, I.H. Influence of protected organic acid blends and diets with different nutrient densities on growth performance, nutrient digestibility and faecal noxious gas emission in growing pigs. Vet. Med. 2014, 59, 491–497. [Google Scholar] [CrossRef] [Green Version]
- Rosinski, S.; Grigorescu, G.; Lewinska, D.; Ritzén, L.G.; Viernstein, H.; Teunou, E.; Poncelet, D.; Zhang, Z.; Fan, X.; Serp, D.; et al. Characterization of microcapsules: Recommended methods based on round-robin testing. J. Microencapsul. 2002, 19, 641–659. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Han, X.Q. Encapsulation of food ingredients. Crit. Rev. Food Sci. Nutr. 1993, 33, 501–547. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Rubio, C.; Ordonez, C.; Abad-González, J.; Garcia-Gallego, A.; Honrubia, M.P.; Mallo, J.J.; Balana-Fouce, R. Butyric acid-based feed additives help protect broiler chickens from Salmonella Enteritidis infection. Poult. Sci. 2009, 88, 943–948. [Google Scholar] [CrossRef] [PubMed]
- Gheisari, A.A.; Heidari, M.; Kermanshahi, R.K.; Togani, M.; Saraeian, S. Effect of dietary supplementation of protected organic acids on ileal microflora and protein digestibility in broiler chickens. In Proceedings of the 16th European Symposium on Poultry Nutrition, Strasbourg, France, 26–30 August 2007; pp. 519–522. [Google Scholar]
- Smulikowska, S.; Czerwiński, J.; Mieczkowska, A.; Jankowiak, J. The effect of fat-coated organic acid salts and a feed enzyme on growth performance, nutrient utilization, microflora activity, and morphology of the small intestine in broiler chickens. J. Anim. Feed Sci. 2009, 18, 478–489. [Google Scholar] [CrossRef]
- Giesting, D.W.; Easter, R.A. Response of starter pigs to supplementation of corn-soybean meal diets with organic acids. J. Anim. Sci. 1985, 60, 1288–1294. [Google Scholar] [CrossRef] [Green Version]
- Kirchgessner, M. Fumaric acid as a feed additive in pig nutrition. Pig News Inf. 1982, 3, 259–264. [Google Scholar]
- Bosi, P.; Jung, H.J.; Han, I.K.; Perini, S.; Cacciavillani, J.A.; Casini, L.; Creston, D.; Gremokolini, C.; Mattuzzi, S. Effects of dietary buffering characteristics and protected or unprotected acids on piglet growth, digestibility and characteristics of gut content. Asian-Australas. J. Anim. Sci. 1999, 12, 1104–1110. [Google Scholar] [CrossRef]
- Blank, R.; Mosenthin, R.; Sauer, W.C.; Huang, S. Effect of fumaric acid and dietary buffering capacity on ileal and fecal amino acid digestibilities in early-weaned pigs. J. Anim. Sci. 1999, 77, 2974–2984. [Google Scholar] [CrossRef] [Green Version]
- Walsh, M.C.; Sholly, D.M.; Hinson, R.B.; Saddoris, K.L.; Sutton, A.L.; Radcliffe, J.S.; Odgaard, R.; Murphy, J.; Richert, B.T. Effects of water and diet acidification with and without antibiotics on weanling pig growth and microbial shedding. J. Anim. Sci. 2007, 85, 1799–1808. [Google Scholar] [CrossRef] [PubMed]
- Upadhaya, S.D.; Lee, K.Y.; Kim, I.H. Effect of protected organic acid blends on growth performance, nutrient digestibility and faecal micro flora in growing pigs. J. Appl. Anim. Res. 2016, 44, 238–242. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Yi, G.; Yin, J.; Sun, P.; Li, D.; Knight, C. Effects of organic acids on growth performance, gastrointestinal pH, intestinal microbial populations and immune responses of weaned pigs. Asian Australas. J. Anim. Sci. 2008, 21, 252–261. [Google Scholar] [CrossRef]
- Kuang, Y.; Wang, Y.; Zhang, Y.; Song, Y.; Zhang, X.; Lin, Y.; Che, L.; Xu, S.; Wu, D.; Xue, B.; et al. Effects of dietary combinations of organic acids and medium chain fatty acids as a replacement of zinc oxide on growth, digestibility and immunity of weaned pigs. Anim. Feed Sci. Technol. 2015, 208, 145–157. [Google Scholar] [CrossRef]
- Hanczakowska, E.; Szewczyk, A.; Okon, K. Caprylic, capric and/or fumaric acids as antibiotic replacements in piglet feed. Ann. Anim. Sci. 2011, 1, 115–124. [Google Scholar]
- Manzanilla, E.G.; Perez, J.F.; Martin, M.; Kamel, C.; Baucells, F.; Gasa, J. Effect of plant extracts and formic acid on the intestinal equilibrium of early-weaned pigs. J. Anim. Sci. 2004, 82, 3210–3218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zentek, J.; Ferrara, F.; Pieper, R.; Tedin, L.; Meyer, W.; Vahjen, W. Effects of dietary combinations of organic acids and medium chain fatty acids on the gastrointestinal microbial ecology and bacterial metabolites in the digestive tract of weaning piglets. J. Anim. Sci. 2013, 91, 3200–3210. [Google Scholar] [CrossRef]
- Lei, X.; Lee, S.I.; Lee, K.Y.; Nguyen, D.H.; Kim, I.H. Effects of a blend of organic acids and medium chain fatty acids with and without Enterococcus faecium on growth performance, nutrient digestibility, blood parameters, and meat quality in finishing pigs. Can. J. Anim. Sci. 2018, 98, 852–859. [Google Scholar] [CrossRef] [Green Version]
- Long, S.F.; Xu, Y.T.; Pan, L.; Wang, Q.Q.; Wang, C.L.; Wu, J.Y.; Wu, Y.Y.; Han, Y.M.; Yun, C.H.; Piao, X.S. Mixed organic acids as antibiotic substitutes improve performance, serum immunity, intestinal morphology and microbiota for weaned piglets. Anim. Feed Sci. Technol. 2018, 235, 23–32. [Google Scholar] [CrossRef]
- Upadhaya, S.D.; Lee, K.Y.; Serpunja, S.; Song, T.H.; Kim, I.H. Growth performance, nutrient digestibility, fecal microbiota and fecal noxious gas emission in weaning pigs fed high- and low-density diet with and without protected organic acid blends. Anim. Feed Sci. Technol. 2018, 239, 1–8. [Google Scholar] [CrossRef]
- Xu, Y.T.; Liu, L.; Long, S.F.; Pan, L.; Piao, X.S. Effect of organic acids and essential oils on performance, intestinal health and digestive enzyme activities of weaned pigs. Anim. Feed Sci. Technol. 2018, 235, 110–119. [Google Scholar] [CrossRef]
- Mroz, Z.; Jongbloed, A.W.; Partanen, K.; Vreman, K.; Van Diepen, J.T.M.; Kemme, P.A.; Kogut, J. The effect of dietary buffering capacity and organic acid supplementation (formic, fumaric or n-butyric acid) on digestibility of nutrients (protein, amino acids, energy and minerals), water intake and excreta production in growing pigs. Report ID-DLO 1997, no. 97.014, 65. [Google Scholar]
- Devi, S.M.; Lee, K.Y.; Kim, I.H. Analysis of the effect of dietary protected organic acid blend on lactating sows and their piglets. Rev. Bras. Zootec. 2016, 45, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Franco, L.D.; Fondevila, M.; Lobera, M.B.; Castrillo, C. Effect of combinations of organic acids in weaned pig diets on microbial species of digestive tract contents and their response on digestibility. J. Anim. Physiol. Anim. Nutr. 2005, 89, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Kluge, H.; Broz, J.; Eder, K. Effects of dietary benzoic acid on urinary pH and nutrient digestibility in lactating sows. Livest. Sci. 2010, 134, 119–121. [Google Scholar] [CrossRef]
- Wang, J.P.; Yoo, J.S.; Lee, J.H.; Jang, H.D.; Kim, H.J.; Shin, S.O.; Seong, S.I.; Kim, I.H. Effects of phenyllactic acid on growth performance, nutrient digestibility, microbial shedding, and blood profile in pigs. J. Anim. Sci. 2009, 87, 3235–3243. [Google Scholar] [CrossRef] [Green Version]
- Kil, D.Y.; Piao, L.G.; Long, H.F.; Lim, J.S.; Yun, M.S.; Kong, C.S.; Ju, W.S.; Lee, H.B.; Kim, Y.Y. Effects of organic or inorganic acid supplementation on growth performance, nutrient digestibility and white blood cell counts in weanling pigs. Asian Australas. J. Anim. Sci. 2006, 9, 252–261. [Google Scholar] [CrossRef]
- Ahmed, S.T.; Hwang, J.A.; Hoon, J.; Mun, H.S.; Yang, C.J. Comparison of single and blend of acidifiers as an alternative to antibiotics on growth performance, fecal microflora and humoral immunity in weaned piglets. Asian Australas. J. Anim. Sci. 2014, 27, 93–100. [Google Scholar] [CrossRef]
- Eriksen, J.; Adamsen, A.P.S.; Nørgaard, J.V.; Poulsen, H.D.; Jensen, B.B.; Petersen, S.O. Emissions of sulfur-containing odorants, ammonia, and methane from pig slurry: Effects of dietary methionine and benzoic acid. J. Environ. Qual. 2010, 39, 1097–1107. [Google Scholar] [CrossRef]
Acid | Chemical Name | Formula | pKa |
---|---|---|---|
Tartaric | 2,3-Dihydroxy-Butanedioic Acid | COOHCH(OH)CH(OH)COOH | 2.93 |
Fumaric | 2-Butenedioic Acid | COOHCH:CHCOOH | 3.02 |
Citric | 2-Hydroxy-1,2,3-Propanetricarboxylic Acid | COOHCH2C(OH)(COOH)CH2COOH | 3.13 |
Malic | Hydroxybutanedioic Acid | COOHCH2CH(OH)COOH | 3.40 |
Formic | Formic Acid | HCOOH | 3.75 |
Lactic | 2-Hydroxypropanoic Acid | CH3CH(OH)COOH | 3.83 |
HMB | 2-Hydroxy-4-Methylthio Butanoic Acid | CH3SCH3CH2CH(OH)COOH | 3.86 |
Benzoic | Benzenecarboxylic acid | C6H5COOH | 4.20 |
Acetic | Acetic Acid | CH3COOH | 4.76 |
Sorbic | 2,4-Hexandienoic Acid | CH3CH:CHCH:CHCOOH | 4.76 |
Butyric | Butanoic Acid | CH3CH2CH2COOH | 4.82 |
Propionic | 2-Propanoic Acid | CH3CH2COOH | 4.88 |
Composition of OAs Blends | Dose | Species | Growth Performance Improvements | Other Responses | Reference | ||
---|---|---|---|---|---|---|---|
ADG | ADFI | G:F | |||||
Fumaric, lactate, citric, propionic, and benzoic acids | 0.2% 0.4% | Weaning pigs | Ns | Ns | Ns | Walsh et al [46] | |
Butanoic acid, fumaric acid, and benzoic acid, | 0.5% | Weaning pigs | * | Ns | * | Li et al [48] | |
Caprylic acid and capric acid | 0.1% | Weaning | * | - | Ns | Improved Villus in ileum | Hanczakowska et al [50] |
Lactic acid, fumaric acid | 1.05% | Weaning pigs | Ns | Ns | Ns | Increased fumaric acid in stomach and colon and decreased SCFA in colon. Improved Bacteroides-Porphyromonas-Prevotella, Clostridial cluster XIVa in stomach, Enterococci and Bifidobacteria in jejunum, Bacteroides-Porphyromonas-Prevotella in ileum, and Streptococci in colon. | Zentek et al [52] |
Fumaric acid, citric acid, malic acid, capric acid, and caprylic acid | 0.1% 0.2% | Growing pigs | * | Ns | Ns | Upadhaya et al [35] | |
Fumaric acid, citric acid, malic acid, capric acid, and caprylic acid | 0.1% | Finishing pigs | * | Ns | * | Improved longissimus area and sensory evaluation of meat color | Upadhaya et al [36] |
Fumaric acid, citric acid, malic acid, capric acid, and caprylic acid | 0.1% 0.2% 0.3% | Growing pigs | Ns * Ns | Ns Ns Ns | Ns * Ns | Upadhaya et al [47] | |
Fumaric acid, citric acid, malic acid, capric acid, and caprylic acid | 0.2% 0.4% | Weaning pigs | * * | * * | * * | Decreased diarrhea incidence | Lei et al [10] |
Fumaric acid, citric acid, malic acid, capric acid, and caprylic acid | 0.2% | Growing pigs | Ns | NS | * | Hossain et al [11] | |
Fumaric acid, citric acid, malic acid, capric acid, and caprylic acid | 0.5% 1% | Finishing pigs | Ns | Ns | * | Lei et al [53] | |
Formic acid, acetic acid, propionic acid, and MCFA | 0.3% | Weaning pigs | Ns | Ns | * | Increased acetic acid, propionic acid, isobutyric acid, butyric acid, total volatile fatty acid, total carbohydrates, acid detergent fiber, immunoglobulin, villus height/crypt depth. Reduced neutral detergent fiber, hydroxyl radicals | Long et al [54] |
Fumaric acid, citric acid, malic acid, capric acid, and caprylic acid | 0.1% 0.2% | Weaning pigs | Ns * | * * | Ns * | Upadhaya et al [55] | |
Benzoic acid, calcium formate, fumaric acid | 0.15% | Weaning pigs | * | Ns | Ns | Increased calcium, phosphorus, ether extract digestibility, villus height | Xu et al [56] |
Composition of OAs Blend | Dose | Species | Nutrient Digestibility Response | References | ||
---|---|---|---|---|---|---|
DM | N | E | ||||
Caprylic acid and capric acid | 0.1% | Weaning | Ns | - | - | Hanczakowska et al [50] |
Fumaric acid, citric acid, malic acid, capric acid, and caprylic acid | 0.1% 0.2% | Growing pigs | Ns | Ns | Ns | Upadhaya et al [36] |
Fumaric acid, citric acid, malic acid, capric acid, and caprylic acid | 0.1% 0.2% | Finishing pigs | * | * | * | Upadhaya et al [35] |
Fumaric acid, citric acid, malic acid, capric acid, and caprylic acid | 0.2% | Lactating sows | * | * | * | Devi et al [58] |
Fumaric acid, citric acid, malic acid, capric acid, and caprylic acid | 0.1% 0.2% 0.3% | Growing pigs | Ns | Ns | Ns | Upadhaya et al [47] |
Fumaric acid, citric acid, malic acid, capric acid, and caprylic acid | 0.2% | Growing pigs | * | * | * | Hossain et al [11] |
Fumaric acid, citric acid, malic acid, capric acid, and caprylic acid | 0.5% 1% | Finishing pigs | * | * | - | Lei et al [56] |
Formic acid, acetic acid, propionic acid, and MCFA | 0.3% | Weaning pigs | * | Ns | Ns | Long et al [54] |
Fumaric acid, citric acid, malic acid, capric acid, and caprylic acid | 0.2% | Weaning pigs | * | Ns | * | Upadhaya et al [55] |
Composition of OAs Blend | Dose | Species | Gut Microflora and Gas Emission Response | Other Bacteria | References | ||
---|---|---|---|---|---|---|---|
Gut Microflora | Lactobacillus | E. coli | |||||
Caprylic acid and capric acid | 0.1% | Weaning Pigs | - | Ns | Decreased fungi in ileum | Hanczakowska et al [50] | |
Fumaric acid, citric acid, malic acid, capric acid, and caprylic acid | 0.1% 0.2% | Finishing pigs | * | * | Upadhaya et al [35] | ||
Fumaric acid, citric acid, malic acid, capric acid, and caprylic acid | 0.2% | Lactating sows | * | * | Devi et al [58] | ||
Fumaric acid, citric acid, malic acid, capric acid, and caprylic acid | 0.1% 0.2% 0.3% | Growing pigs | * | Ns | Upadhaya et al [47] | ||
Formic acid, acetic acid, propionic acid, and MCFAs | 0.2% 0.3% | Weaning pigs | Ns | * | Increased total aerobic bacteria in feces | Long et al. [54] | |
Fumaric acid, citric acid, malic acid, capric acid, and caprylic acid | 0.2% | Weaning pigs | * | * | Upadhaya et al [55] | ||
Fecal Gas Emission | NH3 | H2S | R.SH | Acetic Acid | |||
Fumaric acid, citric acid, malic acid, capric acid, and caprylic acid | 0.1% 0.2% | Growing pigs | Ns | Ns | * | - | Upadhaya et al [36] |
Fumaric acid, citric acid, malic acid, capric acid, and caprylic acid | 0.1% 0.2% | Finishing pigs | * | - | - | * | Upadhaya et al [35] |
Fumaric acid, citric acid, malic acid, capric acid, and caprylic acid | 0.2% | Sows | * | * | Ns | Ns | Devi et al [58] |
Fumaric acid, citric acid, malic acid, capric acid, and caprylic acid | 0.2% | Growing pigs | * | Ns | - | * | Hossain et al [11] |
Fumaric acid, citric acid, malic acid, capric acid, and caprylic acid | 0.1% 0.2% | Weaning pigs | Ns | Ns | Ns | - | Upadhaya et al [55] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, D.H.; Seok, W.J.; Kim, I.H. Organic Acids Mixture as a Dietary Additive for Pigs—A Review. Animals 2020, 10, 952. https://doi.org/10.3390/ani10060952
Nguyen DH, Seok WJ, Kim IH. Organic Acids Mixture as a Dietary Additive for Pigs—A Review. Animals. 2020; 10(6):952. https://doi.org/10.3390/ani10060952
Chicago/Turabian StyleNguyen, Dinh Hai, Woo Jeong Seok, and In Ho Kim. 2020. "Organic Acids Mixture as a Dietary Additive for Pigs—A Review" Animals 10, no. 6: 952. https://doi.org/10.3390/ani10060952
APA StyleNguyen, D. H., Seok, W. J., & Kim, I. H. (2020). Organic Acids Mixture as a Dietary Additive for Pigs—A Review. Animals, 10(6), 952. https://doi.org/10.3390/ani10060952