Impact of Housing Environment on the Immune System in Chickens: A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Brief Overview of the Avian Immune System
3. Stress and Neuroendocrine–Immune Interactions
4. Impact of Housing Systems on the Immune System in Chickens
Effect of Housing Systems on the Immune System—Possible Mechanisms and Conclusions
5. Impact of Light Regime on the Immune System in Chickens
5.1. Photoperiod
5.2. Light Color/Wavelength
5.3. Light Intensity
5.4. Effect of Light Regimes on the Immune System—Possible Mechanisms and Conclusions
6. Impact of Ammonia and Hydrogen Sulfide on the Immune System in Chickens
Effect of Ammonia and Hydrogen Sulfide on the Immune System—Possible Mechanisms and Conclusions
7. Research Gaps and Recommendations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rovers, A.; Brümmer, N.; Christoph-Schulz, I. Citizens’ Perception of Different Aspects Regarding German Livestock Production. In Proceedings of the 12th International Forum on System Dynamics and Innovation in Food Networks, Innsbruck-Igls, Austria, 5–9 February 2018; pp. 208–215. [Google Scholar] [CrossRef]
- Proudfoot, K.; Habing, G. Social stress as a cause of diseases in farm animals: Current knowledge and future directions. Vet. J. 2015, 206, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Dietert, R.R.; Golemboski, K.A.; Austic, R.E. Environment-immune interactions. Poult. Sci. 1994, 73, 1062–1076. [Google Scholar] [CrossRef] [PubMed]
- Morgan, K.N.; Tromborg, C.T. Sources of stress in captivity. Appl. Anim. Behav. Sci. 2007, 102, 262–302. [Google Scholar] [CrossRef]
- Genovese, K.J.; He, H.; Swaggerty, C.L.; Kogut, M.H. The avian heterophil. Dev. Comp. Immunol. 2013, 41, 334–340. [Google Scholar] [CrossRef]
- Maxwell, M.H.; Robertson, G.W. The avian basophilic leukocyte: A review. Worlds Poult. Sci. J. 1995, 51, 307–325. [Google Scholar] [CrossRef]
- Maxwell, M.H. The avian eosinophil—A review. Worlds Poult. Sci. J. 1987, 43, 190–207. [Google Scholar] [CrossRef]
- Wigley, P.; Hulme, S.D.; Barrow, P.A. Phagocytic and oxidative burst activity of chicken thrombocytes to Salmonella, Escherichia coli and other bacteria. Avian Pathol. 1999, 28, 567–572. [Google Scholar] [CrossRef]
- Ma, S.; Qiao, X.; Xu, Y.; Wang, L.; Zhou, H.; Jiang, Y.; Cui, W.; Huang, X.; Wang, X.; Tang, L.; et al. Screening and identification of a chicken dendritic cell binding peptide by using a phage display library. Front. Immunol. 2019, 10, 1853. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, P. Advances in avian immunology-prospects for disease control: A review. Avian Pathol. 2010, 39, 309–324. [Google Scholar] [CrossRef]
- Kaiser, P. The long view: A bright past, a brighter future? Forty years of chicken immunology pre- and post-genome. Avian Pathol. 2012, 41, 511–518. [Google Scholar] [CrossRef] [Green Version]
- Tizard, I. The avian antibody response. Semin. Avian Exot. Pet Med. 2002, 11, 2–14. [Google Scholar] [CrossRef]
- Parmentier, H.K.; Lammers, A.; Hoekman, J.J.; Reilingh, G.D.V.; Zaanen, I.T.A.; Savelkoul, H.F.J. Different levels of natural antibodies in chickens divergently selected for specific antibody responses. Dev. Comp. Immunol. 2004, 28, 39–49. [Google Scholar] [CrossRef]
- Berghof, T.V.L.; Arts, J.A.J.; Bovenhuis, H.; Lammers, A.; van der Poel, J.J.; Parmentier, H.K. Antigen-dependent effects of divergent selective breeding based on natural antibodies on specific humoral immune responses in chickens. Vaccine 2018, 36, 1444–1452. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, J. Antigen processing and presentation: Evolution from a bird’s eye view. Mol. Immunol. 2013, 55, 159–161. [Google Scholar] [CrossRef]
- Keestra, A.M.; de Zoete, M.R.; Bouwman, L.I.; Vaezirad, M.M.; van Putten, J.P.M. Unique features of chicken Toll-like receptors. Dev. Comp. Immunol. 2013, 41, 316–323. [Google Scholar] [CrossRef]
- Kaiser, P.; Poh, T.Y.; Rothwell, L.; Avery, S.; Balu, S.; Pathania, U.S.; Hughes, S.; Goodchild, M.; Morrell, S.; Watson, M.; et al. A genomic analysis of chicken cytokines and chemokines. J. Interferon Cytokine Res. 2005, 25, 467–484. [Google Scholar] [CrossRef]
- Kaiser, P. The avian immune genome--a glass half-full or half-empty? Cytogenet. Genome Res. 2007, 117, 221–230. [Google Scholar] [CrossRef]
- Rohde, F.; Schusser, B.; Hron, T.; Farkašová, H.; Plachý, J.; Härtle, S.; Hejnar, J.; Elleder, D.; Kaspers, B. Characterization of Chicken Tumor Necrosis Factor-α, a Long Missed Cytokine in Birds. Front. Immunol. 2018, 9, 605. [Google Scholar] [CrossRef]
- Casteleyn, C.; Doom, M.; Lambrechts, E.; van den Broeck, W.; Simoens, P.; Cornillie, P. Locations of gut-associated lymphoid tissue in the 3-month-old chicken: A review. Avian Pathol. 2010, 39, 143–150. [Google Scholar] [CrossRef]
- Oláh, I.; Nagy, N.; Vervelde, L. Structure of the Avian Lymphoid System. In Avian Immunology, 2nd ed.; Elsevier Academic Press: London, UK, 2013; pp. 11–44. [Google Scholar]
- Kaufman, J. What chickens would tell you about the evolution of antigen processing and presentation. Curr. Opin. Immunol. 2015, 34, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Kaiser, P. Antigen presenting cells in a non-mammalian model system, the chicken. Immunobiology 2011, 216, 1177–1183. [Google Scholar] [CrossRef] [PubMed]
- Sharma, J.M. Overview of the avian immune system. Vet. Immunol. Immunop. 1991, 30, 13–17. [Google Scholar] [CrossRef]
- Schat, K.A. Avian Immunology, 2nd ed.; Academic Press: London, UK, 2014; Available online: http://www.sciencedirect.com/science/book/9780123969651 (accessed on 5 March 2020).
- Campderrich, I.; Nazar, F.N.; Wichman, A.; Marin, R.H.; Estevez, I.; Keeling, L.J. Environmental complexity: A buffer against stress in the domestic chick. PLoS ONE 2019, 14, e0210270. [Google Scholar] [CrossRef] [Green Version]
- De Kloet, E.R.; Joëls, M.; Holsboer, F. Stress and the brain: From adaptation to disease. Nat. Rev. Neurosci. 2005, 6, 463–475. [Google Scholar] [CrossRef] [PubMed]
- De Matos, R. Adrenal Steroid Metabolism in Birds: Anatomy, Physiology, and Clinical Considerations. Vet. Clin. N. Am. Exot. Anim. Pract. 2008, 11, 35–57. [Google Scholar] [CrossRef]
- Kwok, A.H.Y.; Wang, Y.; Wang, C.Y.; Leung, F.C. Cloning of chicken glucocorticoid receptor (GR) and characterization of its expression in pituitary and extrapituitary tissues. Poult. Sci. 2007, 86, 423–430. [Google Scholar] [CrossRef]
- Sullivan, D.A.; Wira, C.R. Sex hormone and glucocorticoid receptors in the bursa of Fabricius of immature chicks. J. Immunol. 1979, 122, 2617–2623. [Google Scholar]
- Engert, L.C.; Weiler, U.; Stefanski, V.; Schmucker, S.S. Glucocorticoid receptor number and affinity differ between peripheral blood mononuclear cells and granulocytes in domestic pigs. Domest. Anim. Endocrinol. 2017, 61, 11–16. [Google Scholar] [CrossRef]
- Miller, A.H.; Spencer, R.L.; Pearce, B.D.; Pisell, T.L.; Azrieli, Y.; Tanapat, P.; Moday, H.; Rhee, R.; McEwen, B.S. Glucocorticoid Receptors Are Differentially Expressed in the Cells and Tissues of the Immune System. Cell. Immunol. 1998, 186, 45–54. [Google Scholar] [CrossRef]
- Armanini, D.; Strasser, T.; Weber, P.C. Parallel determination of glucocorticoid receptors in human mononuclear and polymorphonuclear leukocytes after Percoll separation. J. Endocrinol. Investig. 1985, 8, 45–47. [Google Scholar] [CrossRef]
- Scanzano, A.; Cosentino, M. Adrenergic regulation of innate immunity: A review. Front. Pharmacol. 2015, 6, 171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reiske, L.; Schmucker, S.; Pfaffinger, B.; Weiler, U.; Steuber, J.; Stefanski, V. Intravenous Infusion of Cortisol, Adrenaline, or Noradrenaline Alters Porcine Immune Cell Numbers and Promotes Innate over Adaptive Immune Functionality. J. Immunol. 2020, 204, 3205–3216. [Google Scholar] [CrossRef] [PubMed]
- Reiske, L.; Schmucker, S.; Steuber, J.; Stefanski, V. Glucocorticoids and Catecholamines Affect in Vitro Functionality of Porcine Blood Immune Cells. Animals 2019, 9, 545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, D.J.; Spencer, K.A. Glucocorticoid programming of neuroimmune function. Gen. Comp. Endocr. 2018, 256, 80–88. [Google Scholar] [CrossRef] [Green Version]
- Engler, H.; Dawils, L.; Hoves, S.; Kurth, S.; Stevenson, J.R.; Schauenstein, K.; Stefanski, V. Effects of social stress on blood leukocyte distribution: The role of α- and β-adrenergic mechanisms. J. Neuroimmunol. 2004, 156, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Ben-Eliyahu, S.; Shakhar, G.; Page, G.G.; Stefanski, V.; Shakhar, K. Suppression of NK cell activity and of resistance to metastasis by stress: A role for adrenal catecholamines and beta-adrenoceptors. Neuroimmunomodulation 2000, 8, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Sapolsky, R.M.; Romero, L.M.; Munck, A.U. How Do Glucocorticoids Influence Stress Responses? Integrating Permissive, Suppressive, Stimulatory, and Preparative Actions. Endocr. Rev. 2000, 21, 55–89. [Google Scholar] [CrossRef]
- Elenkov, I.J.; Chrousos, G.P. Stress Hormones, Th1/Th2 patterns, Pro/Anti-inflammatory Cytokines and Susceptibility to Disease. Trends Endocrinol. Metab. 1999, 10, 359–368. [Google Scholar] [CrossRef]
- McEwen, B.S.; Biron, C.A.; Brunson, K.W.; Bulloch, K.; Chambers, W.H.; Dhabhar, F.S.; Goldfarb, R.H.; Kitson, R.P.; Miller, A.H.; Spencer, R.L.; et al. The role of adrenocorticoids as modulators of immune function in health and disease: Neural, endocrine and immune interactions. Brain Res. Rev. 1997, 23, 79–133. [Google Scholar] [CrossRef]
- Besedovsky, H.O.; Del Rey, A. Immune-neuro-endocrine interactions: Facts and hypotheses. Endocr. Rev. 1996, 17, 64–102. [Google Scholar] [CrossRef]
- Ali, R.A.; Qureshi, M.A.; McCorkle, F.M. Profile of chicken macrophage functions after exposure to catecholamines in vitro. Immunopharmacol. Immunotoxicol. 1994, 16, 611–625. [Google Scholar] [CrossRef] [PubMed]
- Mehaisen, G.M.K.; Eshak, M.G.; Elkaiaty, A.M.; Atta, A.-R.M.M.; Mashaly, M.M.; Abass, A.O. Comprehensive growth performance, immune function, plasma biochemistry, gene expressions and cell death morphology responses to a daily corticosterone injection course in broiler chickens. PLoS ONE 2017, 12, e0172684. [Google Scholar] [CrossRef] [PubMed]
- Trout, J.M.; Mashaly, M.M. The effects of adrenocorticotropic hormone and heat stress on the distribution of lymphocyte populations in immature male chickens. Poult. Sci. 1994, 73, 1694–1698. [Google Scholar] [CrossRef] [PubMed]
- Trout, J.M.; Mashaly, M.M. Effects of in vitro corticosterone on chicken T- and B-lymphocyte proliferation. Br. Poult. Sci. 1995, 36, 813–820. [Google Scholar] [CrossRef]
- Shini, S.; Shini, A.; Huff, G.R. Effects of chronic and repeated corticosterone administration in rearing chickens on physiology, the onset of lay and egg production of hens. Physiol. Behav. 2009, 98, 73–77. [Google Scholar] [CrossRef]
- Shini, S.; Kaiser, P.; Shini, A.; Bryden, W.L. Biological response of chickens (Gallus gallus domesticus) induced by corticosterone and a bacterial endotoxin. Comp. Biochem. Phys. B 2008, 149, 324–333. [Google Scholar] [CrossRef]
- Shini, S.; Kaiser, P.; Shini, A.; Bryden, W.L. Differential alterations in ultrastructural morphology of chicken heterophils and lymphocytes induced by corticosterone and lipopolysaccharide. Vet. Immunol. Immunopathol. 2008, 122, 83–93. [Google Scholar] [CrossRef]
- Dhabhar, F.S.; Miller, A.H.; McEwen, B.S.; Spencer, R.L. Effects of stress on immune cell distribution: Dynamics and hormonal mechanisms. J. Immunol. 1995, 154, 5511–5527. [Google Scholar]
- Gross, W.B.; Siegel, H.S. Evaluation of the heterophil/lymphocyte ratio as a measure of stress in chickens. Avian Dis. 1983, 27, 972–979. [Google Scholar] [CrossRef]
- Shini, S.; Shini, A.; Kaiser, P. Cytokine and chemokine gene expression profiles in heterophils from chickens treated with corticosterone. Stress 2010, 13, 185–194. [Google Scholar] [CrossRef]
- Shini, S.; Kaiser, P. Effects of stress, mimicked by administration of corticosterone in drinking water, on the expression of chicken cytokine and chemokine genes in lymphocytes. Stress 2009, 12, 388–399. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Liu, L.; Sheikhahmadi, A.; Wang, Y.; Li, C.; Jiao, H.; Lin, H.; Song, Z. Effects of corticosterone and dietary energy on immune function of broiler chickens. PLoS ONE 2015, 10, e0119750. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, A.; Flanigan, M.E.; McEwen, B.S.; Russo, S.J. Aggression, Social Stress, and the Immune System in Humans and Animal Models. Front. Behav. Neurosci. 2018, 12, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhabhar, F. Enhancing versus Suppressive Effects of Stress on Immune Function: Implications for Immunoprotection and Immunopathology. Neuroimmunomodulation 2009, 16, 300–317. [Google Scholar] [CrossRef] [Green Version]
- Stefanski, V.; Engler, H. Effects of acute and chronic social stress on blood cellular immunity in rats. Physiol. Behav. 1998, 64, 733–741. [Google Scholar] [CrossRef]
- Dhabhar, F.S.; McEwen, B.S. Acute stress enhances while chronic stress suppresses cell-mediated immunity in vivo: A potential role for leukocyte trafficking. Brain Behav. Immun. 1997, 11, 286–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cockrem, J.F. Corticosterone responses and personality in birds: Individual variation and the ability to cope with environmental changes due to climate change. Gen. Comp. Endocrinol. 2013, 190, 156–163. [Google Scholar] [CrossRef]
- Koolhaas, J.M.; Korte, S.M.; de Boer, S.F.; van der Vegt, B.J.; van Reenen, C.G.; Hopster, H.; de Jong, I.C.; Ruis, M.A.W.; Blokhuis, H.J. Coping styles in animals: Current status in behavior and stress-physiology. Neurosci. Biobehav. Rev. 1999, 23, 925–935. [Google Scholar] [CrossRef]
- Fraisse, F.; Cockrem, J.F. Corticosterone and fear behaviour in white and brown caged laying hens. Br. Poult. Sci. 2006, 47, 110–119. [Google Scholar] [CrossRef]
- Pusch, E.A.; Bentz, A.B.; Becker, D.J.; Navara, K.J. Behavioral phenotype predicts physiological responses to chronic stress in proactive and reactive birds. Gen. Comp. Endocr. 2018, 255, 71–77. [Google Scholar] [CrossRef]
- Pusch, E.A.; Navara, K.J. Behavioral phenotype relates to physiological differences in immunological and stress responsiveness in reactive and proactive birds. Gen. Comp. Endocr. 2018, 261, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Rodenburg, T.B.; Tuyttens, F.A.M.; Sonck, B.; de Reu, K.; Herman, L.; Zoons, J. Welfare, health, and hygiene of laying hens housed in furnished cages and in alternative housing systems. J. Appl. Anim. Welf. Sci. 2005, 8, 211–226. [Google Scholar] [CrossRef] [PubMed]
- Bhanja, S.; Bhadauria, P. Behaviour and welfare concepts in laying hens and their association with housing systems. Indian J. Poult. Sci. 2018, 53, 1–10. [Google Scholar] [CrossRef]
- Hartcher, K.M.; Jones, B. The welfare of layer hens in cage and cage-free housing systems. Worlds Poult. Sci. J. 2017, 73, 767–782. [Google Scholar] [CrossRef] [Green Version]
- El-Deek, A.; El-Sabrout, K. Behaviour and meat quality of chicken under different housing systems. Worlds Poult. Sci. J. 2018, 15, 1–9. [Google Scholar] [CrossRef]
- Lay, D.C.; Fulton, R.M.; Hester, P.Y.; Karcher, D.M.; Kjaer, J.B.; Mench, J.A.; Mullens, B.A.; Newberry, R.C.; Nicol, C.J.; O’Sullivan, N.P.; et al. Hen welfare in different housing systems. Poult. Sci. 2011, 90, 278–294. [Google Scholar] [CrossRef] [PubMed]
- Matur, E.; Akyazi, I.; Eraslan, E.; Ergul Ekiz, E.; Eseceli, H.; Keten, M.; Metiner, K.; Aktaran Bala, D. The effects of environmental enrichment and transport stress on the weights of lymphoid organs, cell-mediated immune response, heterophil functions and antibody production in laying hens. Anim. Sci. J. 2016, 87, 284–292. [Google Scholar] [CrossRef]
- Matur, E.; Eraslan, E.; Akyazi, I.; Ergul Ekiz, E.; Eseceli, H.; Keten, M.; Metiner, K.; Aktaran Bala, D. The effect of furnished cages on the immune response of laying hens under social stress. Poult. Sci. 2015, 94, 2853–2862. [Google Scholar] [CrossRef]
- Shini, S. Physiological responses of laying hens to the alternative housing systems. Int. J. Poult. Sci. 2003, 2, 357–360. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz Dikmen, B.; İpek, A.; Şahan, Ü.; Petek, M.; Sözcü, A. Egg production and welfare of laying hens kept in different housing systems (conventional, enriched cage, and free range). Poult. Sci. 2016, 95, 1564–1572. [Google Scholar] [CrossRef]
- Tactacan, G.B.; Guenter, W.; Lewis, N.J.; Rodriguez-Lecompte, J.C.; House, J.D. Performance and welfare of laying hens in conventional and enriched cages. Poult. Sci. 2009, 88, 698–707. [Google Scholar] [CrossRef] [PubMed]
- Shimmura, T.; Hirahara, S.; Azuma, T.; Suzuki, T.; Eguchi, Y.; Uetake, K.; Tanaka, T. Multi-factorial investigation of various housing systems for laying hens. Br. Poult. Sci. 2010, 51, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Pohle, K.; Cheng, H.-W. Comparative effects of furnished and battery cages on egg production and physiological parameters in White Leghorn hens. Poult. Sci. 2009, 88, 2042–2051. [Google Scholar] [CrossRef] [PubMed]
- Scholz, B.; Rönchen, S.; Hamann, H.; Pendl, H.; Distl, O. Effect of housing system, group size and perch position on H/L-ratio in laying hens. Eur. Poult. Sci. 2008, 72, 174–180. [Google Scholar]
- Singh, R.; Cook, N.; Cheng, K.M.; Silversides, F.G. Invasive and noninvasive measurement of stress in laying hens kept in conventional cages and in floor pens. Poult. Sci. 2009, 88, 1346–1351. [Google Scholar] [CrossRef] [PubMed]
- Abo Ghanima, M.M.; Elsadek, M.F.; Taha, A.E.; Abd El-Hack, M.E.; Alagawany, M.; Ahmed, B.M.; Elshafie, M.M.; El-Sabrout, K. Effect of Housing System and Rosemary and Cinnamon Essential Oils on Layers Performance, Egg Quality, Haematological Traits, Blood Chemistry, Immunity, and Antioxidant. Animals 2020, 10, 245. [Google Scholar] [CrossRef] [Green Version]
- Van Loon, D.P.R.; Hangalapura, B.; de Vries Reilingh, G.; Nieuwland, M.G.B.; KEMP, B.; Parmentier, H.K. Effect of three different housing systems on immune responses and body weight of chicken lines divergently selected for antibody responses to sheep red blood cells. Livest. Prod. Sci. 2004, 85, 139–150. [Google Scholar] [CrossRef]
- Rehman, M.S.; Mahmud, A.; Mehmood, S.; Pasha, T.N.; Hussain, J.; Khan, M.T. Blood biochemistry and immune response in Aseel chicken under free range, semi-intensive, and confinement rearing systems. Poult. Sci. 2017, 96, 226–233. [Google Scholar] [CrossRef]
- Küçükyılmaz, K.; Bozkurt, M.; Herken, E.N.; Cınar, M.; Catlı, A.U.; Bintaş, E.; Cöven, F. Effects of rearing systems on performance, egg characteristics and immune response in two layer hen genotype. Asian-Australas J. Anim. Sci. 2012, 25, 559–568. [Google Scholar] [CrossRef] [Green Version]
- Diktas, M.; Şekeroglu, A.; Duman, M.; Yildirim, A. Farklı Yetiştirme Sistemlerinin Yavaş Gelişen Etlik Piliçlerde Üretim ve Kan Profiline Etkisi. Kafkas Üniversitesi Veteriner Fakültesi Dergisi 2015, 21, 521–526. [Google Scholar] [CrossRef]
- Campo, J.L.; Prieto, M.T.; Dávila, S.G. Effects of housing system and cold stress on heterophil-to-lymphocyte ratio, fluctuating asymmetry, and tonic immobility duration of chickens. Poult. Sci. 2008, 87, 621–626. [Google Scholar] [CrossRef] [PubMed]
- Archer, G.S.; Moreira, M.; Farnell, M.B. Evaluation of Fear and Stress in White Layers Housed in Either Conventional Cages or Enriched Colony Cage. Int. J. Poult. Sci. 2017, 16, 467–474. [Google Scholar] [CrossRef]
- Pavlik, A.; Jezova, D.; Zapletal, D.; Bakos, J.; Jelinek, P. Impact of housing technology on blood plasma corticosterone levels in laying hens. Acta Vet. Hung. 2008, 56, 515–527. [Google Scholar] [CrossRef] [PubMed]
- Koelkebeck, K.W.; Amoss, M.S.; Cain, J.R. Production, physiological, and behavioral responses of laying hens in different management environments. Poult. Sci. 1987, 66, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Nazar, F.N.; Marin, R.H. Chronic stress and environmental enrichment as opposite factors affecting the immune response in Japanese quail (Coturnix coturnix japonica). Stress 2011, 14, 166–173. [Google Scholar] [CrossRef] [PubMed]
- El-Lethey, H.; Huber-Eicher, B.; Jungi, T.W. Exploration of stress-induced immunosuppression in chickens reveals both stress-resistant and stress-susceptible antigen responses. Vet. Immunol. Immunopathol. 2003, 95, 91–101. [Google Scholar] [CrossRef]
- Campbell, D.L.M.; de Haas, E.N.; Lee, C. A review of environmental enrichment for laying hens during rearing in relation to their behavioral and physiological development. Poult. Sci. 2019, 98, 9–28. [Google Scholar] [CrossRef]
- Nieman, D.C.; Wentz, L.M. The compelling link between physical activity and the body’s defense system. J. Sport Health Sci. 2019, 8, 201–217. [Google Scholar] [CrossRef]
- Harmon, B.G. Avian heterophils in inflammation and disease resistance. Poult. Sci. 1998, 77, 972–977. [Google Scholar] [CrossRef]
- Engert, L.C.; Weiler, U.; Pfaffinger, B.; Stefanski, V.; Schmucker, S.S. Photoperiodic Effects on Diurnal Rhythms in Cell Numbers of Peripheral Leukocytes in Domestic Pigs. Front. Immunol. 2019, 10, 20120465. [Google Scholar] [CrossRef] [Green Version]
- Engert, L.C.; Weiler, U.; Pfaffinger, B.; Stefanski, V.; Schmucker, S.S. Diurnal rhythms in peripheral blood immune cell numbers of domestic pigs. Dev. Comp. Immunol. 2018, 79, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Makeri, H.K.; Ayo, J.O.; Aluwong, T.; Minka, N.S. Daily rhythms of blood parameters in broiler chickens reared under tropical climate conditions. J. Circ. Rhythms 2017, 15, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olanrewaju, H.A.; Thaxton, J.P.; Dozier, W.A.; Purswell, J.; Roush, W.B.; Branton, S.L. A Review of Lighting Programs for Broiler Production. Int. J. Poult. Sci. 2006, 5, 301–308. [Google Scholar] [CrossRef]
- Bessei, W. Welfare of broilers: A review. Worlds Poult. Sci. J. 2006, 62, 455–466. [Google Scholar] [CrossRef]
- Hieke, A.-S.C.; Hubert, S.M.; Athrey, G. Circadian disruption and divergent microbiota acquisition under extended photoperiod regimens in chicken. PeerJ 2019, 7, e6592. [Google Scholar] [CrossRef] [Green Version]
- Reiter, K.; Bessei, W. The behaviour of broilers in response to group size and stocking density. Archiv fur Geflugelkunde 2000, 64, 93–98. [Google Scholar]
- European Union. Council Directive 2007/43/EC of 28 June 2007 laying down minimum rules for the protection of chickens kept for meat production. Off. J. Eur. Union 2007, 182, 19–28. [Google Scholar]
- European Union. Council Directive 1999/74/EC of 19 July 1999 laying down minimum standards for the protection of laying hens. Off. J. Eur. Union 1999, 203, 53–57. [Google Scholar]
- Gomes, D.O.R.; Jose Camargos Lara, L. Lighting programmes and its implications for broiler chickens. Worlds Poult. Sci. J. 2016, 72, 735–742. [Google Scholar] [CrossRef]
- Olanrewaju, H.A.; Miller, W.W.; Maslin, W.R.; Collier, S.D.; Purswell, J.L.; Branton, S.L. Influence of light sources and photoperiod on growth performance, carcass characteristics, and health indices of broilers grown to heavy weights. Poult. Sci. 2018, 97, 1109–1116. [Google Scholar] [CrossRef]
- Arowolo, M.A.; He, J.H.; He, S.P.; Adebowale, T.O. The implication of lighting programmes in intensive broiler production system. Worlds Poult. Sci. J. 2018, 7, 1–12. [Google Scholar] [CrossRef]
- Doehring, S.; Uhlenkamp, A.; Andersson, R. Lighting for poultry houses to meet the needs of the birds. Lohmann Inf. 2018, 52, 21–30. [Google Scholar]
- Osorio, D.; Vorobyev, M.; Jones, C.D. Colour vision of domestic chicks. J. Exp. Biol. 1999, 202, 2951–2959. [Google Scholar]
- Soliman, F.N.K.; El-Sabrout, K. Light wavelengths/colors: Future prospects for broiler behavior and production. J. Vet. Behav. 2020, 36, 34–39. [Google Scholar] [CrossRef]
- Çapar, A.H.; Onbaşılar, E.E. Light wavelength on different poultry species. Worlds Poult. Sci. J. 2018, 74, 79–88. [Google Scholar] [CrossRef]
- Manser, C.E. Effects of Lighting on the Welfare of Domestic Poultry: A Review. Anim. Welf. 1996, 5, 341–360. [Google Scholar]
- Yang, Y.; Pan, C.; Zhong, R.; Pan, J. Artificial light and biological responses of broiler chickens: Dose-response. J. Anim. Sci. 2018, 96, 98–107. [Google Scholar] [CrossRef]
- Abbas, A.O.; Alm El-Dein, A.K.; Desoky, A.A.; Galal, M. The Effects of Photoperiod Programs on Broiler Chicken Performance and Immune Response. Int. J. Poult. Sci. 2008, 7, 665–671. [Google Scholar] [CrossRef] [Green Version]
- Das, H.; Lacin, E. The effect of different photoperiods and stocking densities on fattening performance, Carcass and some stress parameters in broilers. Isr. J. Vet. Med. 2014, 69, 211–220. [Google Scholar]
- Campo, J.L.; Gil, M.G.; Dávila, S.G.; Muñoz, I. Effect of Lighting Stress on Fluctuating Asymmetry, Heterophil-to-Lymphocyte Ratio, and Tonic Immobility Duration in Eleven Breeds of Chickens. Poult. Sci. 2007, 86, 37–45. [Google Scholar] [CrossRef]
- Onbasilar, E.E.; Poyraz, Ö.; Erdem, E.; Öztürk, H. Influence of lighting periods and stocking densities on performance, carcass characteristics and some stress parameters in broilers. Archiv fur Geflugelkunde 2008, 72, 193–200. [Google Scholar]
- Lien, R.J.; Hess, J.B.; McKee, S.R.; Bilgili, S.F.; Townsend, J.C. Effect of light intensity and photoperiod on live performance, heterophil-to-lymphocyte ratio, and processing yields of broilers. Poult. Sci. 2007, 86, 1287–1293. [Google Scholar] [CrossRef] [PubMed]
- Campo, J.L.; Dávila, S.G. Effect of photoperiod on heterophil to lymphocyte ratio and tonic immobility duration of chickens. Poult. Sci. 2002, 81, 1637–1639. [Google Scholar] [CrossRef]
- Kliger, C.A.; Gehad, A.E.; Hulet, R.M.; Roush, W.B.; Lillehoj, H.S.; Mashaly, M.M. Effects of photoperiod and melatonin on lymphocyte activities in male broiler chickens. Poult. Sci. 2000, 79, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Kirby, J.D.; Froman, D.P. Research note: Evaluation of humoral and delayed hypersensitivity responses in cockerels reared under constant light or a twelve hour light:twelve hour dark photoperiod. Poult. Sci. 1991, 70, 2375–2378. [Google Scholar] [CrossRef]
- Olanrewaju, H.A.; Miller, W.W.; Maslin, W.R.; Collier, S.D.; Purswell, J.L.; Branton, S.L. Interactive effects of light-sources, photoperiod, and strains on growth performance, carcass characteristics, and health indices of broilers grown to heavy weights. Poult. Sci. 2019, 98, 6232–6240. [Google Scholar] [CrossRef]
- Nuthalapati, N.; Olanrewaju, H.A.; Branton, S.L.; Pharr, G.T. Evaluation of the Growth of the Bursa of Fabricius in Broilers Reared under Different Light Photoperiods. Int. J. Poult. Sci. 2017, 16, 481–485. [Google Scholar] [CrossRef]
- Gehad, A.E.; Mehaisen, G.M.; Abbas, A.O.; Mashaly, M.M. The Role of Light Program and Melatonin on Alleviation of Inflammation Induced by Lipopolysaccharide Injection in Broiler Chickens. Int. J. Poult. Sci. 2008, 7, 193–201. [Google Scholar] [CrossRef] [Green Version]
- Gharib, H.B.A.; Desoky, A.A.; El-Menawey, M.A.; Abbas, A.O.; Hendricks, G.L.; Mashaly, M.M. The Role of Photoperiod and Melatonin on Alleviation of the Negative Impact of Heat Stress on Broilers. Int. J. Poult. Sci. 2008, 7, 749–756. [Google Scholar] [CrossRef] [Green Version]
- Onbaşılar, E.E.; Erol, H.; Cantekin, Z.; Kaya, Ü. Influence of Intermittent Lighting on Broiler Performance, Incidence of Tibial Dyschondroplasia, Tonic Immobility, Some Blood Parameters and Antibody Production. Asian-Australas J. Anim. Sci. 2007, 20, 550–555. [Google Scholar] [CrossRef]
- Zheng, L.; Ma, Y.E.; Gu, L.Y.; Yuan, D.; Shi, M.L.; Guo, X.Y.; Zhan, X.A. Growth performance, antioxidant status, and nonspecific immunity in broilers under different lighting regimens. J. Appl. Poult. Res. 2013, 22, 798–807. [Google Scholar] [CrossRef]
- Abbas, A.O.; Gehad, A.E.; Hendricks, G.L., III; Gharib, H.B.A.; Mashaly, M.M. The Effect of Lighting Program and Melatonin on the Alleviation of the Negative Impact of Heat Stress on the Immune Response in Broiler Chickens. Int. J. Poult. Sci. 2007, 6, 651–660. [Google Scholar] [CrossRef] [Green Version]
- Zhao, R.X.; Cai, C.H.; Wang, P.; Zheng, L.; Wang, J.S.; Li, K.X.; Liu, W.; Guo, X.Y.; Zhan, X.A.; Wang, K.Y. Effect of night light regimen on growth performance, antioxidant status and health of broiler chickens from 1 to 21 days of age. Asian-Australas J. Anim. Sci. 2019, 32, 904–911. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.L.; Li, W.B.; Chen, J.L. Influence of nutrient density and lighting regime in broiler chickens: Effect on antioxidant status and immune function. Br. Poult. Sci. 2010, 51, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Bayram, A.; Özkan, S. Effects of a 16-hour light, 8-hour dark lighting schedule on behavioral traits and performance in male broiler chickens. J. Appl. Poult. Res. 2010, 19, 263–273. [Google Scholar] [CrossRef]
- Olanrewaju, H.A.; Collier, S.D.; Purswell, J.L.; Branton, S.L. Effects of light-sources and photoperiod on hemato-physiological indices of broilers grown to heavy weights. Poult. Sci. 2019, 98, 1075–1082. [Google Scholar] [CrossRef]
- Kim, M.J.; Parvin, R.; Mushtaq, M.M.H.; Hwangbo, J.; Kim, J.H.; Na, J.C.; Kim, D.W.; Kang, H.K.; Kim, C.D.; Cho, K.O.; et al. Growth performance and hematological traits of broiler chickens reared under assorted monochromatic light sources. Poult. Sci. 2013, 92, 1461–1466. [Google Scholar] [CrossRef]
- Gharahveysi, S.; Irani, M.; Kenari, T.A.; Mahmud, K.I. Effects of colour and intensity of artificial light produced by incandescent bulbs on the performance traits, thyroid hormones, and blood metabolites of broiler chickens. Ital. J. Anim. Sci. 2020, 19, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Li, B.; Tong, Q.; Zheng, W.; Zeng, D.; Feng, G. Effects of LED light color and intensity on feather pecking and fear responses of layer breeders in natural mating colony cages. Animals 2019, 9, 814. [Google Scholar] [CrossRef] [Green Version]
- Archer, G.S. How does red light affect layer production, fear, and stress. Poult. Sci. 2019, 98, 3–8. [Google Scholar] [CrossRef]
- Hassan, M.R.; Sultana, S.; Choe, H.S.; Ryu, K.S. Effect of Monochromatic and Combined Light Colour on Performance, Blood Parameters, Ovarian Morphology and Reproductive Hormones in Laying Hens. Ital. J. Anim. Sci. 2013, 12, e56. [Google Scholar] [CrossRef] [Green Version]
- Sobotik, E.B.; Nelson, J.R.; Archer, G.S. How does ultraviolet light affect layer production, fear, and stress. Appl. Anim. Behav. Sci. 2020, 223, 104926. [Google Scholar] [CrossRef]
- House, G.M.; Sobotik, E.B.; Nelson, J.R.; Archer, G.S. Effect of the addition of ultraviolet light on broiler growth, fear, and stress response. J. Appl. Poult. Res. 2020, 29, 402–408. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.; Cao, J.; Dong, Y.L.; Chen, Y.X. Role of monochromatic light on development of cecal tonsil in young broilers. Anat. Rec. (Hoboken) 2014, 297, 1331–1337. [Google Scholar] [CrossRef]
- Xie, D.; Li, J.; Wang, Z.X.; Cao, J.; Li, T.T.; Chen, J.L.; Chen, Y.X. Effects of monochromatic light on mucosal mechanical and immunological barriers in the small intestine of broilers. Poult. Sci. 2011, 90, 2697–2704. [Google Scholar] [CrossRef]
- Zhang, Z.; Cao, J.; Wang, Z.; Dong, Y.; Chen, Y. Effect of a combination of green and blue monochromatic light on broiler immune response. J. Photochem. Photobiol. B Biol. 2014, 138, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Xie, D.; Wang, Z.X.; Dong, Y.L.; Cao, J.; Wang, J.F.; Chen, J.L.; Chen, Y.X. Effects of monochromatic light on immune response of broilers. Poult. Sci. 2008, 87, 1535–1539. [Google Scholar] [CrossRef]
- Xie, D.; Wang, Z.; Cao, J.; Dong, Y.; Chen, Y. Effects of monochromatic light on proliferation response of splencyte in broilers. Anat. Histol. Embryol. 2008, 37, 332–337. [Google Scholar] [CrossRef]
- Li, J.; Cao, J.; Wang, Z.; Dong, Y.; Chen, Y. Melatonin plays a critical role in inducing B lymphocyte proliferation of the bursa of Fabricius in broilers via monochromatic lights. J. Photochem. Photobiol. B Biol. 2015, 142, 29–34. [Google Scholar] [CrossRef]
- Chen, F.; Reheman, A.; Cao, J.; Wang, Z.; Dong, Y.; Zhang, Y.; Chen, Y. Effect of melatonin on monochromatic light-induced T-lymphocyte proliferation in the thymus of chickens. J. Photochem. Photobiol. B Biol. 2016, 161, 9–16. [Google Scholar] [CrossRef]
- Seo, H.-S.; Kang, M.; Yoon, R.-H.; Roh, J.-H.; Wei, B.; Ryu, K.S.; Cha, S.-Y.; Jang, H.-K. Effects of Various LED Light Colors on Growth and Immune Response in Broilers. Jpn. Poult. Sci. 2015, 53, 76–81. [Google Scholar] [CrossRef] [Green Version]
- Soliman, E.S.; Hassan, R.A. Impact of lighting color and duration on productive performance and Newcastle disease vaccination efficiency in broiler chickens. Vet. World 2019, 12, 1052–1059. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.R.; Sultana, S.; Choe, H.S.; Ryu, K.S. A Comparison of Monochromatic and Mixed LED Light Color on Performance, Bone Mineral Density, Meat and Blood Properties, and Immunity of Broiler Chicks. J. Poult. Sci. 2014, 195–201. [Google Scholar] [CrossRef] [Green Version]
- Zamanizad, M.; Ghalamkari, G.; Toghyani, M.; Adeljoo, A.H. Effect of sequential and intermittent white, green and blue monochromatic lights on productive traits, some immune and stress responses of broiler chickens. Livest. Sci. 2019, 227, 153–159. [Google Scholar] [CrossRef]
- Sultana, S.; Hassan, M.R.; Choe, H.S.; Ryu, K.S. The Effect of Monochromatic and Mixed LED Light Colour on the Behaviour and Fear Responses of Broiler Chicken. Avian Biol. Res. 2013, 6, 207–214. [Google Scholar] [CrossRef]
- Guo, Y.L.; Ma, S.M.; Du, J.J.; Chen, J.L. Effects of Light Intensity on Growth, Anti-Stress Ability and Immune Function in Yellow Feathered Broilers. Rev. Bras. Cienc. Avic. 2018, 20, 79–84. [Google Scholar] [CrossRef]
- Fidan, D.E.; Nazligül, A.; Türkylimaz, M.K.; Karaaslan, S.; Kaya, M. Effects of Photoperiod Length and Light Intensity on Performance, Carcass Characteristics and Heterophil to Lymphocyte Ratio in Broilers. Kafkas Üniversitesi Veteriner Fakültesi Dergisi 2016, 23, 39–45. [Google Scholar] [CrossRef]
- Abbas, G.; Mahmood, S.; Fawwad Ahmad, M.Y.; Qureshi, R.A.; Qamar, S.H.; ur Rehman, M.Z.; Ashar, M.F.M.I.S.; Mahfooz, M.K.S.; Bilal, M.; Iqbal, A.; et al. Effect of Varying Light Intensity on Immunity Level, Dressed Weight, Minor Body Parts Weight, Fat Deposition and Serum Glucose Level in Broilers. J. Anim. Vet. Adv. 2014, 1, 38–42. [Google Scholar]
- Blatchford, R.A.; Klasing, K.C.; Shivaprasad, H.L.; Wakenell, P.S.; Archer, G.S.; Mench, J.A. The effect of light intensity on the behavior, eye and leg health, and immune function of broiler chickens. Poult. Sci. 2009, 88, 20–28. [Google Scholar] [CrossRef]
- Olanrewaju, H.A.; Miller, W.W.; Maslin, W.R.; Collier, S.D.; Purswell, J.L.; Branton, S.L. Effects of light sources and intensity on broilers grown to heavy weights. Part 1: Growth performance, carcass characteristics, and welfare indices. Poult. Sci. 2016, 95, 727–735. [Google Scholar] [CrossRef]
- Olanrewaju, H.A.; Purswell, J.L.; Collier, S.D.; Branton, S.L. Effects of genetic strain and light intensity on blood physiological variables of broilers grown to heavy weights. Poult. Sci. 2014, 93, 970–978. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.W.; Christensen, K.D.; Aldridge, D.; Kuenzel, W.J. Effects of light intensity and dual light intensity choice on plasma corticosterone, central serotonergic and dopaminergic activities in birds, Gallus gallus. Gen. Comp. Endocrinol. 2020, 285, 113289. [Google Scholar] [CrossRef] [PubMed]
- Rault, J.-L.; Clark, K.; Groves, P.J.; Cronin, G.M. Light intensity of 5 or 20 lux on broiler behavior, welfare and productivity. Poult. Sci. 2017, 96, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Olanrewaju, H.A.; Miller, W.W.; Maslin, W.R.; Collier, S.D.; Purswell, J.L.; Branton, S.L. Effects of strain and light intensity on growth performance and carcass characteristics of broilers grown to heavy weights. Poult. Sci. 2014, 93, 1890–1899. [Google Scholar] [CrossRef] [PubMed]
- Calislar, S.; Yeter, B.; Şahin, A. Importance of Melatonin on Poultry. J. Agric. Nat. 2018, 21, 987–997. [Google Scholar] [CrossRef] [Green Version]
- Brennan, C.P.; Hendricks, G.L.; El-Sheikh, T.M.; Mashaly, M.M. Melatonin and the enhancement of immune responses in immature male chickens. Poult. Sci. 2002, 81, 371–375. [Google Scholar] [CrossRef]
- Agapito, M.T.; Redondo, I.; Plaza, R.; Lopez-Burillo, S.; Recio, J.M.; Pablos, M.I. Relationships between melatonin, glutathione peroxidase, glutathione reductase, and catalase. Endogenous rhythms on cerebral cortex in Gallus domesticus. Adv. Exp. Med. Biol. 1999, 460, 377–381. [Google Scholar]
- Özkan, S.; Yalcin, S.; Akbas, Y.; Kırkpınar, F.; Gevrekci, Y.; Türkmut, L. Effects of short day (16L:8D) length on broilers: Some physiological and welfare indices. World Poult. Sci. J. 2006, 62, 584. [Google Scholar]
- Ma, S.; Wang, Z.; Cao, J.; Dong, Y.; Chen, Y. Effect of Monochromatic Light on Circadian Rhythm of Clock Genes in Chick Pinealocytes. J. Photochem. 2018, 94, 1263–1272. [Google Scholar] [CrossRef]
- Jin, E.; Jia, L.; Li, J.; Yang, G.; Wang, Z.; Cao, J.; Chen, Y. Effect of monochromatic light on melatonin secretion and arylalkylamine N-acetyltransferase mRNA expression in the retina and pineal gland of broilers. Anat. Rec. (Hoboken) 2011, 294, 1233–1241. [Google Scholar] [CrossRef]
- Faluhelyi, N.; Csernus, V. The effects of environmental illumination on the in vitro melatonin secretion from the embryonic and adult chicken pineal gland. Gen. Comp. Endocrinol. 2007, 152, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Csernus, V.J. The avian pineal gland. Chronobiol. Int. 2006, 23, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Baxter, M.; Joseph, N.; Osborne, V.R.; Bédécarrats, G.Y. Red light is necessary to activate the reproductive axis in chickens independently of the retina of the eye. Poult. Sci. 2014, 93, 1289–1297. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.S.; Yadav, S.K.; Haldar, C. Effect of Glucocorticoid and Melatonin on Immune Function of an Indian Tropical Bird, Perdicula Asiatica: An in Vivo and in Vitro Study. Eur. J. Inflamm. 2010, 8, 89–97. [Google Scholar] [CrossRef]
- Konakchieva, R.; Mitev, Y.; Almeida, O.F.; Patchev, V.K. Chronic melatonin treatment counteracts glucocorticoid-induced dysregulation of the hypothalamic-pituitary-adrenal axis in the rat. Neuroendocrinology 1998, 67, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Sainz, R.M.; Mayo, J.C.; Reiter, R.J.; Antolin, I.; Esteban, M.M.; Rodriguez, C. Melatonin regulates glucocorticoid receptor: An answer to its antiapoptotic action in thymus. FASEB J. 1999, 13, 1547–1556. [Google Scholar] [CrossRef] [Green Version]
- Haldar, C.; Rai, S.; Singh, R. Melatonin blocks dexamethasone-induced immunosuppression in a seasonally breeding rodent Indian palm squirrel, Funambulus pennanti. Steroids 2004, 69, 367–377. [Google Scholar] [CrossRef]
- Nelson, R.J.; Demas, G.E. Role of melatonin in mediating seasonal energetic and immunologic adaptations. Brain Res. Bull. 1997, 44, 423–430. [Google Scholar] [CrossRef]
- Schwean-Lardner, K.; Fancher, B.I.; Classen, H.L. Impact of daylength on behavioural output in commercial broilers. Appl. Anim. Behav. Sci. 2012, 137, 43–52. [Google Scholar] [CrossRef]
- Van der Eijk, J.A.J.; Rodenburg, T.B.; de Vries, H.; Kjaer, J.B.; Smidt, H.; Naguib, M.; KEMP, B.; Lammers, A. Early-life microbiota transplantation affects behavioural responses, serotonin and immune characteristics in chicken lines divergently selected on feather pecking. Sci. Rep. 2020, 10, 2750. [Google Scholar] [CrossRef]
- Stanley, D.; Hughes, R.J.; Moore, R.J. Microbiota of the chicken gastrointestinal tract: Influence on health, productivity and disease. Appl. Microbiol. Biot. 2014, 98, 4301–4310. [Google Scholar] [CrossRef] [PubMed]
- David, B.; Mejdell, C.; Michel, V.; Lund, V.; Moe, R.O. Air Quality in Alternative Housing Systems may have an Impact on Laying Hen Welfare. Part II-Ammonia. Animals 2015, 5, 886–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saksrithai, K.; King, A.J. Controlling Hydrogen Sulfide Emissions during Poultry Productions. J. Anim. Res. Nutr. 2018, 3, 2. [Google Scholar] [CrossRef]
- Chi, Q.; Chi, X.; Hu, X.; Wang, S.; Zhang, H.; Li, S. The effects of atmospheric hydrogen sulfide on peripheral blood lymphocytes of chickens: Perspectives on inflammation, oxidative stress and energy metabolism. Environ. Res. 2018, 167, 1–6. [Google Scholar] [CrossRef]
- Hu, X.; Chi, Q.; Wang, D.; Chi, X.; Teng, X.; Li, S. Hydrogen sulfide inhalation-induced immune damage is involved in oxidative stress, inflammation, apoptosis and the Th1/Th2 imbalance in broiler bursa of Fabricius. Ecotoxicol. Environ. Saf. 2018, 164, 201–209. [Google Scholar] [CrossRef]
- Nimmermark, S.; Lund, V.; Gustafsson, G.; Eduard, W. Ammonia, dust and bacteria in welfare-oriented systems for laying hens. Ann. Agric. Environ. Med. 2009, 16, 103–113. [Google Scholar]
- European Union. Commision Implementing Decision (EU) 2017/302 of 15 February 2017 Establishing Best Available Techniques (BAT) Conclusions, under Directive 2010/75/EU of the European Parliament and of the Council, for the Intensive Rearing of Poultry or Pigs; European Union: Brussels, Belgium, 2017. [Google Scholar]
- Guarrasi, J.; Trask, C.; Kirychuk, S. A systematic review of occupational exposure to hydrogen sulfide in livestock operations. J. Agromedicine 2015, 20, 225–236. [Google Scholar] [CrossRef]
- McFarlane, J.M.; Curtis, S.E. Multiple concurrent stressors in chicks. 3. Effects on plasma corticosterone and the heterophil:lymphocyte ratio. Poult. Sci. 1989, 68, 522–527. [Google Scholar] [CrossRef]
- McFarlane, J.M.; Curtis, S.E.; Simon, J.; Izquierdo, O.A. Multiple concurrent stressors in chicks. 2. Effects on hematologic, body composition, and pathologic traits. Poult. Sci. 1989, 68, 510–521. [Google Scholar] [CrossRef]
- Chen, H.; Yan, F.F.; Hu, J.Y.; Wu, Y.; Tucker, C.M.; Green, A.R.; Cheng, H.W. Immune Response of Laying Hens Exposed to 30 ppm Ammonia for 25 Weeks. Int. J. Poult. Sci. 2017, 16, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Wei, F.X.; Hu, X.F.; Xu, B.; Zhang, M.H.; Li, S.Y.; Sun, Q.Y.; Lin, P. Ammonia concentration and relative humidity in poultry houses affect the immune response of broilers. Genet. Mol. Res. 2015, 14, 3160–3169. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.M.; Meng, Q.P.; Guo, Y.M.; Wang, Y.Z.; Wang, Z.; Yao, Z.L.; Shan, T.Z. Effect of Atmospheric Ammonia on Growth Performance and Immunological Response of Broiler Chickens. J. Anim. Vet. Adv. 2010, 9, 2802–2806. [Google Scholar] [CrossRef]
- Soliman, E.S.; Hassan, R.A. Evaluation of superphosphate and meta-bisulfide efficiency in litter treatment on productive performance and immunity of broilers exposed to ammonia stress. Adv. Anim. Vet. Sci. 2017, 5, 253–259. [Google Scholar]
- Feng-Xian, W.; Bin, X.; Xiao-Fei, H.; Shao-Yu, L.; Fu-Zhu, L.; Quan-You, S.; Yu-Ping, J.; Lin-Yi, W. The Effect of Ammonia and Humidity in Poultry Houses on Intestinal Morphology and Function of Broilers. J. Anim. Vet. Adv. 2012, 11, 3641–3646. [Google Scholar] [CrossRef] [Green Version]
- Shi, Q.; Wang, W.; Chen, M.; Zhang, H.; Xu, S. Ammonia induces Treg/Th1 imbalance with triggered NF-κB pathway leading to chicken respiratory inflammation response. Sci. Total Environ. 2019, 659, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Liu, Q.X.; Li, X.M.; Ma, D.D.; Xing, S.; Feng, J.H.; Zhang, M.H. Effects of ammonia exposure on growth performance and cytokines in the serum, trachea, and ileum of broilers. Poult. Sci. 2020, 99, 2485–2493. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.W.A.; Ishfaq, M.; Nasrullah, M.; Qayum, A.; Akhtar, M.U.; Jo, H.; Hussain, M.; Teng, X. Ammonia inhalation-induced inflammation and structural impairment in the bursa of fabricius and thymus of broilers through NF-κB signaling pathway. Envi. Sci. Poll. Res. 2020, 27, 11596–11607. [Google Scholar] [CrossRef]
- Chi, Q.; Wang, D.; Hu, X.; Li, S.; Li, S. Hydrogen Sulfide Gas Exposure Induces Necroptosis and Promotes Inflammation through the MAPK/NF-kappaB Pathway in Broiler Spleen. Oxid. Med. Cell. Longev. 2019, 2019, 8061823. [Google Scholar] [CrossRef] [Green Version]
- Edens, F. Influence of Atmospheric Ammonia on Serum Corticosterone, Estradiol-17β and Progesterone in Laying Hens. Int. J. Poult. Sci. 2015, 14, 427–435. [Google Scholar] [CrossRef] [Green Version]
- Roque, K.; Shin, K.-M.; Jo, J.-H.; Kim, H.-A.; Heo, Y. Relationship between chicken cellular immunity and endotoxin levels in dust from chicken housing environments. J. Vet. Sci. 2015, 16, 173–177. [Google Scholar] [CrossRef]
- Kristensen, H.H.; Wathes, C.M. Ammonia and poultry welfare: A review. Worlds Poult. Sci. J. 2000, 56, 235–245. [Google Scholar] [CrossRef]
- Oyetunde, O.O.; Thomson, R.G.; Carlson, H.C. Aerosol exposure of ammonia, dust and Escherichia coli in broiler chickens. Can. Vet. J 1978, 19, 187–193. [Google Scholar] [PubMed]
- Anderson, D.P.; Beard, C.W.; Hanson, R.P. The Adverse Effects of Ammonia on Chickens Including Resistance to Infection with Newcastle Disease Virus. Avian Dis. 1964, 8, 369–379. [Google Scholar] [CrossRef]
- Klentz, R.D.; Fedde, M.R. Hydrogen sulfide: Effects on avian respiratory control and intrapulmonary CO2 receptors. Respir. Physiol. 1978, 32, 355–367. [Google Scholar] [CrossRef] [Green Version]
- Rodenburg, T.B.; de Haas, E.N. Of nature and nurture: The role of genetics and environment in behavioural development of laying hens. Curr. Opin. Behav. Sci. 2016, 7, 91–94. [Google Scholar] [CrossRef]
- Schmiedeke, J.K.; Hoffmann, D.; Hoffmann, B.; Beer, M.; Blohm, U. Establishment of Adequate Functional Cellular Immune Response in Chicks Is Age Dependent. Avian Dis. 2020, 64, 69–79. [Google Scholar] [CrossRef]
- Zhang, Q.; Sun, X.; Wang, T.; Chen, B.; Huang, Y.; Chen, H.; Chen, Q. The Postembryonic Development of the Immunological Barrier in the Chicken Spleens. J. Immunol. Res. 2019, 2019, 6279360. [Google Scholar] [CrossRef]
- Alkie, T.N.; Yitbarek, A.; Hodgins, D.C.; Kulkarni, R.R.; Taha-Abdelaziz, K.; Sharif, S. Development of innate immunity in chicken embryos and newly hatched chicks: A disease control perspective. Avian Pathol. 2019, 48, 288–310. [Google Scholar] [CrossRef]
- Ribatti, D.; Tamma, R.; Elieh Ali Komi, D. The morphological basis of the development of the chick embryo immune system. Exp. Cell Res. 2019, 381, 323–329. [Google Scholar] [CrossRef]
- Janczak, A.M.; Riber, A.B. Review of rearing-related factors affecting the welfare of laying hens. Poult. Sci. 2015, 94, 1454–1469. [Google Scholar] [CrossRef]
- Dixon, L.M.; Sparks, N.H.C.; Rutherford, K.M.D. Early experiences matter: A review of the effects of prenatal environment on offspring characteristics in poultry. Poult. Sci. 2016, 95, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Simon, K.; Verwoolde, M.B.; Zhang, J.; Smidt, H.; de Vries Reilingh, G.; KEMP, B.; Lammers, A. Long-term effects of early life microbiota disturbance on adaptive immunity in laying hens. Poult. Sci. 2016, 95, 1543–1554. [Google Scholar] [CrossRef] [PubMed]
- Parmentier, H.K.; de Vries Reilingh, G.; Freke, P.; Koopmanschap, R.E.; Lammers, A. Immunological and Physiological Differences Between Layer- and Broiler Chickens after Concurrent Intratracheal Administration of Lipopolysaccharide and Human Serum Albumin. Int. J. Poult. Sci. 2010, 9, 574–583. [Google Scholar] [CrossRef] [Green Version]
- Koenen, M.E.; Boonstra-Blom, A.G.; Jeurissen, S.H.M. Immunological differences between layer- and broiler-type chickens. Vet. Immunol. Immunopathol. 2002, 89, 47–56. [Google Scholar] [CrossRef]
- Berghof, T.V.L.; van der Klein, S.A.S.; Arts, J.A.J.; Parmentier, H.K.; van der Poel, J.J.; Bovenhuis, H. Genetic and Non-Genetic Inheritance of Natural Antibodies Binding Keyhole Limpet Hemocyanin in a Purebred Layer Chicken Line. PLoS ONE 2015, 10, e0131088. [Google Scholar] [CrossRef]
- Ricke, S.C.; Lee, S.I.; Kim, S.A.; Park, S.H.; Shi, Z. Prebiotics and the poultry gastrointestinal tract microbiome. Poult. Sci. 2020, 99, 670–677. [Google Scholar] [CrossRef]
- Walugembe, M.; Hsieh, J.C.F.; Koszewski, N.J.; Lamont, S.J.; Persia, M.E.; Rothschild, M.F. Effects of dietary fiber on cecal short-chain fatty acid and cecal microbiota of broiler and laying-hen chicks. Poult. Sci. 2015, 94, 2351–2359. [Google Scholar] [CrossRef]
- Hubert, S.M.; Al-Ajeeli, M.; Bailey, C.A.; Athrey, G. The Role of Housing Environment and Dietary Protein Source on the Gut Microbiota of Chicken. Animals 2019, 9, 1085. [Google Scholar] [CrossRef] [Green Version]
- Kogut, M.H. The effect of microbiome modulation on the intestinal health of poultry. Anim. Feed Sci. Tech. 2019, 250, 32–40. [Google Scholar] [CrossRef]
Immune Parameter | Sample | CC vs. EC | Reference |
---|---|---|---|
Total leukocytes | Blood | ↔ | [70] |
% of total leukocytes | |||
Heterophils (H) | Blood | ↑ | [70,71,72] |
↔ | [73,74] | ||
Total lymphocytes (L) | Blood | ↓ | [70,71,72] |
↑ | [74] | ||
↔ | [73] | ||
T helper cells | Blood | ↔ | [70,71] |
Cytotoxic T cells | Blood | ↔ | [70,71] |
Monocytes | Blood | ↑ | [72] |
↔ | [70,73,74] | ||
Basophils | Blood | ↔ | [70,72,73,74] |
Eosinophils | Blood | ↑ | [72] |
↔ | [70,73,74] | ||
H/L ratio | Blood | ↑ | [71,72,73,75] |
↔ | [70] | ||
Functionality of monocytes | |||
Chemotaxis | Blood | ↔ | [75] |
Phagocytosis | Blood | ↔ | [75] |
Functionality of heterophils | |||
Chemotaxis | Blood | ↔ | [70,71] |
Phagocytosis | Blood | ↔ | [70,71] |
Oxidative burst | Blood | ↔ | [70,71] |
Antibody concentration | |||
IgY | Blood | ↔ | [76] |
Newcastle disease virus | Blood | ↔ | [72,74,75] |
Infectious bronchitis virus | Blood | ↔ | [72] |
Sheep red blood cells | Blood | ↓ | [70,71] |
Relative organ weight | |||
Bursa of Fabricius | ↔ | [70,71] | |
Thymus | ↔ | [70,71] | |
Spleen | ↔ | [70,71] |
Immune Parameter | Sample | LD-CL vs. SD-CL | Reference |
---|---|---|---|
Total leukocytes | Blood | ↑ | [111] |
% of total leukocytes | |||
Heterophils (H) | Blood | ↑ | [112,113] |
↔ | [115,116] | ||
Total lymphocytes (L) | Blood | ↓ | [112,113] |
↔ | [115,116] | ||
Monocytes | Blood | ↓ | [112] |
Basophils | Blood | ↓ | [112] |
Eosinophils | Blood | ↓ | [112] |
T lymphocytes | Spleen | ↓ | [117] |
T helper cells | Spleen | ↓ | [117] |
Cytotoxic T cells | Spleen | ↓ | [117] |
B lymphocytes | Spleen | ↔ | [117] |
H/L ratio | Blood | ↑ | [112,113,114] |
↓ | [111] | ||
↔ | [115,116] | ||
Functionality of lymphocytes | |||
Proliferation to pokeweed mitogen | Blood | ↔ | [111,117] |
Spleen | ↓ | [117] | |
Proliferation to concanavalin A | Blood, spleen | ↔ | [111,117] |
Cell-mediated immunity | |||
Delayed-type hypersensitivity to phytohemagglutinin | Blood | ↓ | [118] |
Delayed-type hypersensitivity to concanavalin A | Blood | ↓ | [118] |
Antibody concentration | |||
Newcastle disease virus | Blood | ↔ | [114] |
Sheep red blood cells | Blood | ↓ | [118] |
↔ | [103,111,114,119] | ||
Relative organ weight | |||
Bursa of Fabricius | ↔ | [114,120] | |
Spleen | ↔ | [114] |
Immune Parameter | Sample | LD-CL vs. SD-IML | Reference |
---|---|---|---|
Total leukocytes | Blood | ↓ | [111,121] |
% of total leukocytes | |||
Heterophils (H) | Blood | ↑ | [112] |
Total lymphocytes (L) | Blood | ↓ | [112] |
Monocytes | Blood | ↓ | [112] |
Eosinophils | Blood | ↔ | [112] |
Basophils | Blood | ↔ | [112] |
T lymphocytes | Blood, spleen | ↓ | [117,127] |
T helper cells | Spleen | ↓ | [117] |
Cytotoxic T cells | Spleen | ↓ | [117] |
B lymphocytes | Spleen | ↔ | [117] |
H/L ratio | Blood | ↑ | [112] |
↔ | [111,122,123] | ||
Functionality of lymphocytes | |||
Proliferation to pokeweed mitogen | Blood, spleen | ↓ | [111,117] |
Proliferation to concanavalin A | Blood, spleen | ↓ | [111,117,125] |
Proliferation to pokeweed mitogen | Blood | ↔ | [117] |
Proliferation to concanavalin A | Blood | ↔ | [117,121] |
Functionality of monocytes | |||
Phagocytosis | Blood | ↓ | [124] |
Functionality of basophils | |||
Delayed-type hypersensitivity to phytohemagglutinin | Blood | ↔ | [125] |
Antibody concentration | |||
IgM | Blood | ↓ | [126] |
IgY | Blood | ↔ | [126] |
↓ | [127] | ||
IgA | Blood | ↔ | [126] |
Newcastle disease virus | Blood | ↓ | [123] |
Sheep red blood cells | Blood | ↔ | [103,122] |
↓ | [111] | ||
Cytokine concentration | |||
IL-6 | Blood | ↔ | [121,125] |
Relative organ weight | |||
Spleen | ↔ | [124,127] | |
Bursa of Fabricius | ↓ | [124] | |
↔ | [123,127] | ||
Thymus | ↓ | [124] | |
↔ | [123,127] |
Parameter | Sample | Treatment vs. Control | Reference |
---|---|---|---|
% of total leukocytes | |||
Heterophils (H) | Blood | ↑ | [183] |
Total lymphocytes (L) | Blood | ↓ | [183] |
Monocytes | Blood | ↔ | [183] |
Basophils | Blood | ↓ | [183] |
Eosinophils | Blood | ↔ | [183] |
H/L ratio | Blood | ↑ | [182,183,184] |
Functionality of lymphocytes | |||
Proliferation to concanavalin A | Blood | ↓ | [185] |
↔ | [186] | ||
Proliferation to lipopolysaccharide | Blood | ↓ | [185] |
↔ | [186] | ||
Antibody concentration | |||
IgM | Blood | ↓ | [184,186,187] |
IgY | Blood | ↓ | [186,187] |
Blood | ↔ | [184] | |
IgA | Blood, duodenum | ↓ | [186,187,188] |
Blood | ↔ | [184] | |
Newcastle disease virus | Blood | ↓ | [186] |
Cytokine concentration | |||
IL-1β | Spleen, trachea | ↑ | [185,189,190] |
Blood, spleen | ↔ | [184] | |
IL-2 | Trachea | ↑ | |
IL-4 | Spleen, trachea | ↑ | [185,189] |
Il-6 | Spleen | ↔ | [184,190] |
Trachea | ↑ | [189] | |
IL-10 | Trachea | ↑ | [189,190] |
IL-17 | Trachea | ↑ | [189] |
IFN-γ | Blood | ↔ | [184] |
Trachea | ↓ | [189] | |
TNF-α | Trachea | ↑ | [189] |
Blood, spleen | ↔ | [184] | |
Relative organ weight | |||
Spleen | ↓ | [187] | |
↔ | [185,186] | ||
Thymus | ↓ | [187,191] | |
↔ | [185,186] | ||
Bursa | ↓ | [187,191] | |
↔ | [185,186] |
Parameter | Sample | Treatment vs. Control | Reference |
---|---|---|---|
Antibody concentration | |||
IgM | Bursa of Fabricius | ↓ | [178] |
IgY | Bursa of Fabricius | ↓ | [178] |
IgA | Bursa of Fabricius | ↓ | [178] |
Newcastle disease virus | Blood | ↓ | [178] |
Cytokine concentration | |||
IL-1β | Blood, bursa of Fabricius, spleen | ↑ | [177,178,192] |
IL-2 | Blood | ↓ | [177] |
IL-4 | Blood, bursa of Fabricius | ↓ | [177,178] |
Il-6 | Blood, bursa of Fabricius | ↑ | [177,178] |
Il-8 | Blood | ↑ | [177] |
IL-10 | Blood, bursa of Fabricius | ↓ | [177,178] |
IL-12 | Blood, bursa of Fabricius | ↑ | [177,178] |
IFN-γ | Bursa of Fabricius | ↑ | [178] |
Blood | ↓ | [177] | |
TNF-α | Blood, bursa of Fabricius, spleen | ↑ | [177,178,192] |
Relative organ weight | |||
Bursa of Fabricius | ↔ | [178] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hofmann, T.; Schmucker, S.S.; Bessei, W.; Grashorn, M.; Stefanski, V. Impact of Housing Environment on the Immune System in Chickens: A Review. Animals 2020, 10, 1138. https://doi.org/10.3390/ani10071138
Hofmann T, Schmucker SS, Bessei W, Grashorn M, Stefanski V. Impact of Housing Environment on the Immune System in Chickens: A Review. Animals. 2020; 10(7):1138. https://doi.org/10.3390/ani10071138
Chicago/Turabian StyleHofmann, Tanja, Sonja S. Schmucker, Werner Bessei, Michael Grashorn, and Volker Stefanski. 2020. "Impact of Housing Environment on the Immune System in Chickens: A Review" Animals 10, no. 7: 1138. https://doi.org/10.3390/ani10071138
APA StyleHofmann, T., Schmucker, S. S., Bessei, W., Grashorn, M., & Stefanski, V. (2020). Impact of Housing Environment on the Immune System in Chickens: A Review. Animals, 10(7), 1138. https://doi.org/10.3390/ani10071138