Genetic Parameters and Genome-Wide Association Studies for Anti-Müllerian Hormone Levels and Antral Follicle Populations Measured After Estrus Synchronization in Nellore Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Ethical Statement
2.2. Animals and Phenotypic Data
2.3. Genotypic Quality Control
2.4. Statistical Analyses
2.4.1. Variance Components, Genetic Parameters, and Breeding Value Prediction
2.4.2. Genome-Wide Association Analysis
2.4.3. Functional Analyses
3. Results
3.1. Variance Component and Genetic Parameter Estimates
3.2. GWAS and Functional Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Summers, A.F.; Rosasco, S.L.; Scholljegerdes, E.J. Beef species-ruminant nutrition cactus beef symposium: Influence of management decisions during heifer development on enhancing reproductive success and cow longevity. J. Anim. Sci. 2019, 97, 1407–1414. [Google Scholar] [CrossRef] [PubMed]
- Ramos, P.V.B.; e Silva, F.F.; da Silva, L.O.C.; Santiago, G.G.; de Menezes, G.R.O.; Soriano Viana, J.M.; Torres Júnior, R.A.A.; Gondo, A.; Brito, L.F. Genomic evaluation for novel stayability traits in Nellore cattle. Reprod. Domest. Anim. 2020, 55, 266–273. [Google Scholar] [CrossRef]
- Nascimento, A.V.D.; Da Silva Romero, Â.R.; Utsunomiya, Y.T.; Utsunomiya, A.T.H.; Cardoso, D.F.; Neves, H.H.R.; Carvalheiro, R.; Garcia, J.F.; Grisolia, A.B. Genome-wide association study using haplotype alleles for the evaluation of reproductive traits in Nelore cattle. PLoS ONE 2018, 13, e0201876. [Google Scholar] [CrossRef]
- Buzanskas, M.E.; Pires, P.S.; Chud, T.C.S.; Bernardes, P.A.; Rola, L.D.; Savegnago, R.P.; Lôbo, R.B.; Munari, D.P. Parameter estimates for reproductive and carcass traits in Nelore beef cattle. Theriogenology 2017, 92, 204–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cammack, K.M.; Thomas, M.G.; Enns, R.M. Reproductive Traits and Their Heritabilities in Beef Cattle. Prof. Anim. Sci. 2009, 25, 517–528. [Google Scholar] [CrossRef]
- Terakado, A.P.N.; Boligon, A.A.; Baldi, F.; Silva, J.I.V.; Albuquerque, L.G. Genetic associations between scrotal circumference and female reproductive traits in Nelore cattle. J. Anim. Sci. 2015, 93, 2706–2713. [Google Scholar] [CrossRef]
- Costa, E.V.; Ventura, H.T.; Veroneze, R.; Silva, F.F.; Pereira, M.A.; Lopes, P.S. Estimated genetic associations among reproductive traits in Nellore cattle using Bayesian analysis. Anim. Reprod. Sci. 2020, 214, 106305. [Google Scholar] [CrossRef]
- Barbosa, A.C.B.; Carneiro, P.L.S.; Rezende, M.P.G.; Ramos, I.O.; Martins Filho, R.; Malhado, C.H.M. Parâmetros genéticos para características de crescimento e reprodutivas em bovinos. Arch. Zootec. 2017, 66, 449–452. [Google Scholar] [CrossRef] [Green Version]
- Poole, D.H.; Ocón-grove, O.M.; Johnson, A.L. Theriogenology Anti-Müllerian hormone (AMH) receptor type II expression and AMH activity in bovine granulosa cells. Theriogenology 2016, 86, 1353–1360. [Google Scholar] [CrossRef] [Green Version]
- Guerreiro, B.M.; Batista, E.O.S.; Vieira, L.M.; Filho, M.F.S.; Rodrigues, C.A.; Netto, A.C.; Silveira, C.R.A.; Bayeux, B.M.; Dias, E.A.R.; Monteiro, F.M.; et al. Domestic Animal Endocrinology Plasma anti-mullerian hormone: An endocrine marker for in vitro embryo production from Bos taurus and Bos indicus donors. Domest. Anim. Endocrinol. 2014, 49, 96–104. [Google Scholar] [CrossRef]
- Brodin, T.; Hadziosmanovic, N.; Berglund, L.; Olovsson, M.; Holte, J. Antimüllerian hormone levels are strongly associated with live-birth rates after assisted reproduction. J. Clin. Endocrinol. Metab. 2013, 98, 1107–1114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baruselli, P.S.; Batista, E.O.S.; Vieira, L.M.; Souza, A.H. Relationship between follicle population, AMH concentration and fertility in cattle Bubalus Murrah bubalis Gyr indicus Bos. Anim. Reprod. 2015, 12, 487–497. [Google Scholar]
- Pontes, J.H.F.; Melo Sterza, F.A.; Basso, A.C.; Ferreira, C.R.; Sanches, B.V.; Rubin, K.C.P.; Seneda, M.M. Ovum pick up, in vitro embryo production, and pregnancy rates from a large-scale commercial program using Nelore cattle (Bos indicus) donors. Theriogenology 2011, 75, 1640–1646. [Google Scholar] [CrossRef] [PubMed]
- Vieira, R.J. Biotécnicas Aplicadas À Reprodução Bovina: Generalidades. Ciência Anim. Edição Espec Ciência Anim. 2012, 22, 55–65. [Google Scholar]
- Jaguszeski, M.Z.; Neto, A.P.; De Oliveira, W.; Cattelam, J.; Gregianini, H.A.G. Pregnancy rate of recipient cows after transfer of in vitro-produced nellore embryos. Rev. Caatinga 2019, 32, 1087–1091. [Google Scholar] [CrossRef]
- Baruselli, P.S.; Batista, E.O.S.; Vieira, L.M.; de Sales, J.N.S.; Gimenes, L.U.; Ferreira, R.M. Intrinsic and extrinsic factors that influence ovarian environment and efficiency of reproduction in cattle. Anim. Reprod. 2017, 14, 48–60. [Google Scholar] [CrossRef]
- Mossa, F.; Jimenez-Krassel, F.; Scheetz, D.; Weber-Nielsen, M.; Evans, A.C.O.; Ireland, J.J. Anti-Müllerian Hormone (AMH) and fertility management in agricultural species. Reproduction 2017, 154, R1–R11. [Google Scholar] [CrossRef]
- Mossa, F.; Ireland, J.J. Physiology and endocrinology symposium: Anti-Müllerian hormone: A biomarker for the ovarian reserve, ovarian function, and fertility in dairy cows. J. Anim. Sci. 2019, 97, 1446–1455. [Google Scholar] [CrossRef]
- Cardoso, C.J.T.; de Junior, J.S.O.; Kischel, H.; da Silva, W.A.L.; da Arruda, E.D.S.; Souza-Cáceres, M.B.; de Oliveira, F.A.M.; Nogueira, É.; de Nogueira, G.P.; de Melo-Sterza, F.A. Anti-Müllerian hormone (AMH) as a predictor of antral follicle population in heifers. Anim. Reprod. 2018, 15, 12–16. [Google Scholar] [CrossRef]
- Gobikrushanth, M.; Purfield, D.C.; Colazo, M.G.; Butler, S.T.; Wang, Z.; Ambrose, D.J. The relationship between serum anti-Müllerian hormone concentrations and fertility, and genome-wide associations for anti-Müllerian hormone in Holstein cows. J. Dairy Sci. 2018, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Batista, E.O.S.; Vieira, L.M.; Freitas, B.G.; Guerreiro, B.M.; Soares, J.G.; Mingoti, R.D.; Vasconcellos, G.; Souza, A.H.; Ferraz, J.B.S.; Baruselli, P.S. Anti-Mullerian Hormone and its relationship to ovulation response and fertility in timed AI Bos indicus heifers. Reprod. Domest. Anim. 2020. [Google Scholar] [CrossRef] [PubMed]
- Maculan, R.; Pinto, T.L.C.; Moreira, G.M.; de Vasconcelos, G.L.; Sanches, J.A.; Rosa, R.G.; Bonfim, R.R.; de Gonçalves, T.M.; de Souza, J.C. Anti-Müllerian Hormone (AMH), antral follicle count (AFC), external morphometrics and fertility in Tabapuã cows. Anim. Reprod. Sci. 2017. [Google Scholar] [CrossRef] [PubMed]
- Souza, A.H.; Carvalho, P.D.; Rozner, A.E.; Vieira, L.M.; Hackbart, K.S.; Bender, R.W.; Dresch, A.R. Relationship between circulating anti-Müllerian hormone (AMH) and superovulatory response of high-producing dairy cows. J. Dairy Sci. 2015, 98, 169–178. [Google Scholar] [CrossRef] [Green Version]
- Gamarra, G.; Ponsart, C.; Lacaze, S.; Le Guienne, B.; Humblot, P.; Deloche, M.C.; Monniaux, D.; Ponter, A.A. Dietary propylene glycol and in vitro embryo production after ovum pick-up in heifers with different anti-Müllerian hormone profiles. Reprod. Fertil. Dev. 2015, 27, 1249–1261. [Google Scholar] [CrossRef] [PubMed]
- Vernunft, A.; Schwerhoff, M.; Viergutz, T.; Diederich, M.; Kuwer, A. Anti-Muellerian hormone levels in plasma of Holstein-Friesian heifers as a predictive parameter for ovum pick-up and embryo production outcomes. J. Reprod. Dev. 2015, 61, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro, E.S. Plasma anti-Mullerian hormone in adult dairy cows and associations with fertility. J. Dairy Sci. 2014, 97, 6888–6900. [Google Scholar] [CrossRef] [Green Version]
- Scheetz, D.; Pursley, J.R. Concentration of anti-Müllerian hormone in dairy heifers is positively associated with productive herd life. J. Dairy Sci. 2015. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Wang, Z.; Wang, S.; Li, H. Progress of genome wide association study in domestic animals. J. Anim. Sci. Biotechnol. 2012, 3, 26. [Google Scholar] [CrossRef] [Green Version]
- Naha, B.C.; Prasad, A.; Sailo, L.; Chaudhary, R.; Prakash, O. Concept of genome wide association studies and its progress in livestock. Int. J. Sci. Nat. 2016, 7, 39–42. [Google Scholar]
- Grigoletto, L.; Brito, L.F.; Mattos, E.C.; Eler, J.P.; Bussiman, F.O.; da Silva, B.C.A.; da Silva, R.P.; Carvalho, F.E.; Berton, M.P.; Baldi, F.; et al. Genome-wide associations and detection of candidate genes for direct and maternal genetic effects influencing growth traits in the Montana Tropical® Composite population. Livest. Sci. 2019, 229, 64–76. [Google Scholar] [CrossRef]
- Grigoletto, L.; Ferraz, J.B.S.; Oliveira, H.R.; Eler, J.P.; Bussiman, F.O.; Abreu Silva, B.C.; Baldi, F.; Brito, L.F. Genetic Architecture of Carcass and Meat Quality Traits in Montana Tropical® Composite Beef Cattle. Front. Genet. 2020, 11, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guarini, A.R.; Lourenco, D.A.L.; Brito, L.F.; Sargolzaei, M.; Baes, C.F.; Miglior, F.; Misztal, I.; Schenkel, F.S. Genetics and genomics of reproductive disorders in Canadian Holstein cattle. J. Dairy Sci. 2019, 102, 1341–1353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleming, A.; Baes, C.F.; Martin, A.A.A.; Chud, T.C.S.; Malchiodi, F.; Brito, L.F.; Miglior, F. Symposium review: The choice and collection of new relevant phenotypes for fertility selection. J. Dairy Sci. 2019, 102, 3722–3734. [Google Scholar] [CrossRef] [Green Version]
- Nawaz, M.Y.; Jimenez-Krassel, F.; Steibel, J.P.; Lu, Y.; Baktula, A.; Vukasinovic, N.; Neuder, L.; Ireland, J.L.H.; Ireland, J.J.; Tempelman, R.J. Genomic heritability and genome-wide association analysis of anti-Müllerian hormone in Holstein dairy heifers. J. Dairy Sci. 2018, 101, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Batista, E.O.S.; Macedo, G.G.; Sala, R.V.; Ortolan, M.; Mf, S. Plasma Antimullerian Hormone as a Predictor of Ovarian Antral Follicular Population in Bos indicus (Nelore) and Bos taurus (Holstein) Heifers. Reprod. Domest. Anim. 2014, 452, 448–452. [Google Scholar] [CrossRef] [PubMed]
- Freitas, B.G. Influência do Desenvolvimento Corporal na Resposta aos Programas de Sincronização Para Inseminação Artificial em Tempo Fixo em Novilhas Nelore de 14 Meses de Idade. Ph.D. Thesis, Faculdade de Medicina Veterinária e Zootencia, Universidade de São Paulo, São Paulo, Brazil, 2015. [Google Scholar]
- Yang, H.; Su, G. Impact of phenotypic information of previous generations and depth of pedigree on estimates of genetic parameters and breeding values. Livest. Sci. 2016, 187, 61–67. [Google Scholar] [CrossRef]
- Aguilar, I.; Misztal, I.; Tsuruta, S. PREGSF90–POSTGSF90: Computational tools for the implementation of single-step genomic selection and genome-wide association with ungenotyped. In Proceedings of the 10th World Congress on Genetics Applied to Livestock Production, Vancouver, BC, Canada, 17–22 August 2014; pp. 90–92. [Google Scholar] [CrossRef]
- Wiggans, G.R.; Sonstegard, T.S.; VanRaden, P.M.; Matukumalli, L.K.; Schnabel, R.D.; Taylor, J.F.; Schenkel, F.S.; Van Tassell, C.P. Selection of single-nucleotide polymorphisms and quality of genotypes used in genomic evaluation of dairy cattle in the United States and Canada. J. Dairy Sci. 2009, 92, 3431–3436. [Google Scholar] [CrossRef] [Green Version]
- Misztal, I. BLUPF90—A Flexible Mixed Model Program in Fortran 90; University of Georgia: Athens, GA, USA, 2012. [Google Scholar]
- Misztal, I.; Tsuruta, S.; Strabel, T.; Auvray, B.; Druet, T.; Lee, D.H. Blupf90 and Related Programs (Bgf90). In Proceedings of the 7th World Congress on Genetics Applied to Livestock Production, Montpellier, France, 19–23 August 2002; pp. 2001–2002. [Google Scholar]
- Legarra, A.; Aguilar, I.; Misztal, I. A relationship matrix including full pedigree and genomic information. J. Dairy Sci. 2009, 92, 4656–4663. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, I.; Misztal, I.; Johnson, D.L.; Legarra, A.; Tsuruta, S.; Lawlor, T.J. Hot topic: A unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. J. Dairy Sci. 2010, 93, 743–752. [Google Scholar] [CrossRef]
- Tsuruta, S.; Misztal, I.; Aguilar, I.; Lawlor, T.J. Multiple-trait genomic evaluation of linear type traits using genomic and phenotypic data in US Holsteins. J. Dairy Sci. 2011, 94, 4198–4204. [Google Scholar] [CrossRef] [Green Version]
- VanRaden, P.M. Efficient Methods to Compute Genomic Predictions. J. Dairy Sci. 2008, 91, 4414–4423. [Google Scholar] [CrossRef] [Green Version]
- Vitezica, Z.G.; Aguilar, I.; Misztal, I.; Legarra, A. Bias in genomic predictions for populations under selection. Genet. Res. 2011, 93, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Misztal, I.; Aguilar, I.; Legarra, A.; Fernando, R.L.; Vitezica, Z.; Okimoto, R.; Wing, T.; Hawken, R.; Muir, W.M. Genome-wide association mapping including phenotypes from relatives without genotypes in a single-step (ssGWAS) for 6-week body weight in broiler chickens. Front. Genet. 2014, 5, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Zerbino, D.R.; Achuthan, P.; Akanni, W.; Amode, M.R.; Barrell, D.; Bhai, J.; Billis, K.; Cummins, C.; Gall, A.; Girón, C.G.; et al. Ensembl 2018. Nucleic Acids Res. 2018, 46, D754–D761. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Tan, Q.; Collins, J.R.; Alvord, G.; Roayaei, J.; Stephens, R.; Baseler, M.W.; Lane, C.; Lempicki, R.A. The DAVID Gene Functional Classification Tool: A novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 2007, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Z.L.; Park, C.A.; Reecy, J.M. Building a livestock genetic and genomic information knowledgebase through integrative developments of Animal QTLdb and CorrDB. Nucleic Acids Res. 2019, 47, D701–D710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, W.; Fazal, Z.; Jakobsson, E. Using Optimal and Random Resampling in Gene Ontology Enrichment Calcula-. Front. Appl. Math. Stat. 2019, 5, 20. [Google Scholar] [CrossRef] [Green Version]
- Morotti, F.; Barreiros, T.R.R.; Machado, F.Z.; González, S.M.; Marinho, L.S.R.; Seneda, M.M. Is the number of antral follicles an interesting selection criterium for fertility in cattle? Anim. Reprod. 2015, 12, 479–486. [Google Scholar]
- Rico, C.; Fabre, S.; Medigue, C.; Clemente, N.D.; Clement, F.; Bontoux, M.; Touze, J.-L.; Dupont, M.; Briant, E.; Remy, B.; et al. Anti-Mullerian Hormone Is an Endocrine Marker of Ovarian Gonadotropin-Responsive Follicles and Can Help to Predict Superovulatory Responses in the Cow 1. Biol. Reprod. 2009, 80, 50–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Júnior, G.A.O.; Perez, B.C.; Cole, J.B.; Santana, M.H.A.; Silveira, J.; Mazzoni, G.; Ventura, R.V.; Júnior, M.L.S.; Kadarmideen, H.N.; Garrick, D.J.; et al. Genomic study and Medical Subject Headings enrichment analysis of early pregnancy rate and antral follicle numbers in Nelore heifers. J. Anim. Sci. 2017, 95, 4796. [Google Scholar] [CrossRef]
- Ireland, J.L.H.; Scheetz, D.; Jimenez-Krassel, F.; Themmen, A.P.N.; Ward, F.; Lonergan, P.; Smith, G.W.; Perez, G.I.; Evans, A.C.O.; Ireland, J.J. Antral Follicle Count Reliably Predicts Number of Morphologically Healthy Oocytes and Follicles in Ovaries of Young Adult Cattle1. Biol. Reprod. 2008, 79, 1219–1225. [Google Scholar] [CrossRef] [Green Version]
- Shembekar, C.A.; Upadhye, J.J.; Shembekar, M.C.; Welekar, S.H. Anti-Mullerian hormone (AMH) as predictor of ovarian reserve. Int. J. Reprod. Contracept. Obstet. Gynecol. 2017, 6, 4006–4010. [Google Scholar] [CrossRef] [Green Version]
- Coles, C.A.; Wadeson, J.; Knight, M.I.; Cafe, L.M.; Johns, W.H.; White, J.D.; Greenwood, P.L.; Mcdonagh, M.B. A disintegrin and metalloprotease-12 is type I myofiber specific in Bos taurus and Bos indicus cattle. J. Anim. Sci. 2014, 92, 1473–1483. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.M.; Kim, J.; Heo, S.C.; Shin, S.H.; Do, E.K.; Suh, D.S.; Kim, K.H.; Yoon, M.S.; Lee, T.G.; Kim, J.H. Proteomic identification of adam12 as a regulator for tgf-β1-induced differentiation of human mesenchymal stem cells to smooth muscle cells. PLoS ONE 2012, 7, e40820. [Google Scholar] [CrossRef] [PubMed]
- Knight, P.G.; Glister, C. TGF-β superfamily members and ovarian follicle development. Reproduction 2006, 132, 191–206. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.; Wang, Y.; Cai, H.; Sun, G.; Niu, W.; Xin, Q.; Tang, X.; Zhang, J.; Wang, C.; Zhang, H.; et al. ADAM10-Notch signaling governs the recruitment of ovarian pregranulosa cells and controls folliculogenesis in mice. J. Cell Sci. 2016, 129, 2202–2212. [Google Scholar] [CrossRef] [Green Version]
- Russell, D.L.; Brown, H.M.; Dunning, K.R. ADAMTS proteases in fertility. Matrix Biol. 2015, 44–46, 54–63. [Google Scholar] [CrossRef] [Green Version]
- Klein, T.; Bischoff, R. Active metalloproteases of the a disintegrin and metalloprotease (ADAM) family: Biological function and structure. J. Proteome Res. 2011, 10, 17–33. [Google Scholar] [CrossRef]
- Beck, A.R.P.; Miller, I.J.; Anderson, P.; Streuli, M. RNA-binding protein TIAR is essential for primordial germ cell development. Proc. Natl. Acad. Sci. USA 1998, 95, 2331–2336. [Google Scholar] [CrossRef] [Green Version]
- Carbon, S.; Ireland, A.; Mungall, C.J.; Shu, S.; Marshall, B.; Lewis, S.; Lomax, J.; Mungall, C.; Hitz, B.; Balakrishnan, R.; et al. AmiGO: Online access to ontology and annotation data. Bioinformatics 2009, 25, 288–289. [Google Scholar] [CrossRef]
- Racedo, S.E.; Wrenzycki, C.; Lepikhov, K.; Salamone, D.; Walter, J.; Niemann, H. Epigenetic modifications and related mRNA expression during bovine oocyte in vitro maturation. Reprod. Fertil. Dev. 2009, 21, 738–748. [Google Scholar] [CrossRef] [PubMed]
- Funston, R.N.; Summers, A.F. Epigenetics: Setting Up Lifetime Production of Beef Cows by Managing Nutrition. Annu. Rev. Anim. Biosci. 2013, 1, 339–363. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Jiang, J.; Li, B.; Zhou, Y.; Freebern, E.; Vanraden, P.M.; Cole, J.B.; Liu, G.E.; Ma, L. Genetic and epigenetic architecture of paternal origin contribute to gestation length in cattle. Commun. Biol. 2019, 2, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.P.; Nilsson, E.; Skinner, M.K. Environmental epigenetics and epigenetic inheritance in domestic farm animals. Anim. Reprod. Sci. 2020, 106316. [Google Scholar] [CrossRef]
- Simon, C.; Piquette, G.N.; Frances, A.; EL-Danasouri, I.; Irwin, J.C.; Polan, M.L. The Effect of Interleukin-1 Beta (IL-1 Beta) on the Regulation IL-l Receptor Type I Messenger Ribonucleic Acid and Protein Levels in Cultured Human Endometrial Stromal and Glandular Cells. J. Clin. Endocrinol. Metab. 1994, 78, 675–682. [Google Scholar] [CrossRef]
- Comeau, M.R.; Johnson, R.; DuBose, R.F.; Petersen, M.; Gearing, P.; VandenBos, T.; Park, L.; Farrah, T.; Buller, R.M.; Cohen, J.I.; et al. A poxvirus-encoded semaphorin induces cytokine production from monocytes and binds to a novel cellular semaphorin receptor, VESPR. Immunity 1998, 8, 473–482. [Google Scholar] [CrossRef] [Green Version]
- Munoz-Suano, A.; Hamilton, A.B.; Betz, A.G. Gimme shelter—The immune system during pregnancy. Immunol. Rev. 2011, 241, 20–38. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, A.; Costa, S.D.; Zenclussen, A.C. Endocrine factors modulating immune responses in pregnancy. Front. Immunol. 2014, 5, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Stenina-Adognravi, O.; Plow, E.F. Thrombospondin-4 in tissue remodeling. Physiol. Behav. 2019, 176, 139–148. [Google Scholar] [CrossRef]
- Abo-Ismail, M.K.; Lansink, N.; Akanno, E.; Karisa, B.K.; Crowley, J.J.; Moore, S.S.; Bork, E.; Stothard, P.; Basarab, J.A.; Plastow, G.S. Development and validation of a small SNP panel for feed efficiency in beef cattle. J. Anim. Sci. 2018, 96, 375–397. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Li, D.; Li, H.; Zhou, X.; Wang, G. A novel SNP of the ATP1A1 gene is associated with heat tolerance traits in dairy cows. Mol. Biol. Rep. 2011, 38, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Pongpiachan, P.; Rodtian, P.; Ota, K. Effects of tropical climate on reproduction of cross- and purebred Friesian cattle in northern Thailand. Asian-Australas. J. Anim. Sci. 2003, 16, 952–961. [Google Scholar] [CrossRef]
- Kashyap, N.; Kumar, P.; Deshmukh, B.; Bhat, S.; Kumar, A.; Chauhan, A.; Bhushan, B.; Singh, G.; Sharma, D. Association of ATP1A1 gene polymorphism with thermotolerance in Tharparkar and Vrindavani cattle. Vet. World 2015, 8, 892–897. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.X.; Xu, C.H.; Gao, T.Y.; Sun, Y. Polymorphisms of the ATP1A1 gene associated with mastitis in dairy cattle. Genet. Mol. Res. 2012, 11, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Kyriakis, J.M.; Avruch, J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol. Rev. 2001, 81, 807–869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Liu, H.T. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 2002, 12, 9–18. [Google Scholar] [CrossRef]
- Cowan, K.J.; Storey, K.B. Mitogen-activated protein kinases: New signaling pathways functioning in cellular responses to environmental stress. J. Exp. Biol. 2003, 206, 1107–1115. [Google Scholar] [CrossRef] [Green Version]
- Madan, P.; Calder, M.D.; Watson, A.J. Mitogen-activated protein kinase (MAPK) blockade of bovine preimplantation embryogenesis requires inhibition of both p38 and extracellular signal-regulated kinase (ERK) pathways. Reproduction 2005, 130, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Mor, A.; Mondal, S.; Reddy, I.J.; Soumya, N.P. Genes regulating maternal recognition of pregnancy in domestic animals: An update. Braz. Arch. Biol. Technol. 2015, 58, 854–863. [Google Scholar] [CrossRef] [Green Version]
- Pausch, H.; Flisikowski, K.; Jung, S.; Emmerling, R.; Edel, C.; Go, K. Genome-Wide Association Study Identifies Two Major Loci Affecting Calving Ease and Growth-Related Traits in Cattle. Genetics 2011. [Google Scholar] [CrossRef] [Green Version]
- Mcclure, M.C.; Morsci, N.S.; Schnabel, R.D.; Kim, J.W.; Yao, P.; Rolf, M.M.; Mckay, S.D.; Gregg, S.J.; Chapple, R.H.; Northcutt, S.L.; et al. A genome scan for quantitative trait loci influencing carcass, post-natal growth and reproductive traits in commercial Angus cattle. Anim. Genet. 2010, 597–607. [Google Scholar] [CrossRef] [PubMed]
- Sahana, G.; Guldbrandtsen, B.; Lund, M.S. Genome-wide association study for calving traits in Danish and Swedish Holstein cattle. J. Dairy Sci. 2011, 94, 479–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michenet, A.; Barbat, M.; Saintilan, R.; Venot, E.; Phocas, F. Detection of quantitative trait loci for maternal traits using high-density genotypes of Blonde d’Aquitaine beef cattle. BMC Genet. 2016, 17, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Thomasen, J.R.; Guldbrandtsen, B.; Sørensen, P.; Thomsen, B.; Lund, M.S. Quantitative trait loci affecting calving traits in Danish Holstein cattle. J. Dairy Sci. 2008, 91, 2098–2105. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Kargo, M.; Liu, A.; Thomasen, J.R.; Pan, Y.; Su, G. Genotype-by-environment interaction of fertility traits in Danish Holstein cattle using a single-step genomic reaction norm model. Heredity 2019, 123, 202–214. [Google Scholar] [CrossRef]
- Kiser, J.N.; Keuter, E.M.; Seabury, C.M.; Neupane, M.; Moraes, J.G.N.; Dalton, J.; Burns, G.W.; Spencer, T.E.; Neibergs, H.L. Validation of 46 loci associated with female fertility traits in cattle. BMC Genom. 2019, 20, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irano, N.; Miguel, G.; De Camargo, F.; Costa, R.B.; Paula, A.; Terakado, N.; Fabrícia, A.; Magalh, B.; De, R.M. Genome-Wide Association Study for Indicator Traits of Sexual Precocity in Nellore Cattle. PLoS ONE 2016, 11, e0159502. [Google Scholar] [CrossRef]
- Kereilwe, O.; Pandey, K.; Borromeo, V.; Kadokawa, H. Anti-Müllerian hormone receptor type 2 is expressed in gonadotrophs of postpubertal heifers to control gonadotrophin secretion. Reprod. Fertil. Dev. 2018, 30, 1192–1203. [Google Scholar] [CrossRef] [Green Version]
- Ilha, G.F.; Rovani, M.T.; Gasperin, B.G.; Ferreira, R.; de Macedo, M.P.; Neto, O.A.; Duggavathi, R.; Bordignon, V.; Gonçalves, P.B.D. Regulation of Anti-Müllerian Hormone and Its Receptor Expression around Follicle Deviation in Cattle. Reprod. Domest. Anim. 2016, 51, 188–194. [Google Scholar] [CrossRef]
- Pierucci, J.C.; Tonhati, H.; De Albuquerque, L.G.; Cardoso, D.F.; dos Santos, D.J.; Freitas, A.C.; Barbero, M.M.; De Camargo, G.M.; Braz, C.U.; Gimenes, L.U. Amh Polymorphisms and their association with traits indicative of sexual precocity in Nelore heifers. Semin. Ciências Agrárias 2019, 40, 1489–1500. [Google Scholar] [CrossRef]
Trait | Mean | SD 3 | σ2a ± SE | σ2e ± SE | h2 ± SE |
---|---|---|---|---|---|
AMH 1 | 1.10 | 0.36 | 0.16 ± 0.10 | 0.40 ± 0.10 | 0.28 ± 0.07 |
AFP 2 | 12.49 | 4.09 | 3.02 ± 2.02 | 7.13 ± 1.96 | 0.30 ± 0.09 |
Chr:Position (bp) 1 | Candidate Genes | Var (%) 2 |
---|---|---|
5:97,149,440–97,360,900 | GPR19, CREBL2, DUSP16, BORCS5 | 5.22 |
7:13,239,159–13,465,265 | - | 3.20 |
1:143,011,858–143,226,874 | PDE9A, WDR4, NDUFV3, PKNOX1, CBS | 2.74 |
5:23,779,410–24,021,506 | PLXNC1 | 2.00 |
3:26,810,702–27,023,916 | ATP1A1 | 1.84 |
1:109,052,581–109,300,000 | RSRC1 | 1.80 |
8:75,771,507–75,987,944 | FAM219A, DANI1, ENHO, CNTFR, RPP25L, DCTN3 | 1.75 |
22:26,343,690–26,562,220 | - | 1.54 |
25:21,973,041–22,186,659 | CACNG3 | 1.49 |
1:64,865,063–65,123,147 | GPR156, LRRC58 | 1.43 |
10:10,957,392–11,173,990 | MTX3, THBS4, SERINC5 | 1.30 |
18:7,065,051–7,298,879 | - | 1.25 |
11:6,614,691–6,831,396 | MAP4K4, IL1R2 | 1.15 |
Chr:Position (bp) 1 | Candidate Genes | Var (%) 2 |
---|---|---|
26:45,605,887–45,832,830 | ADAM12 | 7.33 |
1:109,036,868–109,295,720 | RSRC1 | 6.24 |
14:68,529,242–68,764,179 | - | 3.37 |
1:64,905,320–65,192,584 | GPR156, LRRC58, FSTL1 | 3.19 |
14:4,866,037–5,110,734 | - | 3.07 |
6:13,887,045–14,107,585 | - | 3.05 |
8:86,936,023–87,174,520 | SYK | 2.93 |
2:16,843,125–17,099,561 | ZNF385B | 1.98 |
2:16,761,007–16,999,128 | CWC22 | 1.79 |
26:39,682,007–39,898,965 | TIAL1, BAG3, INPP5F | 1.70 |
28:478,980–713,335 | RHOU | 1.60 |
4:77,214,698–77,441,075 | POLM, BLVRA, COA1 | 1.53 |
6:13,909,732–14,132,804 | - | 1.49 |
11:48,459,747–48,702,594 | REEP1, MRPL35, IMMT | 1.28 |
1:157,802,376–158,023,994 | GPX5 | 1.07 |
29:23,486,872–23,711,141 | - | 1.04 |
21:62,231,714–62,455,313 | - | 1.03 |
4:10,571,640–10,785,338 | HEPACAM2, VPS50, CALCR | 1.00 |
Type 1 | Term | Candidate Genes | p-Value | FDR |
---|---|---|---|---|
BP | GO:0048771~tissue remodeling | THBS4, CBS, SYK | 0.024 | 3.2 |
BP | GO:0051301~cell division | TIAL1, HEPACAM2, DCTN3, THBS4 | 0.036 | 4.4 |
BP | GO:0007005~mitochondrion organization | MTX3, IMMT, COA1, RHOU, MRPL35 | 0.040 | 4.8 |
BP | GO:0009605~response to external stimulus | IL1R2, SERINC5, PLXNC1, BAG3, FSTL1, THBS4, CBS, SYK | 0.045 | 5.2 |
BP | GO:0051049~regulation of transport | IL1R2, ATP1A1, CACNG3, REEP1, RHOU, CREBL2, SYK | 0.048 | 5.4 |
KEGG | bta04010:MAPK signaling pathway | MAP4K4, DUSP16, CACNG3 | 0.049 | 3.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grigoletto, L.; Santana, M.H.A.; Bressan, F.F.; Eler, J.P.; Nogueira, M.F.G.; Kadarmideen, H.N.; Baruselli, P.S.; Ferraz, J.B.S.; Brito, L.F. Genetic Parameters and Genome-Wide Association Studies for Anti-Müllerian Hormone Levels and Antral Follicle Populations Measured After Estrus Synchronization in Nellore Cattle. Animals 2020, 10, 1185. https://doi.org/10.3390/ani10071185
Grigoletto L, Santana MHA, Bressan FF, Eler JP, Nogueira MFG, Kadarmideen HN, Baruselli PS, Ferraz JBS, Brito LF. Genetic Parameters and Genome-Wide Association Studies for Anti-Müllerian Hormone Levels and Antral Follicle Populations Measured After Estrus Synchronization in Nellore Cattle. Animals. 2020; 10(7):1185. https://doi.org/10.3390/ani10071185
Chicago/Turabian StyleGrigoletto, Laís, Miguel Henrique Almeida Santana, Fabiana Fernandes Bressan, Joanir Pereira Eler, Marcelo Fábio Gouveia Nogueira, Haja N. Kadarmideen, Pietro Sampaio Baruselli, José Bento Sterman Ferraz, and Luiz F. Brito. 2020. "Genetic Parameters and Genome-Wide Association Studies for Anti-Müllerian Hormone Levels and Antral Follicle Populations Measured After Estrus Synchronization in Nellore Cattle" Animals 10, no. 7: 1185. https://doi.org/10.3390/ani10071185
APA StyleGrigoletto, L., Santana, M. H. A., Bressan, F. F., Eler, J. P., Nogueira, M. F. G., Kadarmideen, H. N., Baruselli, P. S., Ferraz, J. B. S., & Brito, L. F. (2020). Genetic Parameters and Genome-Wide Association Studies for Anti-Müllerian Hormone Levels and Antral Follicle Populations Measured After Estrus Synchronization in Nellore Cattle. Animals, 10(7), 1185. https://doi.org/10.3390/ani10071185