Breeding and Economic Aspects of Cytogenetic Screening Studies of Pigs Qualified for Reproduction
Abstract
:Simple Summary
Abstract
1. Introduction
2. Pig Karyotype Abnormalities and Their Effect on Carrier Fertility
2.1. Reciprocal Translocations
2.2. Robertsonian Translocations and Tandem Fusions
2.3. Peri- and Paracentric Inversions
2.4. Sex Chromosome Aneuploidies and Leukocytic Chimerism
3. Cytomolecular Diagnostics
4. Cytogenetic Screening of the Pig Population
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Danielak-Czech, B.; Kozubska-Sobocińska, A.; Rejduch, B. Molecular cytogenetics in the diagnostics of balanced chromosome mutations in the pig (Sus scrofa)—A review. Ann. Anim. Sci. 2016, 16, 679–699. [Google Scholar] [CrossRef] [Green Version]
- Raudsepp, T.; Chowdharry, B.P. Cytogenetics and chromosome maps. In The Genetics of the Pig, 2nd ed.; Rothschild, M.P., Ruvinsky, A., Eds.; CAB International: Wallingford, UK, 2011; pp. 134–178. [Google Scholar]
- Szczerbal, I.; Nowacka-Woszuk, J.; Dzimira, S.; Alama, A.; Iskrzak, P.; Świtoński, M. Detection and quantification of leucocyte chimerism (XX/XY) using FISH and Digital droplet PCR (ddPCR) in the offspring of highly prolific sows. Comp. Cytogenet. 2018, 12, 353. [Google Scholar]
- Ducos, A.; Revay, T.; Kovacs, A.; Hidas, A.; Pinton, A.; Bonnet-Garnier, A.; Molteni, L.; Słota, E.; Świtoński, M.; Arruga, M.V.; et al. Cytogenetic screening of livestock populations in Europe: An overview. Cytogenet. Genome Res. 2008, 120, 26–41. [Google Scholar] [CrossRef]
- Babicz, M.; Danielak-Czech, B.; Kozubska-Sobocińska, A.; Łuszczewska-Sierakowska, I.; Wawrzyniak, A.; Grzebalska, A.M.; Kropiwiec-Domańska, K. Cytogenetic and molecular studies in conservation breeding of Pulawska breed pigs. Med. Weter. 2017, 73, 395–398. (In Polish) [Google Scholar] [CrossRef] [Green Version]
- Basrur, P.K.; Stranzinger, G. Veterinary cytogenetics: Past and perspective. Cytogenet. Genome Res. 2008, 120, 11–25. [Google Scholar] [CrossRef] [PubMed]
- Iannuzzi, L.; Di Berardino, D. Tools of the trade: Diagnostics and research in domestic animal cytogenetics. J. Appl. Genet. 2008, 49, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Rubes, J.; Pinton, A.; Bonnet-Garnier, A.; Fillon, V.; Musilova, P.; Michalova, K.; Kubickova, S.; Ducos, A.; Yerle, M. Fluorescence in situ hybridization applied to domestic animal cytogenetics. Cytogenet. Genome Res. 2009, 126, 34–48. [Google Scholar] [CrossRef]
- Kozubska-Sobocinska, A.; Smołucha, G.; Danielak-Czech, B. Early Diagnostics of freemartinism in Polish Holstein-Friesian female calves. Animals 2019, 9, 971. [Google Scholar] [CrossRef] [Green Version]
- Khare, V.; Khare, A. Modern approach in animal breeding by use of advanced molecular genetic techniques. Inter. J. Livestig. Res. 2017, 7, 1–22. [Google Scholar] [CrossRef]
- Villagomez, D.A.F.; Parma, P.; Radi, O.; Meo, G.D.; Pinton, A.; Iannuzzi, L.; King, W.A. Classical and Molecular Cytogenetics of Disorders of Sex Development in Domestic Animals. Cytogenet. Genome Res. 2009, 126, 110–131. [Google Scholar] [CrossRef]
- Danielak-Czech, B.; Słota, E. Karyotype control system of AI boars in Poland: The current survey. Ann. Anim. Sci. 2008, 8, 255–262. [Google Scholar]
- Ducos, A.; Calgaro, A.; Mouney-Bonnet, N.; Loustau, A.M.; Revel, C.; Barasc, H.; Mary, N.; Pinton, A. Contrôle chromosomique des populations porcines françaises Bilan de 20 années d’activités de la plateforme de cytogénétique ENVT-INRA. 2017. Available online: http://www.journees-recherche-porcine.com/texte/2017/genetique/G09.pdf (accessed on 15 July 2020).
- Kozubska-Sobocińska, A.; Danielak-Czech, B. Legitimacy of systematic karyotype evaluation of cattle qualified for reproduction. Med. Weter. 2017, 73, 451–455. (In Polish) [Google Scholar] [CrossRef] [Green Version]
- Pinton, A.; Calgaro, A.; Bonnet, N.; Mary, N.; Dudez, A.M.; Barasc, H.; Plard, C.; Yerle, M.; Ducos, A. Chromosomal control of pig populations in France: 2007–2010 survey. Journées Rech. Porcine 2012, 44, 43–44. (In French) [Google Scholar]
- Quach, A.T.; Revay, T.; Villagomez, D.A.F.; Macedo, M.P.; Sullivan, A.; Maignel, L.; Wyss, S.; Sullivan, B.; King, W.A. Prevalence and consequences of chromosomal abnormalities in Canadian commercial swine herds. Genet. Sel. Evol. 2016, 48, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donaldson, B.; Villagomez, D.A.F.; Revay, T.; Rezaei, S.; Kin, W.A. Non-random distribution of reciprocal translocation breakpoints in the pig genome. Genes 2019, 10, 769. [Google Scholar] [CrossRef] [Green Version]
- Danielak-Czech, B.; Słota, E.; Świtoński, M. Identification of the first reciprocal translocations in the pig population bred in Poland. In Proceedings of the 11th European Colloquium on Cytogenetic of Domestic Animals, Copenhagen, Denmark, 2–5 August 1994; pp. 20–24. [Google Scholar]
- Szczerbal, I.; Świtonski, M. Chromosome abnormalities in domestic animals as causes of disorders of sex development or impaired fertility. In Insights from Animal Reproduction; Careira, P.R., Ed.; InTechOpen: London, UK, 2016; pp. 207–225. [Google Scholar]
- Słota, E.; Danielak-Czech, B.; Pietraszewska, J.; Kozubska-Sobocińska, A. Preliminary identification of the fragile X in two crossbred cows. Vet. Med. 2000, 45, 308–310. [Google Scholar]
- Świtoński, M.; Danielak-Czech, B.; Słota, E.; Sysa, P. Lack of pairing loop formation in synaptonemal complex preparation of a boar carrying an inversion. Hereditas 1998, 128, 83–85. [Google Scholar] [CrossRef]
- Świtoński, M.; Stranzinger, G. Studies of synaptonemal complexes in farm mammals—A review. J. Hered. 1998, 89, 473–480. [Google Scholar] [CrossRef] [Green Version]
- Villagόmez, D.A.F.; Pinton, A. Chromosomal abnormalities, meiotic behaviour and fertility in domestic animals. Cytogenet. Genome Res. 2008, 120, 69–80. [Google Scholar]
- Yimer, N.; Rosnina, Y. Chromosomal anomalies and infertility in farm animals: A review. Pertanika J. Trop. Agric. Sci. 2014, 37, 1–18. [Google Scholar]
- Barasc, H.; Congras, A.; Mary, N.; Trouilh, L.; Marquet, V.; Ferchaud, S.; Raymond-Letron, I.; Calgaro, A.; Loustau-Dudez, A.M.; Mouney-Bonne, N.; et al. Meiotic pairing and gene expression disturbance in germ cells from an infertile boar with a balanced reciprocal autosome-autosome translocation. Chromosome Res. 2016, 24, 511–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danielak-Czech, B.; Słota, E. A new case of reciprocal translocation t(10;13)(q16;q21) diagnosed in an AI boar. J. Appl. Genet. 2007, 48, 379–382. [Google Scholar] [CrossRef] [PubMed]
- Ducos, A.; Berland, H.M.; Bonnet, N.; Calgaro, A.; Billoux, S.; Mary, N.; Garnier-Bonnet, A.; Darré, R.; Pinton, A. Chromosomal control of pig population in France: 2002–2006 survey. Genet. Sel. Evol. 2007, 39, 583–597. [Google Scholar] [CrossRef] [Green Version]
- Ducos, A.; Berland, H.M.; Pinton, A.; Seguela, A.; Blanc, M.F.; Darre, A.; Sans, P.; Darre, R. Les translocations réciproques chez le porc: État des lieux et perspectives. J. Rech. Porcine 1997, 29, 375–382. [Google Scholar]
- Ducos, A.; Pinton, A.; Berland, H.M.; Sequela, A.; Yerle, M.; Sequela, A.; Brun-Barronat, C.; Bonnet, N.; Darre, R. Contrôle chromosomique des populations porcines an France: Bilan de cinq années d activité. J. Rech. Porcine 2002, 34, 269–275. [Google Scholar]
- Feve, K.; Foissac, S.; Pinton, A.; Mompart, F.; Esquerre, D.; Faraut, T.; Yerle, M.; Riquet, J. Identification of a t(3;4)(p1.3;q1.5) translocation breakpoint in pigs using somatic cell hybrid mapping and high-resolution mate-pair sequencing. PLoS ONE 2017, 12, e0187617. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, R.E.; Fonseka, G.; Frodsham, R.; Archibald, A.L.; Lawrie, M.; Walling, G.A.; Griffin, D.K. Isolation of subtelomeric sequences of porcine chromosomes for translocation screening reveals errors in the pig genome assembly. Anim. Genet. 2017, 48, 395–403. [Google Scholar] [CrossRef]
- Pinton, A.; Calgaro, A.; Mary, N.; Barasc, H.; Bonnet, N.; Revel, C.; Ferchaud, S.; Letron, I.R.; Faraut, T.; Acloque, H.; et al. Meiotic and gene expression analyses in case of t(1;15) azoospermic boar. Comp. Cytogenet. 2018, 12, 343. [Google Scholar]
- Rodriquez, A.; Sanz, E.; De Mercado, E.; Gomez, E.; Martin, M.; Carrascosa, C.; Gomez-Fidalgo, E.; Villagomez, D.A.F.; Sanchez-Sanchez, R. Reproductive consequences of a reciprocal chromosomal translocation in two Duroc boars used to provide semen for artificial insemination. Theriogenology 2010, 74, 67–74. [Google Scholar] [CrossRef]
- Sanchez Sanchez, R.; De la Cruz Vigo, P.; Gomez Fidalgo, E.; Perez Garnelo, S.; Gonzales-Bulnes, A.; Martin-Lluch, M. Frequency of chromosomal rearrangements in breeding males from boar studs. Chromosome Res. 2016, 24 (Suppl. 1), S16. [Google Scholar]
- Villagomez, D.A.F.; Quach, A.T.; Revay, T.; St John, E.; Rezaei, S.; King, W.A. Prevalence and reproductive consequences of chromosomal abnormalities in Canadian swine herds. Chromosome Res. 2016, 24 (Suppl. 1), S17–S18. [Google Scholar]
- Danielak-Czech, B.; Świtoński, M.; Słota, E. First identification of reciprocal translocations in Polish pigs. J. Anim. Breed. Genet. 1997, 114, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Caputi-Jambrenghi, A.; Genualdo, V.; Giannico, F.; Castiglioni, B.; Pizzi, F.; Marletta, D.; Iannuzzi, A. Analysis of segregation and aneuploidy in a hybrid boar heterozygous carrier of a rob(15;17) by dual-colourSperm-FISH: Preliminary studies. Comp. Cytogenet. 2018, 12, 333–334. [Google Scholar]
- Danielak-Czech, B.; Kozubska-Sobocińska, A.; Rejduch, B. Diagnosis of tandem fusion translocation in the boar using FISH technique with human painting probes. Ann. Anim. Sci. 2010, 10, 361–366. [Google Scholar]
- Danielak-Czech, B.; Kozubska-Sobocińska, A.; Słota, E.; Rejduch, B.; Okularczyk, S. Decrease in pig fertility as result of reciprocal translocations and assisted economic effects on the basis of rcp(7;13)(q13;q46). J. Appl. Genet. 1996, 36, 373–384. [Google Scholar]
- Słota, E.; Kozubska-Sobocińska, A.; Danielak-Czech, B.; Rejduch, B.; Kowol, P.; Żyga, A. A note on cytogenetic monitoring of Polish Red cattle. J. Anim. Feed Sci. 2004, 13, 65–71. [Google Scholar] [CrossRef]
- Quach, T.A.; Villagómez, D.A.F.; Coppola, G.; Pinton, A.; Hart, E.J.; Reyes, E.R.; Basrur, P.K.; King, W.A. A cytogenetic study of breeding boars in Canada. Cytogenet Genome Res. 2009, 126, 271–280. [Google Scholar] [CrossRef]
- Rejduch, B.; Danielak-Czech, B.; Kozubska-Sobocińska, A. FISH-based comparative analysis of human and porcine chromosome region involving obesity-related genes. Ann. Anim. Sci. 2010, 10, 367–372. [Google Scholar]
- Rejduch, B.; Kozubska-Sobocińska, A.; Danielak-Czech, B. Use of human painting probes for identification of centric fusion in wild boar. Chromosome Res. 2010, 18, 727–728. [Google Scholar]
- Danielak-Czech, B.; Słota, E.; Kozubska-Sobocińska, A.; Rejduch, B. A unique chromosome mutation in pigs: Tandem fusion-translocation. Chromosome Res. 2010, 18, 715–716. [Google Scholar]
- Danielak-Czech, B.; Słota, E. Tandem fusion-translocation: A unique karyotype rearrangement in the domestic pig. Ann. Anim. Sci. 2008, 8, 343–348. [Google Scholar]
- Danielak-Czech, B.; Słota, E.; Bugno, M.; Pieńkowska-Schelling, A.; Schelling, C. Application of chromosome microdissection and chromosome painting techniques for reciprocal translocations diagnosis in pigs. Ann. Anim. Sci. 2006, 6, 219–224. [Google Scholar]
- Rejduch, B.; Słota, E.; Sysa, P.; Kwaczyńska, A.; Kozubska-Sobocińska, A.; Danielak-Czech, B. Diagnosis of a new reciprocal translocation rcp(9;14)(q14;q23) in infertile boar after the synaptonemal complex analysis. Ann. Anim. Sci. 2003, 3, 269–278. [Google Scholar]
- Sanchez Sanchez, R.; Martin-Lluch, M.; Gomez Fidalgo, E.; Perez Garnelo, S.; Gonzales-Bulnes, A.; De la Cruz Vigo, P. Several cases of homozygous pericentric inversion in a population of hyperprolific breeding sows. Chromosome Res. 2016, 24 (Suppl. 1), S15. [Google Scholar]
- Danielak-Czech, B.; Kozubska-Sobocińska, A.; Słota, E.; Rejduch, B.; Kwaczyńska, A. Preliminary identification of pair 1 chromosome rearrangement in the Polish Landrace sow. Cytogenet. Cell Genet. 1996, 74, 230. [Google Scholar]
- Hornak, M.; Oracova, E.; Hulinska, P.; Urbankova, L.; Rubes, J. Aneuploidy detection in pigs using comparative genomic hybridization: From the oocytes to blastocysts. PLoS ONE 2012, 7, e30335. [Google Scholar] [CrossRef] [Green Version]
- Pinton, A.; Barasc, H.; Raymond-Letron, I.; Bordedebat, M.; Mary, N.; Massip, K.; Bonnet, N.; Calgaro, A.; Dudez, A.M.; Feve, K.; et al. Meiotic studies of a 38,XY/39,XXY mosaic boar. Cytogenet. Genome Res. 2011, 133, 202–208. [Google Scholar] [CrossRef]
- Quilter, C.R.; Wood, D.; Southwood, O.I.; Griffin, D.K. X/XY/XYY mosaicism as a cause of subfertility in boars: A single case study. Anim. Genet. 2003, 34, 51–54. [Google Scholar] [CrossRef]
- Słota, E.; Kozubska-Sobocińska, A.; Kościelny, M.; Danielak-Czech, B.; Rejduch, B. Detection of the XXY trisomy in a bull by using sex chromosome painting probes. J. Appl. Genet. 2003, 44, 379–382. [Google Scholar]
- Barasc, H.; Ferchaud, S.; Mary, N.; Cucchi, M.A.; Lucena, A.N.; Letron, I.R.; Calgaro, A.; Bonnet, N.; Dudez, A.M.; Yerle, M.; et al. Cytogenetic analysis of somatic and germinal cells from 38,XX/38,XY phenotypically normal boars. Theriogenology 2014, 81, 368–372. [Google Scholar] [CrossRef]
- Kozubska-Sobocińska, A.; Danielak-Czech, B.; Rejduch, B. Cytogenetic and molecular diagnostics of XX/XY chimerism in cattle, sheep, and goats—A review. Ann. Anim. Sci. 2016, 16, 989–1005. [Google Scholar] [CrossRef] [Green Version]
- Kozubska-Sobocińska, A.; Rejduch, B. Identification of heterosomes in spermatozoa of rams with 54,XX/54,XY chimerism. Vet. Med. 2008, 53, 250–254. [Google Scholar] [CrossRef] [Green Version]
- Sanchez Sanchez, R.; De la Cruz Vigo, P.; Gomez Fidalgo, E.; Perez Garnelo, S.; Gonzales-Bulnes, A.; Martin-Lluch, M. A case of mosaicism (38XY/38XX) in a boar from an insemination center of Iberian pig population. Chromosome Res. 2016, 24 (Suppl. 1), S11. [Google Scholar]
- Szczerbal, I.; Dzimira, S.; Nowacka-Woszuk, J.; Świtoński, M. Leucocyte chimerism (XX/XY) in pigs with severe disorders of sex development. Chromosome Res. 2016, 24 (Suppl. 1), S10. [Google Scholar]
- Bickmore, W.A. Karyotype analysis and chromosome banding. In Encyclopedia of Life Sciences; John Wiley & Sons, Ltd.: Chichester, UK, 2001; pp. 1–7. [Google Scholar]
- Vorsanowa, S.G.; Burov, Y.B.; Iourov, I.Y. Human interphase chromosomes: A review of available molecular cytogenetic technologies. Mol. Cytogenet. 2010, 3, 2–15. [Google Scholar]
- Gustavsson, I. Standard karyotype of domestic pig. Hereditas 1988, 109, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Galman, O.; Yerle, M.; Echard, E. The high resolution G-banded karyotype of Sus scrofa domestica L. Genet. Sel. Evol. 1991, 23, 113–116. [Google Scholar] [CrossRef]
- Yerle, M.; Galman, O.; Echard, G. The high resolution GTG-banding pattern of pig chromosomes. Cytogenet Cell Genet. 1991, 56, 45–47. [Google Scholar] [CrossRef]
- Gustavsson, I. Chromosomes of the pig. Adv. Vet. Sci. Comp. Med. 1990, 34, 73–107. [Google Scholar]
- Rejduch, B.; Kozubska-Sobocińska, A.; Słota, E.; Sysa, P.; Wrzeska, M. Evaluation of chromosomal changes in gonads and their effect on boar fertility. Med. Weter. 2006, 62, 931–932. (In Polish) [Google Scholar]
- Pinkel, D.; Straume, T.; Gray, J.W. Cytogenetic analysis using quantitative, high sensitive, fluorescence hybridization. Proc. Nat. Acad. Sci. USA 1986, 83, 2934–2938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danielak-Czech, B.; Rejduch, B.; Kozubska-Sobocińska, A. Identification of telomeric sequences in pigs with rearranged karyotype using PRINS technique. Ann. Anim. Sci. 2013, 13, 495–502. [Google Scholar] [CrossRef]
- Chowdhary, B.P.; Raudsepp, T. Chromosome painting in farm, pet and wild animal species. Methods Cell Sci. 2001, 23, 37–55. [Google Scholar] [CrossRef]
- Fronicke, L.; Wienberg, J. Comparative chromosome painting defines the high rate of karyotype changes between pigs and bovids. Mamm. Genome 2001, 12, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Kozubska-Sobocińska, A.; Słota, E.; Pieńkowska, A. The application of FISH technique for diagnosing leukocyte chimerism in sheep. Med. Weter. 2003, 59, 987–989. (In Polish) [Google Scholar]
- Goureau, A.; Yerle, M.; Schmitz, A.; Riquet, D.; Milan, D.; Pinton, P.; Frelat, G.; Gellin, J. Human and porcine correspondence of chromosome segments using bidirectional chromosome painting. Genomics 1996, 36, 252–262. [Google Scholar] [CrossRef]
- Kozubska-Sobocińska, A.; Rejduch, B.; Danielak-Czech, B.; Babicz, M.; Bąk, A. Comparative sex chromosomes hybridizations in Ruminantia. Ann. Anim. Sci. 2012, 12, 495–500. [Google Scholar] [CrossRef] [Green Version]
- Danielak-Czech, B.; Kozubska-Sobocińska, A.; Kruczek, K.; Babicz, M.; Rejduch, B. Physical mapping of the HSPB genes in the domestic and wild pigs. Chromosome Res. 2014, 22, 413. [Google Scholar]
- Fahrenkrug, S.C.; Rohrer, G.A.; Freking, B.A.; Smith, T.P.L.; Osoegawa, K.; Shu, C.L.; Catanese, J.J.; de Jong, P.J. A porcine BAC library with tenfold genome coverage: A resource for physical and genetic map integration. Mamm. Genome 2001, 12, 472–474. [Google Scholar] [CrossRef] [Green Version]
- Shizuya, H.; Kouros-Mehr, H. The development of applications of the bacterial artificial chromosome cloning system. Keio J. Med. 2001, 50, 21–30. [Google Scholar] [CrossRef]
- Telenius, H.; Pelmear, A.H.; Tunnacliffe, A.; Carter, N.P.; Behmel, A.; Ferguson-Smith, M.A.; Nordenskjold, M.; Pfragner, R.; Ponder, B.A. Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow-sorted chromosomes. Genes Chromosome Cancer 1992, 4, 257–263. [Google Scholar] [CrossRef]
- Langford, C.F.; Telenius, H.; Miller, N.G.; Thomsen, P.D.; Tucker, E.M. Preparation of chromosome-specific paints and complete assignment of chromosome in the pig flow-sorted karyotype. Anim. Genet. 1993, 24, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Yerle, M.; Schmitz, A.; Milan, D.; Chaput, B.; Monteagudo, L.; Vaiman, M.; Frelat, G.; Gellin, J. Accurate characterization of porcine bivariate flow karyotype by PCR and fluorescence in situ hybridization. Genomics 1993, 16, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Pinton, A.; Ducos, A.; Yerle, M. Chromosomal rearrangements in cattle and pigs revealed by chromosome microdissection and chromosome painting. Genet. Sel. Evol. 2003, 35, 685–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubickova, S.; Cernohorska, H.; Musilova, P.; Rubes, J. The use of laser microdissection for the preparation of chromosome-specific painting probes in farm animals. Chromosome Res. 2002, 10, 571–577. [Google Scholar] [CrossRef]
- Chaudhary, R.; Kijas, J.; Raudsepp, T.; Guan, X.Y.; Zhang, H.; Chowdhary, B.P. Microdissection of pig chromosomes: Dissection of whole chromosomes, arms and bands for construction of paints and libraries. Hereditas 1998, 128, 265–271. [Google Scholar] [CrossRef]
- Dolezel, J.; Vrana, J.; Safar, J.; Bartos, J.; Kubalakova, M.; Simkova, H. Chromosomes in the flow to simplify genome analysis. Funct. Integr. Genom. 2012, 12, 397–416. [Google Scholar] [CrossRef] [Green Version]
- Langford, C.F.; Telenius, H.; Carter, N.P.; Miller, N.G.; Tucker, E.M. Chromosome painting using chromosome-specific probes from flow-sorted pig chromosomes. Cytogenet. Cell Genet. 1992, 61, 221–223. [Google Scholar] [CrossRef]
- Schmitz, A.; Chardon, P.; Gainche, I.; Chaput, B.; Guilly, M.N.; Frelat, G.; Vaiman, M. Pig standard bivariate flow karyotype and peak assignment for chromosomes X, Y, 3, and 7. Genomics 1992, 14, 357–362. [Google Scholar] [CrossRef]
- Dixon, S.C.; Miller, N.G.; Carter, N.P.; Tucker, E.M. Bivariate flow cytometry of farm animal chromosomes: A potential tool for gene mapping. Anim. Genet. 1992, 23, 203–210. [Google Scholar] [CrossRef]
- Pellestor, F.; Girardet, A.; Lefort, G.; Andreo, B.; Charlieu, J.P. PRINS as a method for rapid chromosomal labeling on human spermatozoa. Mol. Reprod. Dev. 1995, 40, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Gu, F.; Handkjaer, I.; Gustavsson, I.; Bolund, L. A signal of telomeric sequences on porcine chromosome 6q21-q22 detected by primed in situ labeling. Chromosome Res. 1996, 4, 251–252. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.R.; Hindnkjaer, J.; Thomsen, P.D. A chromosomal basis for the differential organization of a porcine centromere-specific repeat. Cytogenet. Cell Genet. 1993, 62, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Rogel-Gaillard, C.; Hayes, H.; Coullin, P.; Chardon, P.; Vaiman, M. Swine centromeric DNA repeats revealed by primed in situ (PRINS) labeling. Cytogenet. Cell Genet. 1997, 79, 79–84. [Google Scholar] [CrossRef]
- Apiou, F.; Vincent-Naulleau, S.; Spatz, A.; Vielh, P.; Geffrotin, C.; Frelat, G.; Dutrillaux, B.; Le Chalony, C. Comparative genomic hybridization analysis of hereditary swine cutaneous melanoma revealed loss of the swine 13q36-49 chromosomal region in the nodular melanoma subtype. Int. J. Cancer 2004, 110, 232–238. [Google Scholar] [CrossRef]
- Hornak, M.; Hulinska, P.; Musilova, P.; Kubickova, S.; Rubes, J. Investigation of chromosome aneuploidies in early porcine embryos using comparative genomic hybridization. Cytogenet. Genome Res. 2009, 126, 210–216. [Google Scholar] [CrossRef]
- Liang, D.; Wang, Y.; Ji, X.; Hu, H.; Zhang, J.; Meng, L.; Lin, Y.; Ma, D.; Jiang, T.; Jiang, H.; et al. Clinical application of whole-genome low-coverage next-generation sequencing to detect and characterize balanced chromosomal translocations. Clin Genet. 2017, 91, 605–610. [Google Scholar] [CrossRef]
- Grahofer, A.; Letko, A.; Hafliger, I.M.; Jagannathan, V.; Ducos, A.; Richard, O.; Peter, V.; Nathues, H.; Drogemuller, C. Chromosomal imbalance in pigs showing a syndromic form of cleft palate. BMC Genomics 2019, 20, 349. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, R.E.; Fonseka, G.; Frodsham, R.; Archibald, A.L.; Lawrie, M.; Walling, G.A.; Griffin, D.K. Development of a porcine chromosomal translocation screening device reveals errors in the pig genome assembly. Chromosome Res. 2016, 24 (Suppl. 1), S33. [Google Scholar]
- Long, S. Reciprocal translocations in the pig (Sus scrofa): A review. Vet. Rec. 1991, 128, 275–278. [Google Scholar] [CrossRef]
- Tribout, T.; Ducos, A.; Maygnel, L.; Bidanel, J.P. Utilisation du système d’information BLUP pour la détection des verrats porteurs d’anomalies chromosomiques. Techniporc 2000, 23, 19–24. [Google Scholar]
- Bonneau, M.; Boscher, J.; Popescu, C.P. Consequences zootechniques des translocations reciproques dans un troupeau experimental porcin: Incidence economique. Journées Rech. Porcine 1991, 23, 395–400. [Google Scholar]
- Martin-Lluch, M.; De la Cruz-Vigo, P.; Ortuno, V.; Gomez-Fidalgo, E.; Carrascosa, C.; Sánchez-Sánchez, R. Cytogenetic study of a reciprocal translocation (1;6)(q17;p11) in a subfertile boar. Chromosome Res. 2014, 22, 393–437. [Google Scholar]
- Sanchez-Sánchez, R.; Gomez-Fidalgo, E.; Perez-Garnelo, S.; Martin-Lluch, M.; Cruz-Vigo, P.D.L. Prevalence of chromosomal aberrations in breeding pigs in Spain. Reprod Dom Anim. 2019, 54 (Suppl. 4), 98–101. [Google Scholar] [CrossRef] [PubMed]
- King, W.A.; Donaldson, B.; Rezaei, S.; Schmidt, C.; Revay, T.; Villagomez, D.A.; Kuschke, K. Chromosomal abnormalities in swine and their impact on production and profitability. In Comprehensive Biotechnology, 3rd ed.; Moo-Young, M., Ed.; Pergamon Press: Oxford, UK, 2019; pp. 508–518. [Google Scholar]
- Calgaro, A.; Mouney-Bonnet, N.; Loustau, A.M.; Revel, C.; Barasc, H.; Mary, N.; Ducos, A.; Pinton, A. Chromosomal control of pig populations in France. Chromosome Res. 2016, 24 (Suppl. 1), S16. [Google Scholar]
- Available online: http://www.envt.fr/menu-og-34/plateforme-de-cytogénetique-animale (accessed on 15 July 2020).
- Roca, J.; Broekhuijse, M.L.W.J.; Parrilla, I.; Rodriguez-Martinez, H.; Martinez, E.A.; Bolarin, A. Boar differences in artificial insemination outcomes: Can they be minimized? Reprod. Dom. Anim. 2015, 50 (Suppl. 2), 48–55. [Google Scholar] [CrossRef] [Green Version]
- Villagomez, D.A.; Revay, T.; Donaldson, B.; Rezaei, S.; Pinton, A.; Palomino, M.; King, W.A. Azoospermia and testicular hypoplasia in a boar carrier of a novel Y-autosome translocation. Sex. Dev. 2017, 11, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Danielak-Czech, B.; Słota, E. Mutagen-induced chromosome instability in farm animals. J. Anim. Feed Sci. 2004, 13, 257–267. [Google Scholar] [CrossRef] [Green Version]
- Genualdo, V.; Rossetti, C.; Pauciullo, A.; Musilova, P.; Incaenato, D.; Perucatti, A. A de novo reciprocal chromosomal translocation t(3;6)(p14;q26) in the black Lucano pig. Reprod. Domest. Anim. 2020. [Google Scholar] [CrossRef]
- Raudsepp, T.; Chowdhary, B.P. Chromosome aberrations and fertility disorders in domestic animals. Annu. Rev. Anim. Biosci. 2016, 4, 15–43. [Google Scholar] [CrossRef]
Pig Karyotype Abnormalities | Effect on Carrier Fertility | Cytomolecular Diagnostics | Comments |
---|---|---|---|
Reciprocal translocations | Reduced fertility of sires and herds (5–100%) | Giemsa staining, differential banding techniques (GTG, RBA, QFQ), FISH | Techniques used for routine analysis: Giemsa staining, GTG technique, and FISH; in special cases, a multiprobe system for diagnostics of cryptic micro-rearrangement |
Robertsonian translocations and tandem fusions | Reduced fertility (5–22%) | Giemsa staining, differential banding techniques (GTG, RBA, QFQ), FISH | Techniques used for routine analysis: Giemsa staining, GTG technique, and FISH in difficult cases |
Peri- and paracentric inversions | Reduced fertility (less than 10%) | Giemsa staining, differential banding techniques (GTG, RBA, QFQ), FISH | Techniques used for routine analysis: Giemsa staining, GTG technique, and FISH in difficult cases |
Sex chromosome aneuploidies and leukocyte chimerism | Reduced fertility or infertility | Giemsa staining, differential banding techniques (GTG, RBA, QFQ), FISH | Techniques used for routine analysis: Giemsa staining, GTG technique, and FISH with heterosome probes or the array–CGH method in difficult cases |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Danielak-Czech, B.; Kozubska-Sobocińska, A.; Smołucha, G.; Babicz, M. Breeding and Economic Aspects of Cytogenetic Screening Studies of Pigs Qualified for Reproduction. Animals 2020, 10, 1200. https://doi.org/10.3390/ani10071200
Danielak-Czech B, Kozubska-Sobocińska A, Smołucha G, Babicz M. Breeding and Economic Aspects of Cytogenetic Screening Studies of Pigs Qualified for Reproduction. Animals. 2020; 10(7):1200. https://doi.org/10.3390/ani10071200
Chicago/Turabian StyleDanielak-Czech, Barbara, Anna Kozubska-Sobocińska, Grzegorz Smołucha, and Marek Babicz. 2020. "Breeding and Economic Aspects of Cytogenetic Screening Studies of Pigs Qualified for Reproduction" Animals 10, no. 7: 1200. https://doi.org/10.3390/ani10071200
APA StyleDanielak-Czech, B., Kozubska-Sobocińska, A., Smołucha, G., & Babicz, M. (2020). Breeding and Economic Aspects of Cytogenetic Screening Studies of Pigs Qualified for Reproduction. Animals, 10(7), 1200. https://doi.org/10.3390/ani10071200