Resilience of Lambs to Limited Water Availability without Compromising Their Production Performance
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nardone, A.; Ronchi, B.; Lacetera, N.; Ranieri, M.; Bernabucci, U. Effects of climate changes on animal production and sustainability of livestock systems. Livest. Sci. 2010, 130, 57–69. [Google Scholar] [CrossRef]
- Silanikove, N. The physiological basis of adaptation in goats to harsh environments. Small Rumin. Res. 2000, 35, 181–193. [Google Scholar] [CrossRef]
- Aganga, A.A.; Umunna, N.N.; Okoh, P.N.; Oyedipe, E.O. Water metabolism of ruminants—A review. J. Anim. Prod. Res. 1986, 6, 171–181. [Google Scholar]
- De Araújo, G.G.L.; Voltolini, T.V.; Chizzotti, M.L.; Turco, S.H.N.; De Carvalho, F.F.R. Water and small ruminant production. Rev. Bras. Zootec. 2010, 39, 326–336. [Google Scholar] [CrossRef] [Green Version]
- Ehrlenbruch, R.; Pollen, T.; Andersen, I.L.; Bøe, K.E. Competition for water at feeding time—The effect of increasing number of individuals per water dispenser. Appl. Anim. Behav. Sci. 2010, 126, 105–108. [Google Scholar] [CrossRef]
- Coimbra, P.A.D.; Machado Filho, L.C.P.; Hötzel, M.J. Effects of social dominance, water trough location and shade availability on drinking behaviour of cows on pasture. Appl. Anim. Behav. Sci. 2012, 139, 175–182. [Google Scholar] [CrossRef]
- Al-Ramamneh, D.; Riek, A.; Gerken, M. Effect of water restriction on drinking behaviour and water intake in German black-head mutton sheep and Boer goats. Animal 2012, 6, 173–178. [Google Scholar] [CrossRef] [Green Version]
- Silanikove, N. The struggle to maintain hydration and osmoregulation in animals experiencing severe dehydration and rapid rehydration: The story of ruminants. Exp. Physiol. 1994, 79, 281–300. [Google Scholar] [CrossRef] [PubMed]
- Forbes, J.M. The water intake of ewes. Br. J. Nutr. 1968, 22, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Benjamin, R.W.; Chen, M.; Degen, A.A.; Aziz, N.A.; Hadad, M.J.A. Estimation of the dry-and organic-matter intake of young sheep grazing a dry Mediterranean pasture, and their maintenance requirements. J. Agric. Sci. 1977, 88, 513–520. [Google Scholar] [CrossRef]
- More, T.; Howard, B.; Siebert, B. Effect of level of water intake on water, energy and nitrogen balance and thyroxine secretion in sheep and goats. Aust. J. Agric. Res. 1983, 34, 441–446. Available online: https://www.publish.csiro.au/cp/AR9830441 (accessed on 29 June 2020). [CrossRef]
- Silanikove, N. Effects of water scarcity and hot environment on appetite and digestion in ruminants: A review. Livest. Prod. Sci. 1992, 30, 175–194. [Google Scholar] [CrossRef]
- NRC—National Research Council. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; National Academy Press: Washington, DC, USA, 2007. [Google Scholar]
- Aganga, A.A. Water utilization by sheep and goats in northern Nigeria. World Anim. Rev. 1992, 73, 9–14. [Google Scholar]
- Ferreira, A.V.; Hoffman, L.C.; Schoeman, S.J.; Sheridan, R. Water intake of Boer goats and Mutton merinos receiving either a low or high energy feedlot diet. Small Rumin. Res. 2002, 43, 245–248. [Google Scholar] [CrossRef]
- Alamer, M. Effect of water restriction on lactation performance of Aardi goats under heat stress conditions. Small Rumin. Res. 2009, 84, 76–81. [Google Scholar] [CrossRef]
- Jaber, L.S.; Habre, A.; Rawda, N.; Said, M.A.; Barbour, E.K.; Hamadeh, S. The effect of water restriction on certain physiological parameters in Awassi sheep. Small Rumin. Res. 2004, 54, 115–120. [Google Scholar] [CrossRef]
- Hamadeh, S.K.; Rawda, N.; Jaber, L.S.; Habre, A.; Said, M.A.; Barbour, E.K. Physiological responses to water restriction in dry and lactating Awassi ewes. Livest. Sci. 2006, 101, 101–109. [Google Scholar] [CrossRef]
- Ghanem, A.M.; Jaber, L.S.; Abi Said, M.; Barbour, E.K.; Hamadeh, S.K. Physiological and chemical responses in water-deprived Awassi ewes treated with vitamin C. J. Arid Environ. 2008, 72, 141–149. [Google Scholar] [CrossRef]
- Asplund, J.M.; Pfandes, W.H. Effects of Water Restriction on Nutrient Digestibility in Sheep Receiving Fixed Water: Feed Ratios. J. Anim. Sci. 1972, 35, 1271–1274. [Google Scholar] [CrossRef]
- Hadjigeorgiou, I.; Dardamani, K.; Goulas, C.; Zervas, G. The effect of water availability on feed intake and digestion in sheep. Small Rumin. Res. 2000, 37, 147–150. [Google Scholar] [CrossRef]
- Muna, M.M.A.; Ammar, I.E.S. Effects of water and feed restriction on body weight change and nitrogen balance in desert goats fed high and low quality forages. Small Rumin. Res. 2001, 41, 19–27. [Google Scholar] [CrossRef]
- LPHSI—Livestock and Poultry Heat Stress Indices. Agriculture Engineering Technology Guide; Clemson University: Clemson, SC, USA, 1990. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Horwitz, W.; Latimer, G.W. Official Methods of Analysis, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2006. [Google Scholar]
- Silanikove, N. Effects of heat stress on the welfare of extensively managed domestic ruminants. Livest. Prod. Sci. 2000, 67, 1–18. [Google Scholar] [CrossRef]
- Aganga, A.A.; Umunna, N.N.; Oyedipe, E.O.; Okoh, P.N. Breed differences in water metabolism and body composition of sheep and goats. J. Agric. Sci. 1989, 113, 255–258. [Google Scholar] [CrossRef]
- Ikhatua, U.J.; Dede, T.I.; Apumami, A.S. Water and feed utilization relationship in West African Dwarf (Forest) goats of Southern Nigeria. Niger. J. Anim. Prod. 1992, 19, 120–124. [Google Scholar]
- Abdelatif, A.M.; Ahmed, M.M.M. Water restriction, thermoregulation, blood constituents and endocrine responses in Sudanese desert sheep. J. Arid Environ. 1994, 26, 171–180. [Google Scholar] [CrossRef]
- Vosooghi-Postindoz, V.; Tahmasbi, A.; Naserian, A.A.; Valizade, R.; Ebrahimi, H. Effect of water deprivation and drinking saline water on performance, blood metabolites, nutrient digestibility, and rumen parameters in Baluchi lambs. Iran. J. Appl. Anim. Sci. 2018, 8, 445–456. [Google Scholar]
- Kaliber, M.; Koluman, N.; Silanikove, N. Physiological and behavioral basis for the successful adaptation of goats to severe water restriction under hot environmental conditions. Animal 2016, 10, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Abioja, M.O.; Osinowo, O.A.; Adebambo, O.A.; Bello, N.J.; Abiona, J.A. Water restriction in goats during hot-dry season in the humid tropics: Feed intake and weight gain. Arch. Zootec. 2010, 59, 195–203. [Google Scholar] [CrossRef] [Green Version]
- Jaber, L.S.; Hanna, N.; Barbour, E.K.; Said, M.A.; Rawda, N.; Chedid, M.; Hamadeh, S.K. Fat mobilization in water restricted Awassi ewes supplemented with vitamin C. J. Arid Environ. 2011, 75, 625–628. [Google Scholar] [CrossRef]
- Adogla-Bessa, T.; Aganga, A.A. Responses of Tswana goats to various lengths of water deprivation. S. Afr. J. Anim. Sci. 2000, 30, 87–91. [Google Scholar] [CrossRef]
- Hussein, A.H. Resilience of Sheep to Limited Water Availability. Ph.D. Thesis, Oklahoma State University, Stillwater, OK, USA, May 2019. [Google Scholar]
- Shain, D.H.; Stock, R.A.; Klopfenstein, T.J.; Herold, D.W. The effect of forage source and particle size on finishing yearling steer performance and ruminal metabolism. J. Anim. Sci. 1999, 77, 1082–1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadjigeorgiou, I.E.; Gordon, I.; Milne, J.A. Intake, digestion and selection of roughage with different staple lengths by sheep and goats. Small Rumin. Res. 2003, 47, 117–132. [Google Scholar] [CrossRef]
- Islam, R.; Redoy, M.R.A.; Shuvo, A.A.S.; Sarker, M.A.H.; Akbar, M.A.; Al-Mamun, M. Effect of pellet from total mixed ration on growth performance, blood metabolomics, carcass and meat characteristics of Bangladeshi garole sheep. Prog. Agric. 2017, 28, 222–229. [Google Scholar] [CrossRef] [Green Version]
- Parrott, R.F.; Lloyd, D.M.; Goode, J.A. Stress hormone responses of sheep to food and water deprivation at high and low ambient temperatures. Anim. Welf. 1996, 5, 45–56. [Google Scholar]
- Olsson, K. Fluid Balance in Ruminants: Adaptation to External and Internal Challenges. Ann. N. Y. Acad. Sci. 2005, 1040, 156–161. [Google Scholar] [CrossRef]
- Abdoun, K.A.; Alameen, A.; Elmagbol, W.; Makkawi, T.; Al-Haidary, A. Effects of hydration status on osmolality and minerals profile of serum and forestomach liquor in dromedary camel. J. Camel Pract. Res. 2010, 17, 235–240. [Google Scholar]
- Aganga, A.; Alabi, O.; Momoh, M. Effect of water deprivation on nutrient digestibility, nitrogen retention, and water excretion in Yankasa sheep and Maradi goats. Niger. J. Anim. Prod. 1988, 15, 139–143. [Google Scholar]
- Laden, S.; Nehmadi, L.; Yagil, R. Dehydration tolerance in Awassi fat-tailed sheep. Can. J. Zool. 1987, 65, 363–367. [Google Scholar] [CrossRef]
- Yagil, R. Urea metabolism. In The Desert Camel: Comparative Physiological Adaptation; Yagil, R., Ed.; Karger: Basel, Switzerland, 1985; pp. 37–42. [Google Scholar]
- Ben Salem, H.; Nefzaoui, A.; Ben Salem, L.; Tisserand, J.L. Deactivation of condensed tannins in Acacia cyanophylla Lindl. foliage by polyethylene glycol in feed blocks. Livest. Prod. Sci. 2000, 64, 51–60. [Google Scholar] [CrossRef]
- Fluharty, F.L.; Loerch, S.C.; Dehority, B.A. Effects of feed and water deprivation on ruminal characteristics and microbial population of newly weaned and feedlot-adapted calves. J. Anim. Sci. 1996, 74, 465–474. [Google Scholar] [CrossRef]
- Engelhardt, W.V. Studies on the regulation of water equilibrium in the goat rumen. 1. Rumen fluid volume, fluid outflow into the omasum, net fluid inflow into the rumen and fluid exchange through the rumen wall. Pflug. Arch. Gesamte Physiol. Menschen Tiere 1963, 278, 141–151. [Google Scholar]
- Brosh, A.; Choshniak, I.; Tadmor, A.; Shkolnik, A. Physico-chemical conditions in the rumen of bedouin goats: Effect of drinking, food quality and feeding time. J. Agric. Sci. 1988, 111, 147–153. [Google Scholar] [CrossRef]
- Burgos, M.S.; Senn, M.; Sutter, F.; Kreuzer, M.; Langhans, W. Effect of water restriction on feeding and metabolism in dairy cows. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001, 280, R418–R427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garza, F.; Owens, F.N.; Breazile, J.E. Effects of diet on ruminal liquid and on blood serum osmolality and hematocrit in feedlot heifers. Misc. Publ. Agric. Exp. Stn. Okla. State Univ. 1989, 127, 68–76. [Google Scholar]
- Rémond, D.; Chaise, J.P.; Delval, E.; Poncet, C. Net transfer of urea and ammonia across the ruminal wall of sheep. J. Anim. Sci. 1993, 71, 2785–2792. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Yang, W.Z. Effects of Physically Effective Fiber on Intake, Chewing Activity, and Ruminal Acidosis for Dairy Cows Fed Diets Based on Corn Silage. J. Dairy Sci. 2005, 88, 2117–2129. [Google Scholar] [CrossRef] [Green Version]
- Casamassima, D.; Vizzarri, F.; Nardoia, M.; Palazzo, M. The effect of water-restriction on various physiological variables in intensively reared Lacaune ewes. Vet. Med. 2016, 61, 623–634. [Google Scholar] [CrossRef]
- El-Sherif, M.; Assad, F. Changes in some blood constituents of Barki ewes during pregnancy and lactation under semi-arid conditions. Small Rumin. Res. 2001, 40, 269–277. [Google Scholar] [CrossRef]
- Degen, A.A.; Kam, M. Body mass loss and body fluid shifts during dehydration in Dorper sheep. J. Agric. Sci. 1992, 119, 419–422. [Google Scholar] [CrossRef]
- Cork, S.C.; Halliwell, M.A. The Veterinary Laboratory and Field Manual; Nottingham University Press: Nottingham, UK, 2002. [Google Scholar]
- Mengistu, U.L.; Puchala, R.; Sahlu, T.; Gipson, T.A.; Dawson, L.J.; Goetsch, A.L. Comparison of different levels and lengths of restricted drinking water availability and measurement times with Katahdin sheep and Boer and Spanish goat withers. Small Rumin. Res. 2016, 144, 320–333. [Google Scholar] [CrossRef] [Green Version]
- Hindson, J.C.; Winter, A.C. Outline of Clinical Diagnosis in Sheep; Butterworth and Co., Wright Kent: North Tawton, Devon, UK, 1996. [Google Scholar]
- Caldeira, R.; Belo, A.; Santos, C.; Vazques, M.I.; Portugal, A.V. The effect of body condition score on blood metabolites and hormonal profiles in ewes. Small Rumin. Res. 2007, 68, 233–241. [Google Scholar] [CrossRef]
Nutrients | Composition (DM Basis) |
---|---|
Dry matter (DM, %) | 92.43 |
Ash (%) | 7.79 |
Organic matter (OM, %) | 92.21 |
Crude protein (CP, %) | 13.04 |
Ether extract (EE, %) | 3.70 |
Neutral detergent fiber (NDF, %) | 49.28 |
Acid detergent fiber (ADF, %) | 23.45 |
Metabolizable energy (MJ/kg) 1 | 11.30 |
Parameters 1 | Treatments 2 | SEM | p Value | ||
---|---|---|---|---|---|
W-0 | W-33 | W-67 | |||
Duration (days) | 42 | 42 | 42 | - | - |
Initial BW (kg) | 38.75 | 38.84 | 38.90 | 0.24 | 0.675 |
Final BW (kg) | 48.05 a | 44.51 a | 41.98 b | 1.20 | 0.006 |
DMI (kg/d) | 1.28 a | 1.16 b | 0.91 c | 0.03 | <0.001 |
ADG (kg/d) | 0.21 a | 0.17 a | 0.08 b | 0.02 | 0.003 |
TWG (kg) | 9.30 a | 5.67 b | 3.08 c | 0.16 | 0.015 |
FCR (DMI: gain) | 6.10 a | 6.82 ab | 11.38 b | 0.64 | 0.026 |
Parameters 1 | Treatments 2 | SEM | p Value | ||
---|---|---|---|---|---|
W-0 | W-33 | W-67 | |||
N intake (g/d) | 26.52 a | 25.74 a | 22.19 b | 1.01 | 0.024 |
Fecal output (g/d) | 632 b | 738 a | 554 c | 0.01 | <0.001 |
Fecal DM (%) | 49.05 b | 46.61 b | 55.60 a | 0.01 | 0.001 |
N fecal (g/d) | 9.31 ab | 10.01 a | 8.55 b | 0.30 | 0.015 |
N fecal (%) | 1.47 ab | 1.36 a | 1.54 b | 0.27 | 0.039 |
N absorbed (g/d) | 17.01 a | 15.74 b | 13.65 c | 0.18 | <0.001 |
N absorption (%) | 64.63 a | 61.59 b | 61.46 b | 0.16 | <0.001 |
Urine output (mL/d) | 1046.6 a | 338.6 b | 327.1 b | 0.05 | <0.001 |
N urine (g/d) | 3.44 a | 4.22 a | 2.08 b | 0.57 | 0.037 |
N excreted (g/d) | 12.75 a | 14.23 a | 10.63 b | 0.87 | 0.035 |
N retained (g/d) | 13.78 a | 11.51 b | 11.56 b | 0.30 | <0.001 |
N retention (%) | 51.66 a | 45.03 b | 51.79 a | 1.02 | <0.001 |
N RFA (%) | 81.01 b | 73.12 c | 84.69 a | 0.15 | <0.001 |
Parameters 1 | Treatments 2 | SEM | p Value | ||
---|---|---|---|---|---|
W-0 | W-33 | W-67 | |||
DM | 75.46 a | 72.19 b | 70.78 b | 0.84 | 0.006 |
CP | 64.63 a | 61.59 b | 61.46 b | 0.16 | <0.001 |
EE | 93.09 | 92.67 | 93.28 | 1.44 | 0.954 |
CF | 58.89 a | 48.67 c | 54.75 b | 0.92 | <0.001 |
NDF | 77.55 a | 74.04 b | 72.59 b | 0.78 | 0.002 |
ADF | 60.63 a | 51.66 b | 50.94 b | 0.75 | <0.001 |
OM | 78.21 a | 73.64 b | 74.08 b | 0.66 | 0.001 |
Parameters | Treatments 1 | SEM | p Value | ||
---|---|---|---|---|---|
W-0 | W-33 | W-67 | |||
pH | 6.66 a | 6.61 a | 6.43 b | 0.07 | 0.046 |
Osmolality (mosm/L) | 253 | 269 | 277 | 12.50 | 0.052 |
Parameters 1 | Treatments 2 | SEM | p Value | ||
---|---|---|---|---|---|
W-0 | W-33 | W-67 | |||
Albumin (g/dL) | 3.39 b | 3.47 b | 3.80 a | 0.04 | 0.025 |
Total protein (g/dL) | 5.65 c | 6.60 b | 7.30 a | 0.06 | 0.013 |
Urea N (mg/dL) | 26.29 c | 34.22 b | 55.82 a | 0.52 | 0.001 |
Glucose (mg/dL) | 82.60 b | 92.41 a | 96.15 a | 2.15 | 0.005 |
NEFA (mmol/L) | 0.50 c | 0.57 b | 0.64 a | 0.57 | 0.028 |
Osmolality (mosm/L) | 279.77 b | 307.25 a | 317.61 a | 5.49 | 0.021 |
Creatinine (mg/dL) | 1.63 | 1.76 | 1.77 | 0.13 | 0.584 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adeniji, Y.A.; Sanni, M.O.; Abdoun, K.A.; Samara, E.M.; Al-Badwi, M.A.; Bahadi, M.A.; Alhidary, I.A.; Al-Haidary, A.A. Resilience of Lambs to Limited Water Availability without Compromising Their Production Performance. Animals 2020, 10, 1491. https://doi.org/10.3390/ani10091491
Adeniji YA, Sanni MO, Abdoun KA, Samara EM, Al-Badwi MA, Bahadi MA, Alhidary IA, Al-Haidary AA. Resilience of Lambs to Limited Water Availability without Compromising Their Production Performance. Animals. 2020; 10(9):1491. https://doi.org/10.3390/ani10091491
Chicago/Turabian StyleAdeniji, Yusuf A., Musafau O. Sanni, Khalid A. Abdoun, Emad M. Samara, Mohamed A. Al-Badwi, Majdi A. Bahadi, Ibrahim A. Alhidary, and Ahmed A. Al-Haidary. 2020. "Resilience of Lambs to Limited Water Availability without Compromising Their Production Performance" Animals 10, no. 9: 1491. https://doi.org/10.3390/ani10091491
APA StyleAdeniji, Y. A., Sanni, M. O., Abdoun, K. A., Samara, E. M., Al-Badwi, M. A., Bahadi, M. A., Alhidary, I. A., & Al-Haidary, A. A. (2020). Resilience of Lambs to Limited Water Availability without Compromising Their Production Performance. Animals, 10(9), 1491. https://doi.org/10.3390/ani10091491