Dietary Supplementation of Probiotic Lactobacillus acidophilus Modulates Cholesterol Levels, Immune Response, and Productive Performance of Laying Hens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Lactobacillus Culture Preparation
2.2. Experimental Design, Birds, and Dietary Treatments
2.3. Layer Productive Performance
2.4. Plasma Triglycerides and Cholesterol Analysis
2.5. Immune Response Parameters
2.5.1. Total White Blood Cell (TWBC) Count
2.5.2. Heterophil to Lymphocyte (H/L) Ratio
2.5.3. Antibody Titer
2.5.4. PHA-Wattle Test
2.5.5. Peripheral Lymphocyte Proliferation
2.6. Statistical Analysis
3. Results
3.1. Triglycerides and Cholesterol Analysis
3.2. Immune Response Parameters
3.3. Layer Productive Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jeloka, T.K.; Dharmatti, G.; Jamdade, T.; Pandit, M. Are oral protein supplements helpful in the management of malnutrition in dialysis patients? Indian J. Nephrol. 2013, 23, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Weggemans, R.M.; Zock, P.L.; Katan, M.B. Dietary cholesterol from eggs increases the ratio of total cholesterol to high-density lipoprotein cholesterol in humans: A meta-analysis. Am. J. Clin. Nutr. 2001, 73, 885–891. [Google Scholar] [CrossRef] [PubMed]
- Kaptoge, S.; Pennells, L.; De Bacquer, D.; Cooney, M.T.; Kavousi, M.; Stevens, G.; Riley, L.M.; Savin, S.; Khan, T.; Altay, S.; et al. World Health Organization cardiovascular disease risk charts: Revised models to estimate risk in 21 global regions. Lancet Glob. Heal. 2019, 7, e1332–e1345. [Google Scholar] [CrossRef] [Green Version]
- Sirri, F.; Zampiga, M.; Soglia, F.; Meluzzi, A.; Cavani, C.; Petracci, M. Quality characterization of eggs from Romagnola hens, an Italian local breed. Poult. Sci. 2018, 97, 4131–4136. [Google Scholar] [CrossRef]
- Mahfuz, S.U.; Nahar, M.J.; Mo, C.; Ganfu, Z.; Zhongjun, L.; Hui, S. Inclusion of probiotic on chicken performance and immunity: A review. Int. J. Poult. Sci. 2017, 16, 328–335. [Google Scholar] [CrossRef] [Green Version]
- Ooi, L.G.; Liong, M.T. Cholesterol-lowering effects of probiotics and prebiotics: A review of in Vivo and in Vitro Findings. Int. J. Mol. Sci. 2010, 11, 2499–2522. [Google Scholar] [CrossRef]
- Panda, A.K.; Rao, S.S.R.; Raju, M.V.L.N.; Sharma, S.S. Effect of probiotic (Lactobacillus sporogenes) feeding on egg production and quality, yolk cholesterol and humoral immune response of White Leghorn layer breeders. J. Sci. Food Agric. 2008, 88, 43–47. [Google Scholar] [CrossRef]
- Tang, S.G.H.; Sieo, C.C.; Ramasamy, K.; Saad, W.Z.; Wong, H.K.; Ho, Y.W. Performance, biochemical and haematological responses, and relative organ weights of laying hens fed diets supplemented with prebiotic, probiotic and synbiotic. BMC Vet. Res. 2017, 13. [Google Scholar] [CrossRef] [Green Version]
- Salarmoini, M.; Fooladi, M.H. Efficacy of Lactobacillus acidophilus as Probiotic to Improve Broiler Chicks Performance. J. Agric. Sci. Technol. 2011, 13, 165–172. [Google Scholar]
- De Cesare, A.; Sirri, F.; Manfreda, G.; Moniaci, P.; Giardini, A.; Zampiga, M.; Meluzzi, A. Effect of dietary supplementation with Lactobacillus acidophilus D2/CSL (CECT 4529) on caecum microbioma and productive performance in broiler chickens. PLoS ONE 2017, 12. [Google Scholar] [CrossRef] [Green Version]
- Gallazzi, D.; Giardini, A.; Mangiagalli, G.M.; Marelli, S.; Ferrazzi, V.; Orsi, C.; Cavalchini, G.L. Effects of Lactobacillus acidophilus D2/CSL on laying hen performance. Ital. J. Anim. Sci. 2008, 7, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Balevi, T.; An, U.S.U.; Coskun, B.; Kurtoglu, V.; Etingül, I.S. Effect of dietary probiotic on performance and humoral immune response. Br. Poult. Sci. 2001, 42, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Kurtoglu, V.; Kurtoglu, F.; Seker, E.; Coskun, B.; Balevi, T.; Polat, E.S. Effect of probiotic supplementation on laying hen diets on yield performance and serum and egg yolk cholesterol. Food Addit. Contam. 2004, 21, 817–823. [Google Scholar] [CrossRef] [PubMed]
- Saleh, A.A.; Gálik, B.; Arpášová, H.; Capcarová, M.; Kalafová, A.; Šimko, M.; Juráček, M.; Rolinec, M.; Bíro, D.; Abudabos, A.M. Synergistic effect of feeding Aspergillus awamori and lactic acid bacteria on performance, egg traits, egg yolk cholesterol and fatty acid profile in laying hens. Ital. J. Anim. Sci. 2017, 16, 132–139. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.L.; Xie, Q.M.; Ji, J.; Yang, W.H.; Wu, Y.B.; Li, C.; Ma, J.Y.; Bi, Y.Z. Different combinations of probiotics improve the production performance, egg quality, and immune response of layer hens. Poult. Sci. 2012, 91, 2755–2760. [Google Scholar] [CrossRef]
- Getachew, T.; Hawaz, E.; Ameha, N.; Guesh, T. Effect of Probiotic Lactobacillus Species Supplementation on Productive Traits of White Leghorn Chicken. J. World Poult. Res. 2016, 6, 199–204. [Google Scholar]
- Forte, C.; Moscati, L.; Acuti, G.; Mugnai, C.; Franciosini, M.P.; Costarelli, S.; Cobellis, G.; Trabalza-Marinucci, M. Effects of dietary Lactobacillus acidophilus and Bacillus subtilis on laying performance, egg quality, blood biochemistry and immune response of organic laying hens. J. Anim. Physiol. Anim. Nutr. (Berl.) 2016, 100, 977–987. [Google Scholar] [CrossRef]
- Kemgang, T.S.; Kapila, S.; Shanmugam, V.P.; Kapila, R. Cross-talk between probiotic lactobacilli and host immune system. J. Appl. Microbiol. 2014, 117, 303–319. [Google Scholar] [CrossRef]
- Fathi, M.; Al-Homidan, I.; Al-Dokhail, A.; Ebeid, T.; Abou-Emera, O.; Alsagan, A. Effects of dietary probiotic (Bacillus subtilis) supplementation on productive performance, immune response and egg quality characteristics in laying hens under high ambient temperature. Ital. J. Anim. Sci. 2018, 17, 804–814. [Google Scholar] [CrossRef] [Green Version]
- Arreguin-Nava, M.A.; Hernández-Patlán, D.; Solis-Cruz, B.; Latorre, J.D.; Hernandez-Velasco, X.; Tellez, G.; El-Ashram, S.; Hargis, B.M.; Tellez-Isaias, G. Isolation and identification of lactic acid bacteria probiotic culture candidates for the treatment of salmonella enterica serovar enteritidis in neonatal Turkey poults. Animals 2019, 9, 696. [Google Scholar] [CrossRef] [Green Version]
- El-Sharkawy, H.; Tahoun, A.; Rizk, A.M.; Suzuki, T.; Elmonir, W.; Nassef, E.; Shukry, M.; Germoush, M.O.; Farrag, F.; Bin-Jumah, M.; et al. Evaluation of Bifidobacteria and Lactobacillus Probiotics as Alternative Therapy for Salmonella typhimurium Infection in Broiler Chickens. Animals 2020, 10, 1023. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Si, W.; Forster, R.J.; Huang, R.; Yu, H.; Yin, Y.; Yang, C.; Han, Y. 16S rRNA gene-based analysis of mucosa-associated bacterial community and phylogeny in the chicken gastrointestinal tracts: From crops to ceca. FEMS Microbiol. Ecol. 2007, 59, 147–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, X.; Xiang, Y.; Lou, F.; Tu, P.; Zhang, X.; Hu, X.; Lyu, W.; Xiao, Y. Microbial community and short-chain fatty acid mapping in the intestinal tract of quail. Animals 2020, 10, 1006. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; Association of Official Analysis Chemists International: Washington, DC, USA, 2005; ISBN 0935584544. [Google Scholar]
- Bishop, M. Clinical Chemistry: Principles, Techniques, and Correlations, Enhanced 8th ed.; Jones & Bartlett Learning, LLC: Burlington, MA, USA, 2020; ISBN 128451014X/9781284510140. [Google Scholar]
- Abass, A.O.; Kamel, N.N.; Khalifa, W.H.; Gouda, G.F.; El-Manylawi, M.A.F.; Mehaisen, G.M.K.; Mashaly, M.M.M. Propolis supplementation attenuates the negative effects of oxidative stress induced by paraquat injection on productive performance and immune function in Turkey poults. Poult. Sci. 2017, 96, 4419–4429. [Google Scholar] [CrossRef]
- Loa, C.C.; Lin, T.L.; Wu, C.C.; Bryan, T.; Thacker, H.L.; Hooper, T.; Schrader, D. Humoral and cellular immune responses in turkey poults infected with turkey coronavirus. Poult. Sci. 2001, 80, 1416–1424. [Google Scholar] [CrossRef]
- Al-Khalifa, H. Immunological techniques in avian studies. Worlds Poult. Sci. J. 2016, 72, 573–584. [Google Scholar] [CrossRef]
- Mehaisen, G.M.K.; Eshak, M.G.; Elkaiaty, A.M.; Atta, A.-R.M.M.; Mashaly, M.M.; Abass, A.O. Comprehensive growth performance, immune function, plasma biochemistry, gene expressions and cell death morphology responses to a daily corticosterone injection course in broiler chickens. PLoS ONE 2017, 12, 172684. [Google Scholar] [CrossRef]
- Kalavathy, R.; Abdullah, N.; Jalaludin, S.; Ho, Y.W. Effects of Lactobacillus cultures on growth performance, abdominal fat deposition, serum lipids and weight of organs of broiler chickens. Br. Poult. Sci. 2003, 44, 139–144. [Google Scholar] [CrossRef]
- Panda, A.K.; Rao, S.V.R.; Raju, M.V.L.N.; Sharma, S.R. DIetary supplementation of Lactobacillus Sporogenes on Performance and serum biochemico-lipid profile of broiler chickens. Poult. Sci. 2006, 43, 235–240. [Google Scholar] [CrossRef] [Green Version]
- Begley, M.; Hill, C.; Gahan, C.G.M. Bile salt hydrolase activity in probiotics. Appl. Environ. Microbiol. 2006, 72, 1729–1738. [Google Scholar] [CrossRef] [Green Version]
- Cohen, D.E. Balancing cholesterol synthesis and absorption in the gastrointestinal tract. J. Clin. Lipidol. 2008, 2, S1–S3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziarno, M. In vitro Cholesterol Uptake by Lactobacillus Acidophilus Isolates. Acta Sci. Pol. Technol. Aliment. 2008, 7, 65–74. [Google Scholar]
- Shini, S.; Huff, G.R.; Shini, A.; Kaiser, P. Understanding stress-induced immunosuppression: Exploration of cytokine and chemokine gene profiles in chicken peripheral leukocytes. Poult. Sci. 2010, 89, 841–851. [Google Scholar] [CrossRef] [PubMed]
- Saki, A.A.; Khoramabadi, V.; Nourian, A.R.; Zamani, P. Immune response, blood parameters and growth performance in broiler fed reduced protein diet supplemented with β-hydroxy-β-methyl butyrate and conjugated linoleic acid. Acta Sci. Anim. Sci. 2018, 40, 1–6. [Google Scholar] [CrossRef]
- Krams, I.; Vrublevska, J.; Cirule, D.; Kivleniece, I.; Krama, T.; Rantala, M.J.; Sild, E.; Hõrak, P. Heterophil/lymphocyte ratios predict the magnitude of humoral immune response to a novel antigen in great tits (Parus major). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2012, 161, 422–428. [Google Scholar] [CrossRef]
- Villagrán-de la Mora, Z.; Vázquez-paulino, O.; Avalos, H.; Ascencio, F.; Nuño, K.; Villarruel-lópez, A. Effect of a synbiotic mix on lymphoid organs of broilers infected with salmonella typhimurium and clostridium perfringens. Animals 2020, 10, 886. [Google Scholar] [CrossRef]
- Koenen, M.E.; Kramer, J.; Van Der Hulst, R.; Heres, L.; Jeurissen, S.H.M.; Boersma, W.J.A. Immunomodulation by probiotic lactobacilli in layer- And meat-type chickens. Br. Poult. Sci. 2004, 45, 355–366. [Google Scholar] [CrossRef]
- Li, Z.; Nestor, K.; Saif, Y.; JW, A. Antibody responses to sheep red blood cell and Brucella abortus antigens in a turkey line selected for increased body weight and its randombred control. Poult. Sci. 2000, 79, 804–809. [Google Scholar] [CrossRef]
- Lammers, K.M.; Brigidi, P.; Vitali, B.; Gionchetti, P.; Rizzello, F.; Caramelli, E.; Matteuzzi, D.; Campieri, M. Immunomodulatory effects of probiotic bacteria DNA: IL-1 and IL-10 response in human peripheral blood mononuclear cells. FEMS Immunol. Med. Microbiol. 2003, 38, 165–172. [Google Scholar] [CrossRef]
- Maassen, C.B.M.; Van Holten-Neelen, C.; Balk, F.; Den Bak-Glashouwer, M.J.H.; Leer, R.J.; Laman, J.D.; Boersma, W.J.; Claassen, E. Strain-dependent induction of cytokine profiles in the gut by orally administered Lactobacillus strains. Vaccine 2000, 18, 2613–2623. [Google Scholar] [CrossRef]
- Ding, Y.H.; Qian, L.Y.; Pang, J.; Lin, J.Y.; Xu, Q.; Wang, L.H.; Huang, D.S.; Zou, H. The regulation of immune cells by Lactobacilli: A potential therapeutic target for anti-atherosclerosis therapy. Oncotarget 2017, 8, 59915–59928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torii, A.; Torii, S.; Fujiwara, S.; Tanaka, H.; Inagaki, N.; Nagai, H. Lactobacillus acidophilus strain L-92 regulates the production of Th1 cytokine as well as Th2 cytokines. Allergol. Int. 2007, 56, 293–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fooladi, A.A.I.; Yazdi, M.H.; Pourmand, M.R.; Mirshafiey, A.; Mohammad Hassan, Z.; Azizi, T.; Mahdavi, M.; Dallal, M.M.S. Th1 Cytokine Production Induced by Lactobacillus acidophilus in BALB/c Mice Bearing Transplanted Breast Tumor. Jundishapur J. Microbiol. 2015, 8, 17354. [Google Scholar] [CrossRef] [Green Version]
- Shah, M.M.; Saio, M.; Yamashita, H.; Tanaka, H.; Takami, T.; Ezaki, T.; Inagaki, N. Lactobacillus acidophilus strain L-92 induces CD4+ CD25+ Foxp3+ regulatory T cells and suppresses allergic contact dermatitis. Biol. Pharm. Bull. 2012, 35, 612–616. [Google Scholar] [CrossRef] [Green Version]
- Karimi, K.; Inman, M.D.; Bienenstock, J.; Forsythe, P. Lactobacillus reuteri-induced regulatory T cells protect against an allergic airway response in mice. Am. J. Respir. Crit. Care Med. 2009, 179, 186–193. [Google Scholar] [CrossRef]
- Lee, J.; Bang, J.; Woo, H.J. Effect of orally administered Lactobacillus brevis HY7401 in a food allergy mouse model. J. Microbiol. Biotechnol. 2013, 23, 1636–1640. [Google Scholar] [CrossRef] [Green Version]
- Won, T.J.; Kim, B.; Oh, E.S.; Bang, J.S.; Lee, Y.J.; Yoo, J.S.; Yu, H.; Yoon, J.; Hyung, K.E.; Park, S.Y.; et al. Immunomodulatory activity of Lactobacillus strains isolated from fermented vegetables and infant stool. Can. J. Physiol. Pharmacol. 2011, 89, 429–434. [Google Scholar] [CrossRef]
- Mañé, J.; Pedrosa, E.; Lorén, V.; Gassull, M.A.; Espadaler, J.; Cuñé, J.; Audivert, S.; Bonachera, M.A.; Cabré, E. A mixture of Lactobacillus plantarum CECT 7315 and CECT 7316 enhances systemic immunity in elderly subjects. A dose-response, double-blind, placebo-controlled, randomized pilot trial. Nutr. Hosp. 2011, 26, 228–235. [Google Scholar] [CrossRef]
- Emruzi, Z.; Babaheidarian, P.; Arshad, M.; Ahangari, G. Effect of Hyperlipidemia on Cell Mediated Immunity; Could it be as Predisposing Factor of Cancer Risk. Biomed. J. Sci. Tech. Res. 2018, 12, 9188–9192. [Google Scholar] [CrossRef] [Green Version]
- Kalavathy, R.; Abdullah, W.; Jalaludin, S.; Wong, C.M.V.L.; Ho, Y.W. Effects of Lactobacillus cultures on performance and egg quality during the early laying period of hens. J. Anim. Feed Sci. 2005, 14, 537–547. [Google Scholar] [CrossRef]
- Boostani, A.; Fard, H.R.M.; Ashayerizadeh, A.; Aminafshar, M. Growth performance, carcass yield and intestinal microflora populations of broilers fed diets containing thepax and yogurt. Rev. Bras. Cienc. Avic. 2013, 15, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Trela, J.; Kierończyk, B.; Hautekiet, V.; Józefiak, D. Combination of bacillus licheniformis and salinomycin: Effect on the growth performance and git microbial populations of broiler chickens. Animals 2020, 10, 889. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.Z.; Ho, Y.W.; Abdullah, N.; Jalaludin, S. Digestive and bacterial enzyme activities in broilers fed diets supplemented with Lactobacillus cultures. Poult. Sci. 2000, 79, 886–891. [Google Scholar] [CrossRef] [PubMed]
- Khajali, F.; Karimi, S.; Qujeq, D. Probiotics in Drinking Water Alleviate Stress of Induced Molting in Feed-deprived Laying Hens. Asian-Australas. J. Anim. Sci. 2008, 21, 1196–1200. [Google Scholar] [CrossRef]
- Shini, S.; Shini, A.; Blackall, P.J. The potential for probiotics to prevent reproductive tract lesions in free-range laying hens. Anim. Prod. Sci. 2013, 53, 1298–1308. [Google Scholar] [CrossRef] [Green Version]
Ingredients | % | Calculated Nutrient Analysis | |
---|---|---|---|
Yellow corn | 56.55 | Metabolizable energy (MJ/kg) | 1.26 |
Soybean meal (44%) | 27.60 | Crude protein (%) | 17.47 |
Wheat bran | 1.00 | Calcium (%) | 4.02 |
Soybean oil | 3.00 | Available phosphorus (%) | 0.52 |
Bone meal | 3.00 | Lysine (%) | 0.95 |
Limestone | 8.00 | Methionine (%) | 0.42 |
Salt (NaCl) | 0.40 | Linoleic acid (%) | 2.88 |
Vit. & min. mixture * | 0.30 | ||
DL-Methionine | 0.15 | ||
Total | 100 | ||
Chemical analysis | |||
Metabolizable energy (MJ/kg) | 1.28 | ||
Dry matter (%) | 89.0 | ||
Crude protein (%) | 16.75 | ||
Ether extract (%) | 6.6 | ||
Crude fiber (%) | 4.7 | ||
Total ash (%) | 12.9 | ||
Calcium (%) | 4.22 | ||
Available phosphorus (%) | 0.42 |
Trait | L. acidophilus Levels (CFU/kg) | |||
---|---|---|---|---|
0 | 1 × 109 | 2 × 109 | 3 × 109 | |
Plasma triglyceride, mg/dl | 210.1 ± 7.01 a | 198.5 ± 7.12 a | 159.9 ± 5.98 b | 166.4 ± 6.03 b |
Plasma Cholesterol, mg/dl | 136.6 ± 4.54 a | 122.3 ± 4.04 b | 123.3 ± 3.77 b | 123.7 ± 3.28 b |
HDL cholesterol, mg/dl | 61. 8 ± 1.91 b | 60.0 ± 1.85 b | 65.7 ± 1.84 a | 67.8 ± 1.64 a |
LDL cholesterol, mg/dl | 70.3 ± 1.80 a | 60.8 ± 1.41 b | 56.6 ± 1.64 c | 55.4 ± 1.45 c |
Liver cholesterol, mg/g | 4.1 ± 0.24 a | 3.5 ± 0.21 b | 3.3 ± 0.20 b | 3.2 ± 0.24 b |
Yolk cholesterol, mg/g | 13.7 ± 1.08 a | 11.4 ± 1.05 ab | 10.5 ± 0.77 b | 10.2 ± 0.87 b |
Trait | L. acidophilus Levels (CFU/kg) | |||
---|---|---|---|---|
0 | 1 × 109 | 2 × 109 | 3 × 109 | |
TWBC count (103/mm3) | 43.96 ± 6.184 | 47.72 ± 5.902 | 50.78 ± 5.132 | 52.88 ± 5.877 |
H/L ratio | 0.66 ± 0.067 a | 0.54 ± 0.077 ab | 0.47 ± 0.084 b | 0.44 ± 0.087 b |
Antibody titer (Log2) | 6.37 ± 0.484 b | 7.99 ± 0.644 a | 8.62 ± 0.738 a | 8.48 ± 0.822 a |
PHA-wattle test (mm) | 0.32 ± 0.030 b | 0.50 ± 0.055 a | 0.54 ± 0.064 a | 0.57 ± 0.050 a |
T-lymphocyte proliferation * | 3.47 ± 0.399 b | 4.80 ± 0.424 a | 5.01 ± 0.360 a | 5.40 ± 0.564 a |
B-lymphocyte proliferation * | 2.29 ± 0.331 b | 3.92 ± 0.349 a | 4.16 ± 0.238 a | 3.96 ± 0.231 a |
Trait | L. acidophilus Levels (CFU/kg) | |||
---|---|---|---|---|
0 | 1 × 109 | 2 × 109 | 3 × 109 | |
Initial body weight (g) | 1873.9 ± 1.49 | 1873.3 ± 1.21 | 1872.8 ± 1.16 | 1872.5 ± 1.29 |
Final body weight (g) | 1889.2 ± 1.09 | 1887.8 ± 1.35 | 1890.0 ± 1.81 | 1887.2 ± 1.47 |
Egg production (%) | 93.2 ± 0.54 b | 93.6 ± 0.61 b | 93.9 ± 0.42 b | 95.4 ± 0.38 a |
Egg weight (g) | 61.7 ± 0.41 b | 61.8 ± 0.40 b | 63.4 ± 0.39 a | 63.6 ± 0.34 a |
Egg mass (g) | 2419.5 ± 25.42 b | 2428.3 ± 31.24 b | 2488.7 ± 23.48 a | 2536.8 ± 31.65 a |
Feed Intake (g/d) | 131.3 ± 2.44 a | 127.4 ± 2.14 b | 126.6 ± 2.39 b | 128.5 ± 2.33 b |
Feed conversion ratio (kg feed/kg eggs) | 2.3 ± 0.07 a | 2.2 ± 0.10 ab | 2.1 ± 0.07 b | 2.1 ± 0.10 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alaqil, A.A.; Abbas, A.O.; El-Beltagi, H.S.; El-Atty, H.K.A.; Mehaisen, G.M.K.; Moustafa, E.S. Dietary Supplementation of Probiotic Lactobacillus acidophilus Modulates Cholesterol Levels, Immune Response, and Productive Performance of Laying Hens. Animals 2020, 10, 1588. https://doi.org/10.3390/ani10091588
Alaqil AA, Abbas AO, El-Beltagi HS, El-Atty HKA, Mehaisen GMK, Moustafa ES. Dietary Supplementation of Probiotic Lactobacillus acidophilus Modulates Cholesterol Levels, Immune Response, and Productive Performance of Laying Hens. Animals. 2020; 10(9):1588. https://doi.org/10.3390/ani10091588
Chicago/Turabian StyleAlaqil, Abdulaziz A., Ahmed O. Abbas, Hossam S. El-Beltagi, Hanaa. K. Abd El-Atty, Gamal M. K. Mehaisen, and Eman S. Moustafa. 2020. "Dietary Supplementation of Probiotic Lactobacillus acidophilus Modulates Cholesterol Levels, Immune Response, and Productive Performance of Laying Hens" Animals 10, no. 9: 1588. https://doi.org/10.3390/ani10091588
APA StyleAlaqil, A. A., Abbas, A. O., El-Beltagi, H. S., El-Atty, H. K. A., Mehaisen, G. M. K., & Moustafa, E. S. (2020). Dietary Supplementation of Probiotic Lactobacillus acidophilus Modulates Cholesterol Levels, Immune Response, and Productive Performance of Laying Hens. Animals, 10(9), 1588. https://doi.org/10.3390/ani10091588