Immunomodulatory Effects of Dietary Phosphorus and Calcium in Two Strains of Laying Hens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Birds and Housing
2.2. Diets
2.3. Sampling and Sample Preparation
2.4. Flow Cytometric Analysis
2.5. Isolation of Splenic Mononuclear Cells
2.6. Splenic Lymphocyte Proliferation Assay
2.7. Stimulation of IFN-γ Production
2.8. Enzyme-Linked Immunosorbent Assay
2.9. Statistical Analysis
3. Results
3.1. Impact of Strain, Dietary P and Ca on Number and Distribution of Immune Cells
3.1.1. Blood
3.1.2. Spleen
3.1.3. Cecal Tonsils
3.2. Impact of Strain, Dietary P and Ca on Functionality of Immune Cells
3.2.1. Antibody Concentrations
3.2.2. Lymphocyte Proliferation Capacity and IFN-γ Concentration
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Selle, P.H.; Cowieson, A.J.; Ravindran, V. Consequences of calcium interactions with phytate and phytase for poultry and pigs. Livest. Sci. 2009, 124, 126–141. [Google Scholar] [CrossRef]
- Jing, M.; Zhao, S.; Rogiewicz, A.; Slominski, B.A.; House, J.D. Assessment of the minimal available phosphorus needs of pullets during the pre-laying period. Poult. Sci. 2018, 97, 557–567. [Google Scholar] [CrossRef] [PubMed]
- Huber, K.; Zeller, E.; Rodehutscord, M. Modulation of small intestinal phosphate transporter by dietary supplements of mineral phosphorus and phytase in broilers. Poult. Sci. 2015, 94, 1009–1017. [Google Scholar] [CrossRef] [PubMed]
- Shastak, Y.; Zeller, E.; Witzig, M.; Schollenberger, M.; Rodehutscord, M. Effects of the composition of the basal diet on the evaluation of mineral phosphorus sources and interactions with phytate hydrolysis in broilers. Poult. Sci. 2014, 93, 2548–2559. [Google Scholar] [CrossRef] [PubMed]
- Sommerfeld, V.; Van Kessel, A.G.; Classen, H.L.; Schollenberger, M.; Kühn, I.; Rodehutscord, M. Phytate degradation in gnotobiotic broiler chickens and effects of dietary supplements of phosphorus, calcium, and phytase. Poult. Sci. 2019, 98, 5562–5570. [Google Scholar] [CrossRef]
- Bougouin, A.; Appuhamy, J.A.D.R.N.; Kebreab, E.; Dijkstra, J.; Kwakkel, R.P.; France, J. Effects of phytase supplementation on phosphorus retention in broilers and layers: A meta-analysis. Poult. Sci. 2014, 93, 1981–1992. [Google Scholar] [CrossRef]
- Kebreab, E.; France, J.; Kwakkel, R.P.; Leeson, S.; Kuhi, H.D.; Dijkstra, J. Development and evaluation of a dynamic model of calcium and phosphorus flows in layers. Poult. Sci. 2009, 88, 680–689. [Google Scholar] [CrossRef]
- De Vries, S.; Kwakkel, R.P.; Dijkstra, J. Dynamics of calcium and phosphorus metabolism in laying hens. In Phosphorus and Calcium Utilization and Requirements in Farm Animals; Vitti, D.M.S.S., Kebreab, E., Eds.; CABI: Wallingford, UK, 2010; pp. 133–155. [Google Scholar]
- Ahmadi, H.; Rodehutscord, M. A meta-analysis of responses to dietary nonphytate phosphorus and phytase in laying hens. Poult. Sci. 2012, 91, 2072–2078. [Google Scholar] [CrossRef]
- Sommerfeld, V.; Omotoso, A.; Oster, M.; Reyer, H.; Camarinha-Silva, A.; Hasselmann, M.; Huber, K.; Ponsuksili, S.; Seifert, J.; Stefanski, V.; et al. Phytate degradation, transcellular mineral transporters, and mineral utilization by two strains of laying hens as affected by dietary phosphorus and calcium. Animals 2020, 10, 1736. [Google Scholar] [CrossRef]
- Kidd, M.T. Nutritional modulation of immune function in broilers. Poult. Sci. 2004, 83, 650–657. [Google Scholar] [CrossRef]
- Heyer, C.M.E.; Weiss, E.; Schmucker, S.; Rodehutscord, M.; Hoelzle, L.E.; Mosenthin, R.; Stefanski, V. The impact of phosphorus on the immune system and the intestinal microbiota with special focus on the pig. Nutr. Res. Rev. 2015, 28, 67–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nari, N.; Ghasemi, H.A.; Hajkhodadadi, I.; Farahani, A.K. Intestinal microbial ecology, immune response, stress indicators, and gut morphology of male broiler chickens fed low-phosphorus diets supplemented with phytase, butyric acid, or Saccharomyces boulardii. Livest. Sci. 2020, 234, 103975. [Google Scholar] [CrossRef]
- Nie, W.; Wang, B.; Gao, J.; Guo, Y.; Wang, Z. Effects of dietary phosphorous supplementation on laying performance, egg quality, bone health and immune responses of laying hens challenged with Escherichia coli lipopolysaccharide. J. Anim. Sci. Biotechnol. 2018, 9, 53. [Google Scholar] [CrossRef] [PubMed]
- Kjærup, R.B.; Juul-Madsen, H.R.; Norup, L.R.; Sørensen, P.; Dalgaard, T.S. Comparison of growth performance and immune parameters of three commercial chicken lines used in organic production. Vet. Immunol. Immunopathol. 2017, 187, 69–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koenen, M.E.; Boonstra-Blom, A.G.; Jeurissen, S.H.M. Immunological differences between layer- and broiler-type chickens. Vet. Immunol. Immunopathol. 2002, 89, 47–56. [Google Scholar] [CrossRef]
- Dobner, M.; Auerbach, M.; Mundt, E.; Preisinger, R.; Icken, W.; Rautenschlein, S. Immune responses upon in ovo HVT-IBD vaccination vary between different chicken lines. Dev. Comp. Immunol. 2019, 100, 103422. [Google Scholar] [CrossRef]
- Abudabos, A.M. Phytate phosphorus utilization and intestinal phytase activity in laying hens. Ital. J. Anim. Sci. 2012, 11, e8. [Google Scholar] [CrossRef]
- Sommerfeld, V.; Huber, K.; Bennewitz, J.; Camarinha-Silva, A.; Hasselmann, M.; Ponsuksili, S.; Seifert, J.; Stefanski, V.; Wimmers, K.; Rodehutscord, M. Phytate degradation, myo-inositol release, and utilization of phosphorus and calcium by two strains of laying hens in five production periods. Poult. Sci. 2020, 99, 6797–6808. [Google Scholar] [CrossRef]
- Gesellschaft für Ernährungsphysiologie. Empfehlungen zur Energie- und Nährstoffversorgung der Legehennen und Masthühner (Broiler), 1st ed.; DLG-Verlag: Frankfurt am Main, Germany, 1999. [Google Scholar]
- Jeurissen, S.H.M. Structure and function of the chicken spleen. Res. Immunol. 1991, 142, 352–355. [Google Scholar] [CrossRef]
- Yun, C.-H.; Lillehoj, H.; Choi, K. Eimeria tenella infection induces local gamma interferon production and intestinal lymphocyte subpopulation changes. Infect. Immun. 2000, 68, 1282–1288. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, T.; Schmucker, S. Characterization of chicken leukocyte subsets from lymphatic tissue by flow cytometry. Cytometry 2020. [Google Scholar] [CrossRef] [PubMed]
- Kozak, M.; Piepho, H.-P. What’s normal anyway? residual plots are more telling than significance tests when checking ANOVA assumptions. J. Agro. Crop Sci. 2018, 204, 86–98. [Google Scholar] [CrossRef]
- Liu, N.; Ru, Y.J.; Cowieson, A.J.; Li, F.D.; Cheng, X.C. Effects of phytate and phytase on the performance and immune function of broilers fed nutritionally marginal diets. Poult. Sci. 2008, 87, 1105–1111. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.P.; Huang, Y.; Luo, Y.H.; Wang, L.L.; Ding, X.M.; Wang, J.P.; Zeng, Q.F.; Zhang, K.Y. Effect of dietary nonphytate phosphorus content on ileal lymphocyte subpopulations and cytokine expression in the cecal tonsils and spleen of laying hens that were or were not orally inoculated with Salmonella typhimurium. Am. J. Vet. Res. 2015, 76, 710–718. [Google Scholar] [CrossRef] [PubMed]
- Chung, E.L.T.; Kamalludin, M.H.; Jesse, F.F.A.; Reduan, M.F.H.; Ling, L.W.; Mahzan, N.M.; Henipah, N.N.M.M.A.; Loh, T.C.; Idrus, Z. Health performance and blood profile changes in commercial broilers supplemented with dietary monocalcium phosphate. Comp. Clin. Path. 2020, 29, 573–579. [Google Scholar] [CrossRef]
- Mohebbifar, A.; Torki, M.; Ghasemi, H.A. Effect of phytase supplementation of diets with different levels of rice bran and non-phytate phosphorus on productive performance, egg quality traits, leukocytes profile and serum lipids of laying hens reared indoor under high environmental temperatures. Anim. Feed Sci. Tech. 2015, 207, 222–233. [Google Scholar] [CrossRef]
- Abudabos, A. Intestinal phytase activity in chickens (Gallus Domesticus). Afr. J. Microbiol. Res. 2012, 6, 4932–4938. [Google Scholar] [CrossRef]
- Sommerfeld, V.; Schollenberger, M.; Kühn, I.; Rodehutscord, M. Interactive effects of phosphorus, calcium, and phytase supplements on products of phytate degradation in the digestive tract of broiler chickens. Poult. Sci. 2018, 97, 1177–1188. [Google Scholar] [CrossRef]
- Zeller, E.; Schollenberger, M.; Witzig, M.; Shastak, Y.; Kühn, I.; Hoelzle, L.E.; Rodehutscord, M. Interactions between supplemented mineral phosphorus and phytase on phytate hydrolysis and inositol phosphates in the small intestine of broilers. Poult. Sci. 2015, 94, 1018–1029. [Google Scholar] [CrossRef]
- Ballam, G.C.; Nelson, T.S.; Kirby, L.K. Effect of fiber and phytate source and of calcium and phosphorus level on phytate hydrolysis in the chick. Poult. Sci. 1984, 63, 333–338. [Google Scholar] [CrossRef]
- Sauer, K.; Cooke, M.P. Regulation of immune cell development through soluble inositol-1,3,4,5-tetrakisphosphate. Nat. Rev. Immunol. 2010, 10, 257–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, A.T.; Chamberlain, P.P.; Cooke, M.P. Beyond IP3: Roles for higher order inositol phosphates in immune cell signaling. Cell Cycle 2008, 7, 463–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, T.; Nishioka, T.; Ishizuka, S.; Hara, H. A novel mechanism underlying phytate-mediated biological action-phytate hydrolysates induce intracellular calcium signaling by a Gαq protein-coupled receptor and phospholipase C-dependent mechanism in colorectal cancer cells. Mol. Nutr. Food Res. 2010, 54, 947–955. [Google Scholar] [CrossRef] [PubMed]
- Feske, S. Calcium signalling in lymphocyte activation and disease. Nat. Rev. Immunol. 2007, 7, 690–702. [Google Scholar] [CrossRef]
- Diaz Carrasco, J.M.; Casanova, N.A.; Fernández Miyakawa, M.E. Microbiota, gut health and chicken productivity: What is the connection? Microorganisms 2019, 7, 374. [Google Scholar] [CrossRef] [Green Version]
- Maki, J.J.; Klima, C.L.; Sylte, M.J.; Looft, T. The microbial pecking order: Utilization of intestinal microbiota for poultry health. Microorganisms 2019, 7, 376. [Google Scholar] [CrossRef] [Green Version]
- Bortoluzzi, C.; Pedroso, A.A.; Mallo, J.J.; Puyalto, M.; Kim, W.K.; Applegate, T.J. Sodium butyrate improved performance while modulating the cecal microbiota and regulating the expression of intestinal immune-related genes of broiler chickens. Poult. Sci. 2017, 96, 3981–3993. [Google Scholar] [CrossRef]
- Borda-Molina, D.; Vital, M.; Sommerfeld, V.; Rodehutscord, M.; Camarinha-Silva, A. Insights into broilers’ gut microbiota fed with phosphorus, calcium, and phytase supplemented diets. Front. Microbiol. 2016, 7, 2033. [Google Scholar] [CrossRef] [Green Version]
- Heyer, C.M.E.; Schmucker, S.; Burbach, K.; Weiss, E.; Eklund, M.; Aumiller, T.; Capezzone, F.; Steuber, J.; Rodehutscord, M.; Hoelzle, L.E.; et al. Phytate degradation, intestinal microbiota, microbial metabolites and immune values are changed in growing pigs fed diets with varying calcium–phosphorus concentration and fermentable substrates. J. Anim. Physiol. Anim. Nutr. 2019, 103, 1185–1197. [Google Scholar] [CrossRef]
- Singh, R.; Joyner, C.J.; Peddie, M.J.; Taylor, T.G. Changes in the concentrations of parathyroid hormone and ionic calcium in the plasma of laying hens during the egg cycle in relation to dietary deficiencies of calcium and vitamin D. Gen. Comp. Endocrinol. 1986, 61, 20–28. [Google Scholar] [CrossRef]
- Veldman, C.M.; Cantorna, M.T.; DeLuca, H.F. Expression of 1,25-dihydroxyvitamin D(3) receptor in the immune system. Arch. Biochem. Biophys. 2000, 374, 334–338. [Google Scholar] [CrossRef] [PubMed]
- Martens, P.-J.; Gysemans, C.; Verstuyf, A.; Mathieu, A.C. Vitamin D’s effect on immune function. Nutrients 2020, 12, 1248. [Google Scholar] [CrossRef] [PubMed]
- Boodhoo, N.; Sharif, S.; Behboudi, S. 1α,25(OH)2 vitamin D3 modulates avian T lymphocyte functions without inducing CTL unresponsiveness. PLoS ONE 2016, 11, e0150134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shojadoost, B.; Behboudi, S.; Villanueva, A.I.; Brisbin, J.T.; Ashkar, A.A.; Sharif, S. Vitamin D3 modulates the function of chicken macrophages. Vet. Sci. Res. 2015, 100, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Lu, L.; Li, S.; Zhang, G.; Ouyang, L.; Robinson, K.; Tang, Y.; Zhu, Q.; Li, D.; Hu, Y. 1,25-dihydroxyvitamin-D3 induces avian β-defensin gene expression in chickens. PLoS ONE 2016, 11, e0154546. [Google Scholar] [CrossRef] [PubMed]
- Hughes, A.L.; Dahiya, J.P.; Wyatt, C.L.; Classen, H.L. Effect of quantum phytase on nutrient digestibility and bone ash in white leghorn laying hens fed corn-soybean meal-based diets. Poult. Sci. 2009, 88, 1191–1198. [Google Scholar] [CrossRef]
- Ravindran, V.; Thomas, D.V.; Thomas, D.G.; Morel, P.C.H. Performance and welfare of broilers as affected by stocking density and zinc bacitracin supplementation. Anim. Sci. J. 2006, 77, 110–116. [Google Scholar] [CrossRef]
- Seliger, C.; Schaerer, B.; Kohn, M.; Pendl, H.; Weigend, S.; Kaspers, B.; Härtle, S. A rapid high-precision flow cytometry based technique for total white blood cell counting in chickens. Vet. Immunol. Immunopathol. 2012, 145, 86–99. [Google Scholar] [CrossRef]
Strain | Dietary P | Dietary Ca | Leukocytes | Thrombocytes | Monocytes | Heterophils | T Cells | CD4+ T Cells | γδ T Cells | CD8α+ T Cells | B Cells |
---|---|---|---|---|---|---|---|---|---|---|---|
LSL 1 | P+ | Ca+ | 35,807 | 54,864 | 2677 | 3720 | 14,924 | 7036 | 4612 | 3144 | 1926 |
LSL | P+ | Ca− | 32,784 | 50,050 | 2627 | 3410 | 13,062 | 5892 | 4077 | 2827 | 2045 |
LSL | P− | Ca+ | 34,513 | 51,142 | 2015 | 3699 | 13,837 | 6705 | 4293 | 2745 | 2354 |
LSL | P− | Ca− | 33,428 | 51,913 | 2428 | 3011 | 13,194 | 6147 | 3968 | 2998 | 2522 |
LB 2 | P+ | Ca+ | 31,919 | 64,562 | 1623 | 7345 | 9974 | 5843 | 2241 | 1648 | 1322 |
LB | P+ | Ca− | 29,541 | 69,667 | 1541 | 6459 | 9346 | 5095 | 2701 | 1343 | 1398 |
LB | P− | Ca+ | 33,210 | 64,732 | 1674 | 7445 | 10,484 | 5436 | 2942 | 1947 | 1776 |
LB | P− | Ca− | 31,722 | 70,014 | 2368 | 7310 | 9550 | 5656 | 1995 | 1636 | 1616 |
SEM | 1539 | 2615 | 208 | 637 | 731 | 393 | 365 | 258 | 287 | ||
p-values | Strain × P × Ca | 0.847 | 0.413 | 0.501 | 0.486 | 0.473 | 0.620 | 0.032 | 0.612 | 0.708 | |
LB: P−Ca− < P+Ca− P−Ca− < P−Ca+ | |||||||||||
Strain × P | 0.319 | 0.745 | 0.006 | 0.416 | 0.389 | 0.827 | 0.810 | 0.174 | 0.946 | ||
LB: P− > P+ | |||||||||||
Strain × Ca | 0.981 | 0.073 | 0.655 | 0.656 | 0.887 | 0.340 | 1.000 | 0.265 | 0.693 | ||
P × Ca | 0.494 | 0.392 | 0.039 | 0.979 | 0.717 | 0.129 | 0.065 | 0.486 | 0.740 | ||
P−Ca− > P−Ca+ | |||||||||||
P | 0.466 | 0.837 | 0.732 | 0.982 | 0.971 | 0.879 | 0.646 | 0.375 | 0.049 | ||
P− > P+ | |||||||||||
Ca | 0.062 | 0.542 | 0.111 | 0.183 | 0.036 | 0.042 | 0.156 | 0.221 | 0.832 | ||
Ca− < Ca+ | Ca− < Ca+ | ||||||||||
Strain | 0.041 | <0.001 | 0.001 | <0.001 | <0.001 | 0.022 | <0.001 | <0.001 | 0.011 | ||
LSL > LB | LSL < LB | LSL > LB | LSL < LB | LSL > LB | LSL > LB | LSL > LB | LSL > LB | LSL > LB |
Strain | Dietary P | Dietary Ca | Leukocytes | Thrombocytes | Monocytes | T Cells | CD4+ T Cells | γδ T Cells | CD8α+ T Cells | B Cells |
---|---|---|---|---|---|---|---|---|---|---|
LSL 1 | P+ | Ca+ | 2741 | 241 | 6.25 | 1952 | 543 | 453 | 949 | 594 |
LSL | P+ | Ca− | 2866 | 226 | 5.72 | 1989 | 554 | 444 | 977 | 701 |
LSL | P− | Ca+ | 2730 | 242 | 6.88 | 1860 | 542 | 435 | 874 | 680 |
LSL | P− | Ca− | 2204 | 183 | 4.89 | 1485 | 406 | 339 | 734 | 575 |
LB 2 | P+ | Ca+ | 1965 | 167 | 3.29 | 1162 | 286 | 356 | 450 | 577 |
LB | P+ | Ca− | 2157 | 183 | 3.76 | 1324 | 298 | 388 | 611 | 616 |
LB | P− | Ca+ | 2136 | 180 | 4.37 | 1237 | 346 | 346 | 531 | 685 |
LB | P− | Ca− | 2219 | 173 | 4.55 | 1282 | 315 | 398 | 555 | 699 |
SEM | 233 | 23.8 | 1.13 | 156 | 44.6 | 41.4 | 95.5 | 78.9 | ||
p-values | Strain × P × Ca | 0.475 | 0.805 | 0.757 | 0.604 | 0.560 | 0.362 | 0.875 | 0.396 | |
Strain × P | 0.187 | 0.532 | 0.303 | 0.201 | 0.067 | 0.327 | 0.239 | 0.287 | ||
Strain × Ca | 0.291 | 0.259 | 0.245 | 0.199 | 0.470 | 0.113 | 0.185 | 0.803 | ||
P × Ca | 0.272 | 0.329 | 0.502 | 0.244 | 0.144 | 0.570 | 0.209 | 0.269 | ||
P | 0.585 | 0.595 | 0.427 | 0.283 | 0.827 | 0.315 | 0.416 | 0.487 | ||
Ca | 0.893 | 0.411 | 0.619 | 0.891 | 0.285 | 0.885 | 0.582 | 0.804 | ||
Strain | 0.015 | 0.010 | 0.015 | <0.001 | <0.001 | 0.189 | <0.001 | 0.922 | ||
LSL > LB | LSL > LB | LSL > LB | LSL > LB | LSL > LB | LSL > LB |
Strain | Dietary P | Dietary Ca | Leukocytes | T Cells | CD4+ T Cells | γδ T Cells | CD8α+ T Cells | B Cells |
---|---|---|---|---|---|---|---|---|
LSL 1 | P+ | Ca+ | 651 | 406 | 72.6 | 92.4 | 232 | 142 |
LSL | P+ | Ca− | 616 | 373 | 68.5 | 76.0 | 225 | 164 |
LSL | P− | Ca+ | 654 | 388 | 83.8 | 85.7 | 214 | 173 |
LSL | P− | Ca− | 523 | 309 | 58.0 | 68.2 | 178 | 140 |
LB 2 | P+ | Ca+ | 484 | 336 | 55.9 | 58.5 | 215 | 87.7 |
LB | P+ | Ca− | 452 | 299 | 55.2 | 61.7 | 176 | 96.8 |
LB | P− | Ca+ | 557 | 392 | 73.1 | 87.8 | 226 | 93.2 |
LB | P− | Ca− | 396 | 265 | 50.2 | 64.4 | 142 | 64.6 |
SEM | 55.8 | 33.6 | 9.88 | 8.11 | 20.8 | 22.2 | ||
p-values | Strain × P × Ca | 0.720 | 0.640 | 0.897 | 0.272 | 0.724 | 0.821 | |
Strain × P | 0.563 | 0.332 | 0.636 | 0.039 | 0.634 | 0.431 | ||
LB: P− > P+ | ||||||||
Strain × Ca | 0.653 | 0.471 | 0.923 | 0.577 | 0.144 | 0.682 | ||
P × Ca | 0.129 | 0.132 | 0.108 | 0.192 | 0.172 | 0.101 | ||
P | 0.604 | 0.474 | 0.716 | 0.374 | 0.122 | 0.546 | ||
Ca | 0.020 | 0.004 | 0.054 | 0.027 | 0.005 | 0.497 | ||
Ca− < Ca+ | Ca− < Ca+ | Ca− < Ca+ | Ca− < Ca+ | |||||
Strain | 0.009 | 0.108 | 0.169 | 0.086 | 0.142 | 0.001 | ||
LSL > LB | LSL > LB |
Plasma | Bile | |||||
---|---|---|---|---|---|---|
Strain | Dietary P | Dietary Ca | IgY [mg/mL] | IgM [µg/mL] | IgA [µg/mL] | IgA [mg/mL] |
LSL 1 | P+ | Ca+ | 15.4 | 777 | 186 | 37.6 |
LSL | P+ | Ca− | 12.4 | 789 | 233 | 55.0 |
LSL | P− | Ca+ | 9.0 | 780 | 335 | 62.2 |
LSL | P− | Ca− | 12.7 | 713 | 292 | 59.6 |
LB 2 | P+ | Ca+ | 13.8 | 715 | 453 | 38.5 |
LB | P+ | Ca− | 14.6 | 606 | 378 | 48.1 |
LB | P− | Ca+ | 12.4 | 664 | 351 | 37.1 |
LB | P− | Ca− | 12.7 | 777 | 388 | 55.9 |
SEM | 2.19 | 69.2 | 54.9 | 6.10 | ||
p-values | Strain × P × Ca | 0.232 | 0.088 | 0.157 | 0.085 | |
Strain × P | 0.596 | 0.271 | 0.023 | 0.181 | ||
LSL: P− > P+ | ||||||
Strain × Ca | 0.944 | 0.794 | 0.708 | 0.396 | ||
P × Ca | 0.296 | 0.378 | 0.854 | 0.499 | ||
P | 0.138 | 0.754 | 0.193 | 0.049 | ||
P− > P+ | ||||||
Ca | 0.684 | 0.737 | 0.993 | 0.007 | ||
Ca− > Ca+ | ||||||
Strain | 0.456 | 0.253 | 0.008 | 0.113 | ||
LSL < LB |
Strain | Dietary P | Dietary Ca | Lymphocyte Proliferation | IFN-γ | ||
---|---|---|---|---|---|---|
ConA [∆ cpm] | PWM [∆ cpm] | ConA [pg/mL] | PWM [pg/mL] | |||
LSL 1 | P+ | Ca+ | 681 | 1401 | 3981 | 4438 |
LSL | P+ | Ca− | 1076 | 1784 | 3999 | 4882 |
LSL | P− | Ca+ | 1044 | 1761 | 4700 | 2455 |
LSL | P− | Ca− | 1120 | 1668 | 5555 | 3515 |
LB 2 | P+ | Ca+ | 144 | 929 | 500 | 1239 |
LB | P+ | Ca− | 186 | 814 | 695 | 1603 |
LB | P− | Ca+ | 332 | 996 | 1925 | 2489 |
LB | P− | Ca− | 228 | 951 | 1056 | 2829 |
SEM | 211 | 194 | 1831 | 955 | ||
p-values | Strain × P × Ca | 0.783 | 0.297 | 0.493 | 0.574 | |
Strain × P | 0.514 | 0.863 | 0.424 | 0.003 | ||
LB: P− > P+ | ||||||
Strain × Ca | 0.460 | 0.317 | 0.779 | 0.922 | ||
P × Ca | 0.251 | 0.565 | 0.630 | 0.848 | ||
P | 0.090 | 0.291 | 0.158 | 0.621 | ||
Ca | 0.646 | 0.980 | 0.949 | 0.232 | ||
Strain | <0.001 | <0.001 | 0.001 | 0.014 | ||
LSL > LB | LSL > LB | LSL > LB | LSL > LB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hofmann, T.; Schmucker, S.; Sommerfeld, V.; Huber, K.; Rodehutscord, M.; Stefanski, V. Immunomodulatory Effects of Dietary Phosphorus and Calcium in Two Strains of Laying Hens. Animals 2021, 11, 129. https://doi.org/10.3390/ani11010129
Hofmann T, Schmucker S, Sommerfeld V, Huber K, Rodehutscord M, Stefanski V. Immunomodulatory Effects of Dietary Phosphorus and Calcium in Two Strains of Laying Hens. Animals. 2021; 11(1):129. https://doi.org/10.3390/ani11010129
Chicago/Turabian StyleHofmann, Tanja, Sonja Schmucker, Vera Sommerfeld, Korinna Huber, Markus Rodehutscord, and Volker Stefanski. 2021. "Immunomodulatory Effects of Dietary Phosphorus and Calcium in Two Strains of Laying Hens" Animals 11, no. 1: 129. https://doi.org/10.3390/ani11010129
APA StyleHofmann, T., Schmucker, S., Sommerfeld, V., Huber, K., Rodehutscord, M., & Stefanski, V. (2021). Immunomodulatory Effects of Dietary Phosphorus and Calcium in Two Strains of Laying Hens. Animals, 11(1), 129. https://doi.org/10.3390/ani11010129