Benefits and Risks of Preventing Twin Pregnancies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Transferring a Single In Vitro Produced Embryo
2.1. Benefits
2.2. Risks
3. Puncture and Drainage of the Smaller Co-Dominant Follicles
3.1. Benefits
3.2. Risks
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- López-Gatius, F.; García-Ispierto, I. Ultrasound and endocrine findings that help to assess the risk of late embryo/early foetal loss by non-infectious cause in dairy cattle. Reprod. Domest. Anim. 2010, 45 (Suppl. 3), 15–24. [Google Scholar] [CrossRef]
- López-Gatius, F.; Andreu-Vázquez, C.; Mur-Novales, R.; Cabrera, V.E.; Hunter, R.H.F. The dilemma of twin pregnancies in dairy cattle. A review of practical prospects. Live Sci. 2017, 197, 121–126. [Google Scholar] [CrossRef]
- Garcia-Ispierto, I.; López-Gatius, F. Abortion in dairy cattle with advanced twin pregnancies: Incidence and timing. Reprod. Domest. Anim. 2019, 54 (Suppl. 4), 50–53. [Google Scholar] [CrossRef] [Green Version]
- López-Gatius, F.; Garcia-Ispierto, I.; Hunter, R.H.F. Twin Pregnancies in Dairy Cattle: Observations in a Large Herd of Holstein-Friesian Dairy Cows. Animals 2020, 10, 2165. [Google Scholar] [CrossRef]
- Nielen, M.; Schukken, Y.H.; Scholl, D.T.; Wilbrink, H.J.; Brand, A. Twinning in dairy cattle: A study of risk factors and effects. Theriogenology 1989, 32, 845–862. [Google Scholar] [CrossRef]
- Mee, J.F. Factors affecting the spontaneous twinning rate and the effect of twinning on calving problems in nine Irish dairy herds. Ir. Vet. J. 1991, 44, 14–20. [Google Scholar]
- Echternkamp, S.E.; Gregory, K.E. Effects of twinning on gestation length, retained placenta, and dystocia. J. Anim. Sci. 1999, 77, 39–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreu-Vázquez, C.; Garcia-Ispierto, I.; Ganau, S.; Fricke, P.M.; López-Gatius, F. Effects of twinning on the subsequent reproductive performance and productive lifespan of high-producing dairy cows. Theriogenology 2012, 78, 2061–2070. [Google Scholar] [CrossRef]
- Bogado Pascottini, O.; Probo, M.; LeBlanc, S.J.; Opsomer, G.; Hostens, M. Assessment of associations between transition diseases and reproductive performance of dairy cows using survival analysis and decision tree algorithms. Prev. Vet. Med. 2020, 176, 104908. [Google Scholar] [CrossRef] [PubMed]
- Silva del Rio, N.; Stewart, S.; Rapnicki, P.; Chang, Y.M.; Fricke, P.M. An observational analysis of twin births, calf sex ratio, and calf mortality in Holstein dairy cattle. J. Dairy Sci. 2007, 90, 1255–1264. [Google Scholar] [CrossRef] [Green Version]
- Mur-Novales, R.; López-Gatius, F.; Fricke, P.M.; Cabrera, V.E. An economic evaluation of management strategies to mitigate the negative effect of twinning in dairy herds. J. Dairy Sci. 2018, 101, 8335–8349. [Google Scholar] [CrossRef] [PubMed]
- López-Gatius, F. Twins in dairy herds. Is it better to maintain or reduce a pregnancy? Animals 2020, 10, 2006. [Google Scholar] [CrossRef] [PubMed]
- Borysiewicz, L. Prevention is better than cure. Clin. Med. 2009, 9, 572–583. [Google Scholar] [CrossRef] [PubMed]
- Andreu-Vázquez, C.; Garcia-Ispierto, I.; López-Gatius, F. Photoperiod length and the estrus synchronization protocol used before AI affect the twin pregnancy rate in dairy cattle. Theriogenology 2012, 78, 1209–1216. [Google Scholar] [CrossRef]
- Garcia-Ispierto, I.; López-Gatius, F. A three-day PGF2α plus eCG-based fixed-time AI protocol improves fertility compared with spontaneous estrus in dairy cows with silent ovulation. J. Reprod. Dev. 2013, 59, 393–397. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Ispierto, I.; Roselló, M.A.; De Rensis, F.; López-Gatius, F. A five-day progesterone plus eCG-based fixed-time AI protocol improves fertility over spontaneous estrus in high-producing dairy cows under heat stress. J. Reprod. Dev. 2013, 59, 544–548. [Google Scholar] [CrossRef] [Green Version]
- Martins, J.P.N.; Wang, D.; Mu, N.; Rossi, G.F.; Martini, A.P.; Martins, V.R.; Pursley, J.R. Level of circulating concentrations of progesterone during ovulatory follicle development affects timing of pregnancy loss in lactating dairy cows. J. Dairy Sci. 2018, 101, 10505–10525. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, P.D.; Santos, V.G.; Fricke, H.P.; Hernandez, L.L.; Fricke, P.M. Effect of manipulating progesterone before timed artificial insemination on reproductive and endocrine outcomes in high-producing multiparous Holstein cows. J. Dairy Sci. 2019, 102, 7509–7521. [Google Scholar] [CrossRef]
- Macmillan, K.; Kastelic, J.P.; Colazo, M.G. Update on multiple ovulations in dairy cattle. Animals 2018, 8, 62. [Google Scholar] [CrossRef] [Green Version]
- López-Gatius, F.; Hunter, R.H.F. Preventing twin pregnancies in dairy cattle, turning the odds into reality. Live Sci. 2019, 229, 1–3. [Google Scholar] [CrossRef]
- López-Gatius, F.; Garcia-Ispierto, I. Transfer of a single embryo versus drainage of subordinate follicles to prevent twin pregnancies in dairy cows. Why not both? J. Reprod. Dev. 2020, 66, 287–289. [Google Scholar] [CrossRef] [PubMed]
- Ferré, L.; Kjelland, M.; Strøbech, L.; Hyttel, P.; Mermillod, P.; Ross, P. Review: Recent advances in bovine in vitro embryo production: Reproductive biotechnology history and methods. Animal 2020, 14, 991–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ealy, A.D.; Drost, M.; Hansen, P.J. Developmental changes in embryonic resistance to adverse effects of maternal heat stress in cows. J. Dairy Sci. 1993, 76, 2899–2905. [Google Scholar] [CrossRef]
- Hansen, P.J. Reproductive physiology of the heat-stressed dairy cow: Implications for fertility and assisted reproduction. Anim. Reprod. 2019, 16, 497–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baruselli, P.S.; Ferreira, R.M.; Vieira, L.M.; Souza, A.H.; Bó, G.A.; Rodrigues, C.A. Use of embryo transfer to alleviate infertility caused by heat stress. Theriogenology 2020, 155, 1–11. [Google Scholar] [CrossRef]
- Dochi, O.; Takahashi, K.; Hirai, T.; Hayakawa, H.; Tanisawa, M.; Yamamoto, Y.; Koyama, H. The use of embryo transfer to produce pregnancies in repeat-breeding dairy cattle. Theriogenology 2008, 69, 124–128. [Google Scholar] [CrossRef]
- Canu, S.; Boland, M.; Lloyd, G.M.; Newman, M.; Christie, M.F.; May, P.J.; Christley, R.M.; Smith, R.F.; Dobson, H. Predisposition to repeat breeding in UK cattle and success of artificial insemination alone or in combination with embryo transfer. Vet. Rec. 2010, 167, 44–51. [Google Scholar] [CrossRef]
- Yaginuma, H.; Funeshima, N.; Tanikawa, N.; Miyamura, M.; Tsuchiya, H.; Noguchi, T.; Iwata, H.; Kuwayam, T.; Shirasuna, K.; Hamano, S. Improvement of fertility in repeat breeder dairy cattle by embryo transfer following artificial insemination: Possibility of interferon tau replenishment effect. J. Reprod. Dev. 2019, 65, 223–229. [Google Scholar] [CrossRef] [Green Version]
- Holden, S.A.; Butler, S.T. Review: Applications and benefits of sexed semen in dairy and beef herds. Animal 2018, 12 (Suppl. 1), s97–s103. [Google Scholar] [CrossRef]
- Lu, K.H.; Cran, D.G.; Seidel, G.E., Jr. In vitro fertilization with flow-cytometrically-sorted bovine sperm. Theriogenology 1999, 52, 1393–1405. [Google Scholar] [CrossRef]
- Hamano, K.; Li, X.; Qian, X.; Funauchi, K.; Furdate, M.; Minato, Y. Gender preselection in cattle with intracytoplasmically injected, flow cytometrically sorted sperm heads. Biol. Reprod. 1999, 60, 1194–1197. [Google Scholar] [CrossRef] [PubMed]
- Hinde, K.; Carpenter, A.J.; Clay, J.S.; Bradford, B.J. Holsteins favor heifers, not bulls: Biased milk production programmed during pregnancy as a function of fetal sex. PLoS ONE 2014, 9, e86169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hess, M.K.; Hess, A.S.; Garrick, D.J. The effect of calf gender on milk production in seasonal calving cows and its impact on genetic evaluations. PLoS ONE 2016, 11, e0151236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selm, B.; Boer, I.J.M.; Ledgard, S.F.; Middelaar, C.E. Reducing greenhouse gas emissions of New Zealand beef through better integration of dairy and beef production. Agric. Syst. 2021, 186, 102936. [Google Scholar] [CrossRef]
- Ealy, A.D.; Wooldridge, L.K.; McCoski, S.R. Post-transfer consequences of in vitro-produced embryos in cattle. J. Anim. Sci. 2019, 97, 2555–2568. [Google Scholar] [CrossRef]
- Behboodi, E.; Anderson, G.B.; BonDurant, R.H.; Cargill, S.L.; Kreuscher, B.R.; Medrano, J.F.; Murray, J.D. Birth of large calves that developed from in vitro-derived bovine embryos. Theriogenology 1995, 44, 227–232. [Google Scholar] [CrossRef]
- Young, L.E.; Sinclair, K.D.; Wilmut, I. Large offspring syndrome in cattle and sheep. Rev. Reprod. 1998, 3, 155–163. [Google Scholar] [CrossRef]
- Bertolini, M.; Mason, J.B.; Beam, S.W.; Carneiro, G.F.; Sween, M.L.; Kominek, D.J.; Moyer, A.L.; Famula, T.R.; Sainz, R.D.; Anderson, G.B. Morphology and morphometry of in vivo- and in vitro-produced bovine concepti from early pregnancy to term and association with high birth weights. Theriogenology 2002, 58, 973–994. [Google Scholar] [CrossRef]
- Chen, Z.; Hagen, D.E.; Elsik, C.G.; Ji, T.; Morris, C.J.; Moon, L.M.; Rivera, R.M. Characterization of global loss of imprinting in fetal overgrowth syndrome induced by assisted reproduction. PNAS 2015, 112, 4618–4623. [Google Scholar] [CrossRef] [Green Version]
- Khurana, N.K.; Niemann, H. Energy metabolism in preimplantation bovine embryos derived in vitro or in vivo. Biol. Reprod. 2000, 62, 847–856. [Google Scholar] [CrossRef] [Green Version]
- Viuff, D.; Greve, T.; Avery, B.; Hyttel, P.; Brockhoff, P.B.; Thomsen, P.D. Chromosome aberrations in in vitro-produced bovine embryos at days 2–5 post-insemination. Biol. Reprod. 2000, 63, 1143–1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lonergan, P.; Rizos, D.; Gutierrez-Adan, A.; Moreira, P.M.; Pintado, B.; De La Fuente, J.; Boland, M.P. Temporal divergence in the pattern of messenger RNA expression in bovine embryos cultured from the zygote to blastocyst stage in vitro or in vivo. Biol. Reprod. 2003, 69, 1424–1431. [Google Scholar] [CrossRef]
- Miles, J.R.; Farin, C.E.; Rodriguez, K.F.; Alexander, J.E.; Farin, P.W. Effects of embryo culture on angiogenesis and morphometry of bovine placentas during early gestation. Biol. Reprod. 2005, 73, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Farin, P.W.; Piedrahita, J.A.; Farin, C.E. Errors in development of fetuses and placentas from in vitro-produced bovine embryos. Theriogenology 2006, 65, 178–191. [Google Scholar] [CrossRef] [PubMed]
- Barnwell, C.V.; Farin, P.W.; Whisnant, C.S.; Alexander, J.E.; Farin, C.E. Maternal serum progesterone concentration and early conceptus development of bovine embryos produced in vivo or in vitro. Domest. Anim. Endocrinol. 2015, 52, 75–81. [Google Scholar] [CrossRef]
- Taverne, M.A.M.; Breukelman, S.P.; Perényi, Z.; Dieleman, S.J.; Vosa, P.L.A.M.; Jonker, H.H.; de Ruigh, L.; Van Wagtendonk-de Leeuw, J.M.; Beckers, J.-F. The monitoring of bovine pregnancies derived from transfer of in vitro produced embryos. Reprod. Nutr. Dev. 2002, 42, 613–624. [Google Scholar] [CrossRef]
- Sirard, M.A. 40 years of bovine IVF in the new genomic selection context. Reproduction 2018, 156, R1–R7. [Google Scholar] [CrossRef] [Green Version]
- Underwood, S.L.; Bathgate, R.; Ebsworth, M.; Maxwell, W.M.; Evans, G. Pregnancy loss in heifers after artificial insemination with frozen-thawed, sex-sorted, re-frozen-thawed dairy bull sperm. Anim. Reprod. Sci. 2010, 118, 7–12. [Google Scholar] [CrossRef]
- García-Guerra, A.; Sala, R.V.; Carrenho-Sala, L.; Baez, G.M.; Motta, J.C.L.; Fosado, M.; Moreno, J.F.; Wiltbank, M.C. Postovulatory treatment with GnRH on Day 5 reduces pregnancy loss in recipients receiving an in vitro produced expanded blastocyst. Theriogenology 2020, 141, 202–210. [Google Scholar] [CrossRef]
- Moyaert, I.; Bouters, R.; Bouquet, Y. Birth of a monozygotic cattle twin following non surgical transfer of a single 7 day old embryo. Theriogenology 1982, 18, 127–132. [Google Scholar] [CrossRef]
- Kraay, G.J.; Menard, D.P.; Bedoya, M. Monozygous cattle twins as a result of transfer of a single embryo. Can. Vet. J. 1983, 24, 281–283. [Google Scholar] [PubMed]
- Dijkstra, A.; Cuervo-Arango, J.; Stout, T.A.E.; Claes, A. Monozygotic multiple pregnancies after transfer of single in vitro produced equine embryos. Equine Vet. J. 2020, 52, 258–261. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, H.; Chen, W.; Sun, Y.; Li, Y. Identifying risk factors related to monozygotic twins after assisted reproductive technologies. Eur. J. Obstet. Gynecol. Reprod. Biol. 2018, 230, 130–135. [Google Scholar] [CrossRef]
- Hviid, K.V.R.; Malchau, S.S.; Pinborg, A.; Nielsen, H.S. Determinants of monozygotic twinning in ART: A systematic review and a meta-analysis. Hum. Reprod. Update 2018, 24, 468–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Busnelli, A.; Dallagiovanna, C.; Reschini, M.; Paffoni, A.; Fedele, L.; Somigliana, E. Risk factors for monozygotic twinning after in vitro fertilization: A systematic review and meta-analysis. Fertil. Steril. 2019, 111, 302–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sundaram, V.; Ribeiro, S.; Noel, M. Multi-chorionic pregnancies following single embryo transfer at the blastocyst stage: A case series and review of the literature. J. Assist. Reprod. Genet. 2018, 35, 2109–2117. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, S.; Ikemoto, Y.; Ochiai, A.; Yamada, S.; Kato, K.; Ohno, M.; Segawa, T.; Nakaoka, Y.; Toya, M.; Kawachiya, S.; et al. Analysis of 122 triplet and one quadruplet pregnancies after single embryo transfer in Japan. Reprod. Biomed. Online 2020, 40, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Echternkamp, S.E. Fetal development in cattle with multiple ovulations. J. Anim. Sci. 1992, 70, 2309–2321. [Google Scholar] [CrossRef]
- Echternkamp, S.E.; Roberts, A.J.; Lunstra, D.D.; Wise, T.; Spicer, L.J. Ovarian follicular development in cattle selected for twin ovulations and births. J. Anim. Sci. 2004, 82, 459–471. [Google Scholar] [CrossRef]
- Fricke, P.M.; Wiltbank, M.C. Effect of milk production on the incidence of double ovulation in dairy cows. Theriogenology 1999, 52, 1133–1143. [Google Scholar] [CrossRef]
- Lopez, H.; Caraviello, D.Z.; Satter, L.D.; Fricke, P.M.; Wiltbank, M.C. Relationship between level of milk production and multiple ovulations in lactating dairy cows. J. Dairy Sci. 2005, 88, 2783–2793. [Google Scholar] [CrossRef]
- López-Gatius, F.; López-Béjar, M.; Fenech, M.; Hunter, R.H.F. Ovulation failure and double ovulation in dairy cattle: Risk factors and effects. Theriogenology 2005, 63, 1298–1307. [Google Scholar] [CrossRef] [PubMed]
- Kusaka, H.; Miura, H.; Kikuchi, M.; Sakaguchi, M. Incidence of double ovulation during the early postpartum period in lactating dairy cows. Theriogenology 2017, 91, 98–103. [Google Scholar] [CrossRef] [PubMed]
- López-Gatius, F.; Garcia-Ispierto, I.; Serrano-Pérez, B.; Hunter, R.H.F. The presence of two ovulatory follicles at timed artificial insemination influences the ovulatory response to GnRH in high-producing dairy cows. Theriogenology 2018, 120, 91–97. [Google Scholar] [CrossRef]
- López-Gatius, F.; Hunter, R.H.F. Puncture and drainage of the subordinate follicles at timed artificial insemination prevents the risk of twin pregnancy in dairy cows. Reprod. Domest. Anim. 2018, 53, 213–216. [Google Scholar] [CrossRef] [Green Version]
- López-Gatius, F.; Garcia-Ispierto, I.; Serrano-Pérez, B.; Balogh, O.G.; Gábor, G.; Hunter, R.H.F. Luteal activity following follicular drainage of subordinate follicles for twin pregnancy prevention in bi-ovular dairy cows. Res. Vet. Sci. 2019, 124, 439–443. [Google Scholar] [CrossRef]
- Garcia-Ispierto, I.; López-Gatius, F. Improved embryo survival following follicular drainage of subordinate follicles for twin pregnancy prevention in biovular dairy cows. J. Reprod. Dev. 2020, 63, 93–96. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Ispierto, I.; López-Gatius, F. Effects of twin pregnancy prevention strategies such as GnRH dose and drainage of the smaller follicle on ovulation in dairy cows with two follicles of pre-ovulatory size in the same ovary. J. Reprod. Dev. 2020, 66, 485–488. [Google Scholar] [CrossRef]
- Bergfelt, D.R.; Bo, G.A.; Mapletoft, R.J.; Adams, G.P. Superovulatory response following ablation-induced follicular wave emergence at random stages of the oestrous cycle in cattle. Anim. Reprod. Sci. 1997, 49, 1–12. [Google Scholar]
- Baracaldo, M.I.; Martinez, M.F.; Adams, G.P.; Mapletoft, R.J. Superovulatory response following transvaginal follicle ablation in cattle. Theriogenology 2000, 53, 1239–1250. [Google Scholar] [CrossRef]
- Lima, W.M.; Vieira, A.D.; Thaller Neto, A.; Mezzalira, A.; Matos, R.C.; Gregory, R.M. Improved superovulatory response in beef cattle following ovarian follicular ablation using a simplified transvaginal device. Anim. Reprod. Sci. 2007, 100, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Honparkhe, M.; Gandotra, V.K.; Matharoo, J.S.; Ghuman, S.P.; Dadarwal, D.; Singh, J. Synchronization of follicular wave emergence following ultrasound-guided transvaginal follicle ablation or estradiol-17β administration in water buffalo (Bubalus bubalis). Anim. Reprod. Sci. 2014, 146, 5–14. [Google Scholar] [CrossRef] [PubMed]
- López-Gatius, F. Factors of a noninfectious nature affecting fertility after artificial insemination in lactating dairy cows. A review. Theriogenology 2012, 77, 1029–1041. [Google Scholar] [CrossRef] [PubMed]
- Sartori, R.; Fricke, P.M.; Ferreira, J.C.P.; Ginther, O.J.; Wiltbank, M.C. Follicular deviation and acquisition of ovulatory capacity in bovine follicles. Biol. Reprod. 2001, 65, 1403–1409. [Google Scholar] [CrossRef]
- De Rensis, F.; López-Gatius, F.; García-Ispierto, I.; Techakumpu, M. Clinical use of human chorionic gonadotropin in dairy cows: An update. Theriogenology 2010, 73, 1001–1008. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Ispierto, I.; López-Gatius, F. Benefits and Risks of Preventing Twin Pregnancies. Animals 2021, 11, 148. https://doi.org/10.3390/ani11010148
Garcia-Ispierto I, López-Gatius F. Benefits and Risks of Preventing Twin Pregnancies. Animals. 2021; 11(1):148. https://doi.org/10.3390/ani11010148
Chicago/Turabian StyleGarcia-Ispierto, Irina, and Fernando López-Gatius. 2021. "Benefits and Risks of Preventing Twin Pregnancies" Animals 11, no. 1: 148. https://doi.org/10.3390/ani11010148
APA StyleGarcia-Ispierto, I., & López-Gatius, F. (2021). Benefits and Risks of Preventing Twin Pregnancies. Animals, 11(1), 148. https://doi.org/10.3390/ani11010148