The Impact of Anthropogenic Climate Change on Egyptian Livestock Production
Abstract
:Simple Summary
Abstract
1. Introduction
2. Climate Profile of Egypt
3. Climate Change Estimates for Egypt
4. Climate Change Impacts on Livestock Production in Egypt
5. Climate Change Effects on Milk Production
6. Egypt’s Proposed Mitigation and Adaptation Actions
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- International Plant Protection Convention (IPPC). Annex I: Glossary. In Global Warming of 1.5 °C; An IPPC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds. 2018. Available online: https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_High_Res.pdf (accessed on 31 August 2021).
- Frölicher, T.L.; Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun. 2018, 9, 650. [Google Scholar] [CrossRef] [PubMed]
- Wei, N.; Zhou, L.; Dai, Y.; Xia, G.; Hua, W. Observational evidence for desert amplification using multiple satellite datasets. Sci. Rep. 2017, 7, 2043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nashwan, M.S.; Shahid, S.; Abd Rahim, N. Unidirectional trends in annual and seasonal climate and extremes in Egypt. Theor. Appl. Climatol. 2019, 136, 457–473. [Google Scholar] [CrossRef]
- Gado, T.A.; El-Hagrsy, R.M.; Rashwan, I.M.H. Spatial and temporal rainfall changes in Egypt. Environ. Sci. Pollut. Res. Int. 2019, 26, 28228–28242. [Google Scholar] [CrossRef] [PubMed]
- Beniston, M.; Stephenson, D.B.; Christensen, O.B.; Ferro, C.A.T.; Frei, C.; Goyette, S.; Halsnaes, K.; Holt, T.; Jylhä, K.; Koffi, B.; et al. Future extreme events in European climate: An exploration of regional climate model projections. Clim. Chang. 2007, 81, 71–95. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L. Desert amplification in a warming climate. Sci. Rep. 2016, 6, 31065. [Google Scholar] [CrossRef]
- Mostafa, A.N.; Wheida, A.; El Nazer, M.; Adel, M.; El Leithy, L.; Siour, G.; Coman, A.; Borbon, A.; Magdy, A.W.; Omar, M.; et al. Past (1950–2017) and future (2100) temperature and precipitation trends in Egypt. Weather Clim. Extremes 2019, 26, 100225. [Google Scholar] [CrossRef]
- Bouras, E.; Jarlan, L.; Khabba, S.; Er-Raki, S.; Dezetter, A.; Sghir, F.; Tramblay, Y. Assessing the impact of global climate changes on irrigated wheat yields and water requirements in a semi-arid environment of Morocco. Sci. Rep. 2019, 9, 19142. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate change: Impacts, adaptation and vulnerability. In Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; p. 976. [Google Scholar]
- Bernabucci, U.N.; Lacetera, L.H.; Rhoads, R.P.; Ronchi, B.; Nardone, A. Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal 2010, 4, 1167–1183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winrock International. Assessment of Animal Agriculture in Sub-Saharan Africa; Winrock International Institute for Agricultural Development: Morrilton, AR, USA, 1992; p. 125. [Google Scholar]
- De Boer, A.J. Animal Agriculture in Developing Countries: Technology Dimensions; Winrock International Institute for Agricultural Development: Morrilton, AR, USA, 1994; p. 43. ISBN 9780933595798. [Google Scholar]
- Nardone, A.; Ronchi, B.; Lacetera, N.; Ranieri, M.S.; Bernabucci, U. Effects of climate changes on animal production and sustainability of livestock systems. Livest. Sci. 2010, 130, 57–69. [Google Scholar] [CrossRef]
- Habeeb, A.A.M.; Gad, A.E.; EL-Tarabany, A.A.; Atta, M.A.A. Negative effects of heat stress on growth and milk production of farm animals. J. Anim. Husb. Dairy. Sci. 2018, 2, 1–12. [Google Scholar]
- Seguin, B. The consequences of global warming for agriculture and food production. In Livestock and Global Climate Change; Rowlinson, P., Steele, M., Nefzaoui, A., Eds.; Cambridge Press: Cambridge, UK, 2008; pp. 9–11. [Google Scholar]
- Rabie, T.S.K.M. Potential climate change impacts on livestock and food security nexus in Egypt. In Climate Change Impacts on Agriculture and Food Security in Egypt; Omran, E.E., Negm, A.M., Eds.; Springer Nature Switzerland, AG: Cham, Switzerland, 2020. [Google Scholar]
- Attia-Ismail, S.A. Influence of climate changes on animal feed production, the problems and the suggested solutions. In Climate Change Impacts on Agriculture and Food Security in Egypt; Omran, E.E., Negm, A.M., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2020. [Google Scholar]
- Thornton, P.; Herrero, M.; Ericksen, P. Livestock and Climate Change; International Livestock Research Institute: Nairobi, Kenya, 2011; pp. 1–4. Available online: https://hdl.handle.net/10568/10601 (accessed on 31 August 2021).
- Baumgard, L.H.; Rhoads, R.P.; Rhoads, M.L.; Gabler, N.K.; Ross, J.W.; Keating, A.F.; Boddicker, R.L.; Lenka, S.; Sejian, V. Impact of climate change on livestock production. In Environmental Stress and Amelioration in Livestock Production; Sejian, V., Naqvi, S.M.K., Ezeji, T., Lakritz, J., Lal, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 413–468. [Google Scholar]
- McMichael, A.J.; Ando, M.; Carcavallo, R.; Epstein, P.; Haines, A.; Jendritsky, G.; Kalkstein, L.; Kovats, S.; Odongo, R.; Patz, J. Climate Change and Human Health: An Assessment by a Task Group on Behalf of the WHO; WHO/EHG/96.7; The World Meteorological Organization and the United Nations Environment Programme: Geneva, Switzerlan, 1996. [Google Scholar]
- Delgado, C.L.; Rosegrant, M.; Steinfeld, H.; Ehui, S.; Courbois, C. Livestock to 2020: The Next Food Revolution; Food, Agriculture and Environment Discussion Paper 28; International Food Policy Research Institute: Washington, DC, USA, 1999; pp. 187–202. [Google Scholar]
- Delgado, C.L. Rising consumption of meat and milk in developing countries has created a new food revolution. J. Nutr. 2003, 133, 3907S–3910S. [Google Scholar] [CrossRef] [Green Version]
- Nardone, A. Evolution of livestock production and quality of animal products. In Proceedings of the 39th Annual Meeting of the Brazilian Society of Animal Science, Recife, Brazil, 29 July–2 August 2002; pp. 486–513. [Google Scholar]
- Alavian, V.; Qaddumi, H.M.; Dickson, E.; Diez, S.M.; Danilenko, A.V.; Hirji, R.F.; Puz, G.; Pizarro, C.; Jacobsen, M.; Blankespoor, B. Water and Climate Change: Understanding the Risks and Making Climate-Smart Investment Decisions. 2009. World Bank. Available online: https://www.preventionweb.net/files/12832_wbwater.pdf (accessed on 31 August 2021).
- El-Shahawi, M. Climate Change and Some Potential Impacts on Egypt; First National Symposium on Climate Change and Its Impacts on Environment in Egypt; Suez Canal University: Ismailia, Egypt, 2004. [Google Scholar]
- Egyptian Environmental Affairs Agency (EEAA). Egypt Third National Communication under the United Nations Framework Convention on Climate Change; This report is submitted to the United Nations framework convention on climate change (UNFCCC); Egyptian environmental affairs agency (EEAA): Cairo, Egypt, 2016. [Google Scholar]
- GRiSP (Global Rice Science Partnership). GRiSP in Motion, Annual Report 2012; International Rice Research Institute: Los Baños, Philippines, 2013; 32p. [Google Scholar]
- UK Met Office (UKMO). Climate: Observations, Projections and Impacts: Egypt. 2013. Available online: https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/research/climate-science/climate-observations-projections-and-impacts/uk.pdf (accessed on 31 August 2021).
- Marai, I.F.M.; Habeeb, A.A.M.; Gad, A.E. Rabbits’ productive and physiological performance traits as affected by heat stress: A review. Livest. Prod. Sci. 2002, 78, 71–90. [Google Scholar] [CrossRef]
- Habeeb, A.A.M.; Abdel-Samee, A.M.; Kamal, T.H. Effect of heat stress, feed supplementation and cooling technique on milk yield, milk composition and some blood constituents in Friesian cows under Egyptian conditions. In Proceedings of the 3rd Egyptian–British Conference on Animal, Fish and Poultry Production, Alexandria, Egypt, 7–10 October 1989; Alexandria University: Alexandria, Egypt; pp. 629–635. [Google Scholar]
- Habeeb, A.A.M.; Marai, I.F.M.; Kamal, T.H. Heat Stress. In Farm Animals and the Environment; Phillips, C.J.C., Piggins, D., Eds.; CAB International: Wallingford, UK, 1992; pp. 27–47. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change: The Scientific Basis; Contribution of WGI to the third assessment report of the IPCC; Cambridge University Press: New York, NY, USA, 2001. [Google Scholar]
- Egypt Environmental Affairs Agency (EEAA). Egypt Second National Communication under the United Nations Framework Convention on Climate Change; Egypt Environmental Affairs Agency (EEAA): Cairo, Egypt, 2010. [Google Scholar]
- Christensen, J.H.; Hewitson, B.; Busuioc, A.; Chen, A.; Gao, X.; Held, I.; Jones, R.; Kolli, R.K.; Kwon, W.T.; Laprise, R.; et al. Regional climate projections. In Climate Change: The Physical Science Basis; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Contribution of Working Group to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Brauch, G.H. Climate Change, environmental stress and conflict cases of Bangladesh and Egypt. In International Conference on Climate Change and Disaster Preparedness; German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU): Bonn, Germany, 10 June 2002; 1 pm–3 pm. [Google Scholar]
- World Meteorological Organization (WMO). World Meteorological Organization. Statement on Status of the Global Climate in 2007, WMO-NO. 1031. 2008. Available online: https://library.wmo.int/doc_num.php?explnum_id=3457 (accessed on 31 August 2021).
- Egypt NEWS. Saturday the Peak of a Heat Wave in Egypt. 2007. Available online: http://news.egypt.com/en/20070730323/news/-egypt-news/saturday-the-peak-of-a-heatwave-in-egypt.html (accessed on 31 August 2021).
- Chand, R.; Ray, K. Analysis of extreme high temperature conditions over Uttar Pradesh, India. In High-Impact Weather Events over the SAARC Region; Ray, K., Mohapatra, M., Bandyopadhyay, B.K., Rathore, L.S., Eds.; Springer International Publishing: Cham, Switzerland, 2015; p. 26. [Google Scholar]
- International Centre for Agricultural Research in the Dry Areas (ICARDA). First Report on Climatology of Nile Delta, Egypt; Zaki, A., Swelam, A., Eds. 2017. Available online: https://repo.mel.cgiar.org/handle/20.500.11766/6384 (accessed on 31 August 2021).
- Van Oldenborgh, G.J.; Drijfhout, S.S.; van Ulden, A.P.; Haarsma, R.; Sterl, A.; Severijns, C.; Hazeleger, W.; Dijkstra, H.A. Western Europe is warming much faster than expected. Clim. Past. 2009, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Intergovernmental Panel on Climate Change (IPCC). Fifth Assessment Report by Working Group II. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Chapter 22 (Africa). 2014. Available online: https://www.ipcc.ch/report/ar5/wg2/ (accessed on 31 August 2021).
- UNDP. Egypt’s National Strategy for Adaptation to Climate Change and Disaster Risk Reduction; UNDP and Egyptian Cabinet for Information, Decision Support Center: Cairo, Egypt, 2011. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate change: The physical science basis. In Contribution of Working Group I to the Fifth Assessment Report of the IPCC; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- World Bank Climate Change Knowledge Portal. 2015. Available online: https://climateknowledgeportal.worldbank.org/ (accessed on 31 August 2021).
- Elshinnaway, I.A. Coastal Vulnerability to Climate Changes and Adaptation Assessment for Coastal Zones of Egypt; Coastal Research Institute (CoRI), National Water Research Centre (NWRC), Ministry of Water Resources and Irrigation (MWRI): Alexandria, Egypt, 2008. [Google Scholar]
- Agrawala, S.; Moehner, A.; El Raey, M.; Conway, D.; Van Aalst, M.; Hagenstad, M.; Smith, J.; Development and Climate Change in Egypt: Focus on Coastal Resources and the Nile. Organization for Economic Co-operation and Development. 2004. Available online: https://www.oecd.org/env/cc/33330510.Pdf (accessed on 31 August 2021).
- Nashwan, M.S.; Shahid, S.; Chung, E.S. High-resolution climate projections for a densely populated Mediterranean region. Sustainability 2020, 12, 3684. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Climate and Health Country Profile—Egypt-2015. Available online: https://www.who.int/globalchange/resources/country-profiles/PHE-country-profile-Egypt.pdf?ua=1 (accessed on 31 August 2021).
- Intergovernmental Panel on Climate Change (IPCC). Climatic Change: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2007; p. 996. ISBN 9780521705967. [Google Scholar]
- Smith, J.; Deck, L.; McCarl, B.; Kirshen, P.; Malley, J.; Abdrabo, M. Potential Impacts of Climate Change on the Egyptian Economy; United Nations Development Programme (UNDP): Cairo, Egypt, 2013. [Google Scholar]
- Food and Agriculture Organisation (FAO). The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW)—Managing Systems at Risk; FAO of the United Nations: Rome, Italy, 2011. [Google Scholar]
- Khelifa, H.H. Climate change risk management in Egypt. In Assessment of Climate Change Impacts on Livestock; FAO Project Report: Cairo, Egypt, UNJP/EGY022; 2012. [Google Scholar]
- Sustainable Agricultural Development Strategy (SADS). Sustainable Agricultural Development Strategy towards 2030; Agricultural Research and Development Council, Arab Republic of Egypt, Ministry of Agriculture and Land Reclamation: Cairo, Egypt, October 2009. [Google Scholar]
- Central Agency for Public Mobilization and Statistics (CAPMS). Statistical Yearbook; Central Agency for Public Mobilization and Statistics (CAPMS): Egypt, Cairo, 2000. [Google Scholar]
- Arefaine, H.; Kashwa, M. A review on strategies for sustainable buffalo milk production in Egypt. J. Biol. Agric. Healthc. 2015, 5, 63–67. [Google Scholar]
- FAOSTAT. FAO Statistics Division; FAO: Rome, Italy, 2018; Available online: www.fao.org (accessed on 17 October 2021).
- United Nations, Department of Economic and Social Affairs, Population Dynamics. World Population Prospects. 2019. Available online: https://population.un.org/wpp (accessed on 23 October 2021).
- FAO. Africa Sustainable Livestock 2050-. In Country Brief; Egypt; FAO: Rome, Italy, 2017; I7312EN/1/05.17; Available online: https://www.fao.org/documents/card/en/c/I7312EN/ (accessed on 17 October 2021). [CrossRef]
- FAO. The Long-Term Future of Livestock and Fishery in Egypt—Production Targets in the FACE of Uncertainty; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Ali, M.Z.; Carlile, G.; Giasuddin, M. Impact of global climate change on livestock health: Bangladesh perspective. Open Vet. J. 2020, 10, 178–188. [Google Scholar] [CrossRef]
- Biswal, J.; Vijayalakshmy, K.; Rahman, H. Seasonal Variations and Its Impacts on Livestock Production Systems with a Special Reference to Dairy Animals: An Appraisal. Vet. Sci. Res. 2020, 2, 24–30. [Google Scholar]
- Idrus, M. Behavioural and Physiological Responses of Beef Cattle to Hot Environmental Conditions. Ph.D. Thesis, University of Queensland, Brisbane, Australia, 2020. [Google Scholar]
- Moyo, M.; Nsahlai, I. Consequences of Increases in Ambient Temperature and Effect of Climate Type on Digestibility of Forages by Ruminants: A Meta-Analysis in Relation to Global Warming. Animals 2021, 11, 172. [Google Scholar] [CrossRef]
- Soliman, A.; Safwat, A.M. Climate change impact on immune status and productivity of poultry as well as the quality of meat and egg products. In Climate Change Impacts on Agriculture and Food Security in Egypt; Omran, E.E., Negm, A.M., Eds.; Springer Nature Switzerland, AG: Cham, Switzerland, 2020. [Google Scholar]
- Wolfenson, D.; Roth, Z.; Meidan, R. Impaired reproduction in heat-stressed cattle: Basic and applied aspects. Anim. Reprod. Sci. 2000, 60, 535–547. [Google Scholar] [CrossRef]
- Pegorer, M.F.; Vasconcelos, J.L.; Trinca, L.A.; Hansen, P.J.; Barros, C.M. Influence of sire and sire breed (Gyr versus Holstein) on establishment of pregnancy and embryonic loss in lactating Holstein cows during summer heat stress. Theriogenology 2007, 67, 692–697. [Google Scholar] [CrossRef]
- Collier, R.J.; Zimbelman, R.B.; Rhoads, R.P.; Rhoads, M.L.; Baumgard, L.H. A re-evaluation of the impact of temperature humidity index (THI) and black globe humidity index (BGHI) on milk production in high producing dairy cows. In Proceedings of the 24th Annual Southwest Nutrition and Management Conference, Tempe, Arizona, 26–27 February 2009; pp. 113–125. [Google Scholar]
- Allen, J.D.; Anderson, S.D.; Collier, R.J.; Smith, J.F. Managing heat stress and its impact on cow behavior. In Proceedings of the Western Dairy Management Conference, Reno, NV, USA, 6–8 March 2013; pp. 150–162. [Google Scholar]
- Thornton, P.K.; Boone, R.B.; Villegas, J.R. Climate Change Impacts on Livestock; Working paper no. 120; Consultative Group on International Agricultural Research (CGIAR) Research Program on Climate Change, Agriculture and Food Security: Copenhagen, Denmark, 2015. [Google Scholar]
- Hassanein, M.K.; Medany, M.A. The impact of climate change on production of maize (Zea mays L.). In Proceedings of the International Conference on Climate Change and their Impacts on Coastal Zones and River Deltas: Vulnerability, Mitigation and Adaptation, Alexandria, Egypt, 23–22 April 2007; pp. 268–281. [Google Scholar]
- Wheelock, J.B.; Rhoads, R.P.; VanBaale, M.J.; Sanders, S.R.; Baumgard, L.H. Effects of heat stress on energetic metabolism in lactating Holstein cows. J. Dairy Sci. 2010, 93, 644–665. [Google Scholar] [CrossRef]
- Das, R.; Sailo, L.; Verma, N.; Bharti, P.; Saikia, J.; Imtiwati; Kumar, R. Impact of heat stress on health and performance of dairy animals: A review. Vet. World 2016, 9, 260–268. [Google Scholar]
- West, J.W. Effects of heat-stress on production in dairy cattle. J. Dairy Sci. 2003, 86, 2131–2144. [Google Scholar] [CrossRef]
- Ravagnolo, O.; Misztal, I.; Hoogenboom, G. Genetic component of heat stress in dairy cattle, development of heat index function. J. Dairy Sci. 2000, 83, 2120–2125. [Google Scholar] [CrossRef]
- Bouraoui, R.; Lahmar, M.; Majdoub, A.; Djemali, M.; Belyea, R. The relationship of temperature-humidity index with milk production of dairy cows in a Mediterranean climate. Anim. Res. 2002, 51, 479–491. [Google Scholar] [CrossRef] [Green Version]
- Gantner, V.; Mijic, P.; Kuterovac, K.; Solic, D.; Gantner, R. Temperature-humidity index values and their significance on the daily production of dairy cattle. Mljekarstvo 2011, 61, 56–63. [Google Scholar]
- Baumgard, L.H.; Wheelock, J.B.; Shwartz, G.; Brien, M.O.; van Baale, M.J.; Collier, R.J.; Rhoads, M.L.; Rhoads, R.P. Effects of heat stress on nutritional requirements of lactating dairy cattle. In Proceedings of the 5th Annual Arizona Dairy Production Conference, Tempe, AZ, USA, 10 October 2006; pp. 8–17. [Google Scholar]
- Ernabucci, U.; Calamari, L. Effect of heat stress on bovine milk yield and composition. Zootec. Nutr. Anim. 1998, 24, 247–257. [Google Scholar]
- Ozrenk, E.; Inci, S.S. The effect of seasonal variation on the composition of cow milk in Van Province. Pak. J. Nutr. 2008, 7, 161–164. [Google Scholar] [CrossRef] [Green Version]
- Key, N.; Sneeringer, S.; Marquardt, D. Climate Change, Heat Stress and U.S. Dairy Production. A Report Summary from the Economic Research Service, United States Department of Agriculture. 2014. Available online: http://www.ers.usda.gov/media/1679930/err175.pdf (accessed on 31 August 2021).
- Prathap, P.; Archana, P.R.; Aleena, J.; Sejian, V.; Krishnan, G.; Bagath, M.; Manimaran, A.; Beena, V.; Kurien, E.K.; Varma, G.; et al. Heat stress and dairy cow: Impact on both milk yield and composition. Int. J. Dairy Sci. 2017, 12, 1–11. [Google Scholar]
- Bernabucci, U.; Basiricò, L.; Morera, P. Impact of hot environment on colostrum and milk composition. Cell. Mol. Biol. 2013, 59, 67–83. [Google Scholar] [PubMed]
- Kume, S.; Takahashi, S.; Kurihara, M.; Aii, T. The effects of a hot environment on the major mineral content in milk. Jpn. J. Zootech. Sci. 1989, 60, 341–345. [Google Scholar]
- Temple, D.; Bargo, F.; Mainau, E.; Ipharraguerre, I.; Manteca, X. Heat stress and efficiency in dairy milk production: A practical approach. The farm animal welfare fact sheet no. 12, Farm Animal Welfare Education Centre. 2015. Available online: http://www.fawec.org/media/com_lazypdf/pdf/fs12-en.pdf (accessed on 31 August 2021).
- Silanikove, N.; Shapiro, F.; Shinder, D. Acute heat stress brings down milk secretion in dairy cows by up-regulating the activity of the milk-borne negative feedback regulatory system. BMC Physiol. 2009, 9, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Igono, M.O.; Johnson, H.D.; Steevens, B.J.; Hainen, W.A.; Shanklin, M.D. Effect of season on milk temperature, milk growth hormone, prolactin and somatic cell counts of lactating cattle. Int. J. Biometeorol. 1988, 32, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Daramola, J.O.; Abioja, M.O.; Onagbesan, O.M. Heat stress impact on livestock production. In Environmental Stress and Amelioration in Livestock Production; Sejian, V., Naqvi, S.M.K., Ezeji, T., Lakritz, J., Lal, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; p. 53. [Google Scholar]
- Kadzere, C.T.; Murphy, M.R.; Silanikove, N.; Maltz, E. Heat stress in lactating dairy cows: A review. Livest. Prod. Sci. 2002, 77, 59–91. [Google Scholar] [CrossRef]
- Information and Decision Support Center (IDSC). The Egyptian Cabinet and the UNDP: National Strategy for Adaptation to Climate Change and Disaster Risk Reduction; Information and Decision Support Center (IDSC): Cairo, Egypt, 2011. [Google Scholar]
- World Bank Group. Egypt: Intended Nationally Determined Contribution. 2016. Available online: http://spappssecext.worldbank.org/sites/indc/PDF_Library/EG.pdf (accessed on 31 August 2021).
- Zayed, M.S.; Szumacher-Strabel, M.; El-Fattah, D.A.A.; Madkour, M.A.; Gogulski, M.; Strompfová, V.; Cieślak, A.; El-Bordeny, N.E. Evaluation of cellulolytic exogenous enzyme-containing microbial inoculants as feed additives for ruminant rations composed of low-quality roughage. J. Agric. Sci. 2020, 158, 326–338. [Google Scholar] [CrossRef]
- Kitalyi, A.; Rubanza, C.; Komwihangilo, D. Agroforestry and livestock: Adaptation/mitigation strategies in agro-pastoral farming systems of Eastern Africa. In Livestock and Global Change, Proceedings of an International Conference, Hammamet, Tunisia, 17–20 May 2008; Rowlinson, P., Steele, M., Nefzaoui, A., Eds.; Cambridge University Press: Cambridge, UK, 2008; pp. 119–121. [Google Scholar]
- Huang, H.; Szumacher-Strabel, M.; Patra, A.K.; Ślusarczyk, S.; Lechniak, D.; Vazirigohar, M.; Varadyova, Z.; Kozłowska, M.; Cieślak, A. Chemical and phytochemical composition, in vitro ruminal fermentation, methane production, and nutrient degradability of fresh and ensiled Paulownia hybrid leaves. Anim. Feed Sci. Technol. 2021, 279, 115038. [Google Scholar] [CrossRef]
- Phillips, C.J.C. The Animal Trade; CAB International: Oxford, UK, 2015; Chapter 10. [Google Scholar]
- Salem, H.B.; Smith, T. Feeding strategies to alleviate negative impacts of drought on ruminant production. In Livestock and Global Change, Proceedings of an International Conference, Hammamet, Tunisia, 17–20 May 2008; Rowlinson, P., Steele, M., Nefzaoui, A., Eds.; Cambridge University Press: Cambridge, UK, 2008; p. 139. [Google Scholar]
- Sinclair, L.A.; Blake, C.W.; Griffin, P.; Jones, G.H. The partial replacement of soyabean meal and rapeseed meal with feed grade urea or a slow-release urea and its effect on the performance, metabolism and digestibility in dairy cows. Animal 2012, 6, 920–927. [Google Scholar] [CrossRef] [Green Version]
- Libera, K.; Szumacher-Strabel, M.; Vazirigohar, M.; Zieliński, W.; Lukow, R.; Wysocka, K.; Kołodziejski, P.; Lechniak, D.; Varadyova, Z.; Patra, A.K.; et al. Effects of feeding urea-treated triticale and oat grain mixtures on ruminal fermentation, microbial population, and milk production performance of mid lactation dairy cows. Ann. Anim. Sci. 2021, 21, 1007–1025. [Google Scholar]
- Tibbo, M.; Iñiguez, L.; Rischkowsky, B. Livestock Research for Climate Change Adaptation; ICARDA Caravan: Aleppo, Syria, 2008; pp. 40–42. [Google Scholar]
- Hilali, M.; Iñiguez, L.; Mayer, H.; Knaus, W.; Schreiner, M.; Zaklouta, M.; Wurzinger, M. New feeding strategies for Awassi sheep in drought affected areas and their effect on product quality. In Food Security and Climate Change in Dry Areas, Proceedings of an International Conference, Amman, Jordan, 1–4 February 2010; Solh, M., Saxena, M.C., Eds.; ICARDA: Aleppo, Syria, 2010; pp. 263–271. [Google Scholar]
- FAO. The state of food and agriculture. In Livestock in the Balance; FAO: Rome, Italy, 2009. [Google Scholar]
- Pilling, P.; Hoffmann, I. Climate Change and Animal Genetic Resources for FOOD and agriculture: State of Knowledge, Risks and Opportunities; Background study paper no. 53; FAO: Rome, Italy, 2011. [Google Scholar]
Predicted Temperature Increase (°C) | ||||
---|---|---|---|---|
Year | 2025 | 2050 | 2075 | 2100 |
Low emissions | 0.9 | 1.3 | 1.8 | 1.8 |
High emissions | 1.2 | 2.2 | 3.2 | 4.0 |
Year | Predicted Temperature Increase (°C), Mean and (Standard Deviation) | ||
---|---|---|---|
Annual | December/January/ February | June/July/August | |
2030 | 1.0 (0.15) | 0.8 (0.21) | 1.1 (0.18) |
2050 | 1.4 (0.22) | 1.2 (0.30) | 1.7 (0.26) |
2100 | 2.4 (0.38) | 2.1 (0.52) | 2.9 (0.45) |
Sources for Predicted Temperature Increase | Reference Year for Predicted Increase in Temperature (°C) (x = 2011) | Predicted Increase in Temperature (°C) for Expected Year | No. Years for Temperature Change | Temperature Predicted (°C) | THI | THI-68 | % Reduction in TMY (Predicted Decrease for THI Units > 68) |
---|---|---|---|---|---|---|---|
36 | 2002 | 4.0 (2060) | 58 | 34 | 88.36 | 20.36 | 4.28 |
44 | 2013 | 4.8 (2100) | 87 | 34.8 | 89.60 | 21.6 | 4.54 |
29 | 2013 | 3.5(2100) | 87 | 33.5 | 87.58 | 19.58 | 4.11 |
45 | 2015 | 1.27 (2030) | 15 | 31.27 | 84.12 | 16.12 | 3.39 |
45 | 2015 | 2.33 (2050) | 35 | 32.33 | 85.77 | 17.77 | 3.73 |
47 | 2004 | 1.2 (2025) | 21 | 31.2 | 84.01 | 16.01 | 3.36 |
47 | 2004 | 2.2 (2050) | 46 | 32.2 | 85.57 | 17.57 | 3.69 |
47 | 2004 | 3.2 (2075) | 71 | 33.2 | 87.12 | 19.12 | 4.02 |
47 | 2004 | 4.0 (2100) | 96 | 34 | 88.36 | 20.36 | 4.28 |
46 | 2008 | 1.0 (2030) | 22 | 31 | 83.70 | 15.7 | 3.3 |
46 | 2008 | 1.4 (2050) | 42 | 31.4 | 84.32 | 16.32 | 3.43 |
46 | 2008 | 2.4 (2100) | 92 | 32.4 | 85.88 | 17.88 | 3.75 |
49 | 2015 | 5.6 (2100) | 85 | 35.6 | 91.47 | 23.47 | 4.93 |
8 | 2019 | 0.38 (2040) | 21 | 30.38 | 82.74 | 14.74 | 3.1 |
8 | 2019 | 0.72 (2100) | 81 | 30.72 | 83.27 | 15.27 | 3.21 |
8 | 2019 | 4.8 (2081–2100) | 72 | 34.8 | 89.60 | 21.6 | 4.54 |
8 | 2019 | 5.6 (2090) | 71 | 35.6 | 90.84 | 22.84 | 4.8 |
51 | 2013 | 1.0 (2025–2030) | 14 | 31 | 83.70 | 15.7 | 3.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goma, A.A.; Phillips, C.J.C. The Impact of Anthropogenic Climate Change on Egyptian Livestock Production. Animals 2021, 11, 3127. https://doi.org/10.3390/ani11113127
Goma AA, Phillips CJC. The Impact of Anthropogenic Climate Change on Egyptian Livestock Production. Animals. 2021; 11(11):3127. https://doi.org/10.3390/ani11113127
Chicago/Turabian StyleGoma, Amira A., and Clive J. C. Phillips. 2021. "The Impact of Anthropogenic Climate Change on Egyptian Livestock Production" Animals 11, no. 11: 3127. https://doi.org/10.3390/ani11113127
APA StyleGoma, A. A., & Phillips, C. J. C. (2021). The Impact of Anthropogenic Climate Change on Egyptian Livestock Production. Animals, 11(11), 3127. https://doi.org/10.3390/ani11113127