Palm Kernel Cake in Diets for Lactating Goats: Qualitative Aspects of Milk and Cheese
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Committee and Experiment Location
2.2. Animals, Experimental Design and Management
2.3. Intake
2.4. Chemical Analysis
2.5. Milk Composition
2.6. Milk Fatty Acid Profile and Fat Quality Analysis
2.7. Cheese-Making Process
2.8. Sensory Analysis
2.9. Calculations
- (1)
- adCP = 0.7934 × CP% − 0.44
- (2)
- adEE = 0.9107 × EE% − 0.33
- (3)
- adNDFap = {0.7877 × (NDF − LIGNIN) + [1 − LIGNIN ÷ NDF)0.85]}
- (4)
- adNFC = 0.9041 × NFC% − 3.22
2.10. Statistical Analysis
3. Results
3.1. Intake and Milk Composition
3.2. Milk Fatty Acid Profile
3.3. Minas Frescal Cheese Quality
3.4. Sensory Analysis
4. Discussion
4.1. Milk Intake and Composition
4.2. Fatty Acid Profile
4.3. Quality of Minas Frescal Cheese
4.4. Sensory Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
SENSORY EVALUATION OF GOAT CHEESE | ||||
Name: ______________________________________________________ | ||||
Gender: | F □ | M □ | Age:__________ | Date:___/___/______ |
ATTRIBUTE | ||
9 | Like extremely | 9 |
8 | Like very much | 8 |
7 | Like moderately | 7 |
6 | Like slightly | 6 |
5 | Neither like nor dislike | 5 |
4 | Dislike slightly | 4 |
3 | Dislike moderately | 3 |
2 | Dislike very much | 2 |
1 | Dislike extremely | 1 |
Sample 077 | Sample 473 | Sample 164 | Sample 521 | ||||
Attribute | Score | Attribute | Score | Attribute | Score | Attribute | Score |
Color | Color | Color | Color | ||||
Aroma | Aroma | Aroma | Aroma | ||||
Taste | Taste | Taste | Taste | ||||
Texture | Texture | Texture | Texture | ||||
Overall acceptance | Overall acceptance | Overall acceptance | Overall acceptance |
1st Place | 2nd Place | 3rd Place | 4th Place | |
Taste | ||||
Aroma |
References
- Clark, S.; García, M.B.M. A 100-year review: Advances in goat milk research. J. Dairy Sci. 2017, 100, 10026–10044. [Google Scholar] [CrossRef] [PubMed]
- IBGE. Censo Agropecuário 2017; Instituto Brasileiro de Geografia e Estatística—IBGE: Rio de Janeiro, Brazil, 2018.
- Holanda-Júnior, E.V. Sistemas de Produção de Pequenos Ruminantes no Semi-Árido do Nordeste Brasileiro; Embrapa Caprinos: Sobral, Brazil, 2006. [Google Scholar]
- Dentler, J.; Kiefer, L.; Hummler, T.; Bahrs, E.; Elsaesser, M. The impact of low-input grass-based and high-input confinement-based dairy systems on food production, environmental protection and resource use. Agroecol. Sustain. Food Syst. 2020, 44, 1089–1110. [Google Scholar] [CrossRef]
- Mcgrath, J.; Duval, S.M.; Tamassia, L.F.M.; Kindermann, M.; Stemmler, R.T.; Gouve, V.N.; Acedo, T.S.; Immig, I.; Williams, S.N.; Celi, P. Nutritional strategies in ruminants: A lifetime approach. Res. Vet. Sci. 2017, 116, 28–39. [Google Scholar] [CrossRef]
- Oliveira, R.L.; Leão, A.G.; Abreu, L.L.; Teixeira, S.; Silva, T.M. Alternative Foods in the Diet of Ruminants. Rev. Cient. Prod. Anim. 2013, 15, 141–160. [Google Scholar] [CrossRef]
- Khatun, R.; Reza, M.I.H.; Moniruzzaman, M.; Yaakob, Z. Sustainable oil palm industry: The possibilities. Renew. Sustain. Energy Rev. 2017, 76, 608–619. [Google Scholar] [CrossRef]
- Oliveira, R.L.; de Carvalho, G.G.P.; Oliveira, R.L.; Tosto, M.S.L.; Santos, E.M.; Ribeiro, R.D.X.; Silva, T.M.; Correia, B.R.; de Rufino, L.M.A. Palm kernel cake obtained from biodiesel production in diets for goats: Feeding behavior and physiological parameters. Trop. Anim. Health Prod. 2017, 49, 1401–1407. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, L.R.; da Silva, F.F.; Silva, R.R.; de Oliveira, E.S.R.; de Almeida, M.M.; Júnior, A.F.P.; Dicastro, D.S.; Gonçalo, M.S.; Pacheco, C.C.; de Oliveira, P.A. Fatty acid profile of milk from cows fed palm kernel cake. Semin. Cienc. Agrar. 2016, 37, 2773–2783. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, R.D.X.; Oliveira, R.L.; Oliveira, R.L.; Carvalho, G.G.P.; Medeiros, A.N.; Correia, B.R.; Silva, T.M.; Bezerra, L.R. Palm kernel cake from the biodiesel industry in diets for goat kids. Part 1: Nutrient intake and utilization, growth performance and carcass traits. Small Rum. Res. 2018, 165, 17–23. [Google Scholar] [CrossRef]
- Silva, L.O.; Carvalho, G.G.P.; Tosto, M.S.L.; Lima, V.G.O.; Cirne, L.G.A.; Pina, D.S.; Leite, V.M.; Rodrigues, C.S.; Mesquita, B.M.A.C. Effects of palm kernel cake in high-concentrate diets on carcass traits and meat quality of feedlot goats. Livest. Sci. 2021, 246, 104456. [Google Scholar] [CrossRef]
- NRC—National Research Council. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; National Academic Press: Washington, DC, USA, 2007. [Google Scholar]
- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis, 15th ed.; (AOAC) International: Arlington, VA, USA, 1990. [Google Scholar]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A.E. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Mertens, D.R. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beaker or crucibles: Collaborative study. J. AOAC Int. 2002, 85, 1217–1240. [Google Scholar] [CrossRef]
- Sniffen, C.J.; O’Connor, J.D.; Van Soest, P.J.; Fox, D.G.; Russell, J.B. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J. Anim. Sci. 1992, 70, 3562–3577. [Google Scholar] [CrossRef]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standartization of procedures for nitrogen fractionation of ruminants feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis, 18th ed.; AOAC: Gaithersburgs, MD, USA, 2006. [Google Scholar]
- Valente, T.N.P.; Detmann, E.; Valadares Filho, S.C.; Cunha, M.; Queiroz, A.C.; Sampaio, C.B. In Situ estimation of indigestible compounds contents in cattle feed and feces using bags made from different textiles. Braz. J. Anim. Sci. 2011, 40, 666–675. [Google Scholar] [CrossRef] [Green Version]
- Kramer, J.K.; Fellner, V.; Dugan, M.E.; Sauer, F.D.; Mossoba, M.M.; Yurawecz, M.P. Evaluating Acid and Base Catalysts in the Methylation of Milk and Rumen Fatty Acids with Special Emphasis on Conjugated Dienes and Total trans Fatty Acids. Lipids 1997, 32, 1219–1228. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- BRASIL, Ministério da Saúde. Agência Nacional de Vigilância Sanitária—ANVISA. Regulamento Técnico Sobre as Condições Higiênico Sanitárias e de Boas Práticas de Fabricação Para Estabelecimentos Produtores/Industrializadores de Alimentos; Seção 1; Portaria SVS/MS nº 326, de 30 de julho de 1997; Diário Oficial da União, Agência Nacional de Vigilância Sanitária—ANVISA: Florianópolis, Brazil, 1997; p. 1.
- Malheiros, P.S.; Sant’Anna, V.; Barbosa, M.S.; Brandelli, A.; de Melo Franco, B.D.G.M. Effect of liposome-encapsulated nisin and bacteriocin-like substance P34 on Listeria monocytogenes growth in Minas frescal cheese. Int. J. Food Microbiol. 2012, 156, 272–277. [Google Scholar] [CrossRef]
- El-Gawad, M.A.A.; Ahmed, N.S. Cheese yield as affected by some parameters review. Acta Sci. Pol. Technol. Alimen. 2011, 10, 131–153. [Google Scholar]
- Pinheiro, R.S.B.; Jorge, A.M.; Francisco, C.L. Chemical composition and yield of in natura and roast sheep meat. Ciênc. Tecnol. Aliment. 2008, 28, 154–157. [Google Scholar] [CrossRef] [Green Version]
- Bessa, R.J.B. Revalorização nutricional das gorduras dos ruminantes. In Symposium Europeo—Alimentación en el Siglo XXI; Calcro, R., Gómez-Nieves, J.M., Eds.; Colégio Oficial de Veterinários de Badajoz: Badajoz, Spain, 1999; pp. 283–313. [Google Scholar]
- Santos-Silva, J.; Bessa, R.J.B.; Santos-Silva, F. Efect of genotype, feeding system and slaughter weight on the quality of light lambs. II. Fatty acid composition of meat. Livest. Prod. Sci. 2002, 77, 187–192. [Google Scholar] [CrossRef]
- Hall, M.B. Challenges with nonfiber carbohydrate methods. J. Anim. Sci. 2003, 81, 3226–3232. [Google Scholar] [CrossRef]
- Da Cruz, C.H.; Santos, S.A.; de Carvalho, G.G.P.; Azevedo, J.A.G.; Detmann, E.; de Campos Valadares Filho, S.; Mariz, L.D.S.; Pereira, E.S.; Nicory, I.M.C.; Tosto, M.S.L.; et al. Estimating digestible nutrients in diets for small ruminants fed with tropical forages. Livest. Sci. 2021, 249, 104532. [Google Scholar] [CrossRef]
- SAS Institute. SAS/STAT® Users Guide; Version 9.3; SAS Institute Inc.: Cary, NC, USA, 2009. [Google Scholar]
- Silva, L.O.; Carvalho, G.G.P.; Tosto, M.S.L.; Lima, V.G.O.; Cirne, L.G.A.; PINA, D.S.; Santos, S.A.; Rodrigues, C.S.; Ayres, M.C.; Azevedo, J.A.G. Digestibility, nitrogen metabolism, ingestive behavior and performance of feedlot goats fed high-concentrate diets with palm kernel cake. Livest. Sci. 2020, 241, 104226. [Google Scholar] [CrossRef]
- Olawoye, S.O.; Okeniyi, F.A.; Adeloye, A.A.; Alabi, O.O.; Shoyombo, A.J.; Animashahun, R.A.; Yousuf, M.B. Effects of formulated concentrate and palm kernel cake supplementation on performance characteristics of growing West African dwarf (WAD) goat kids. Niger. J. Anim. Sci. 2020, 22, 287–295. [Google Scholar]
- Rodrigues, T.C.G.C.; Santos, S.A.; Cirne, L.G.A.; Pina, D.S.; Alba, H.D.R.; de Araújo, M.L.G.M.L.; Silva, W.P.; Nascimento, C.O.; Rodrigues, C.S.; de Carvalho, G.G.P. Palm kernel cake in high-concentrate diets improves animal performance without affecting the meat quality of goat kids. Anim. Prod. Sci. 2021, 61, 78–89. [Google Scholar] [CrossRef]
- Bauman, D.E.; Griinari, J.M. Nutritional regulation of milk fat synthesis. Annu. Rev. Nutr. 2003, 23, 203–227. [Google Scholar] [CrossRef] [Green Version]
- Urrutia, N.L.; Harvatine, K.J. Acetate dose-dependently stimulates milk fat synthesis in lactating dairy cows. J. Nutr. 2017, 147, 763–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, F.; Nan, X.; Wang, H.; Guo, Y.; Xiong, B. Research on the Applications of Calcium Propionate in Dairy Cows: A Review. Animals 2020, 10, 1336. [Google Scholar] [CrossRef] [PubMed]
- Danes, M.A.C.; Hanigan, M.D.; Apelo, S.A.; Dias, J.D.L.; Wattiaux, M.A.; Broderick, G.A. Post-ruminal supplies of glucose and casein, but not acetate, stimulate milk protein synthesis in dairy cows through differential effects on mammary metabolism. J. Dairy Sci. 2020, 103, 6218–6232. [Google Scholar] [CrossRef]
- Olawoye, S.O.; Okeniyi, F.A.; Adeloye, A.A.; Alabi, O.O.; Shoyombo, A.J.; Animashahun, R.A.; Yousuf, M.B. Milk yield and composition of West African dwarf (wad) goats fed palm kernel cake supplement for conventional concentrate. ADAN J. Agric. 2020, 1, 173–179. [Google Scholar]
- Palmquist, D.L.; Beaulieu, A.D.; Barbano, D.M. Feed and animal factors influencing milk fat composition. J. Dairy Sc. 1993, 76, 1753–1771. [Google Scholar] [CrossRef]
- Oliveira, R.; Faria, M.; Silva, R.; Bezerra, L.; Carvalho, G.; Pinheiro, A.; Simionato, J.; Leão, A. Fatty acid profile of milk and cheese from dairy cows supplemented a diet with palm kernel cake. Molecules 2015, 20, 15434–15448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freitas, T.B.; Felix, T.L.; Pedreira, M.S.; Silva, R.R.; Silva, F.F.; Silva, H.G.O.; Moreira, B.S. Effects of increasing palm kernel cake inclusion in supplements fed to grazing lambs on growth performance, carcass characteristics, and fatty acid profile. Anim. Feed Sci. Technol. 2017, 226, 71–80. [Google Scholar] [CrossRef]
- Tudisco, R.; Morittu, V.M.; Addi, L.; Moniello, G.; Grossi, M.; Musco, N.; Grazioli, R.; Mastellone, V.; Pero, M.E.; Lombardi, P.; et al. Influence of pasture on stearoyl-coa desaturase and miRNA 103 expression in goat milk: Preliminary results. Animals 2019, 9, 606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lock, A.L.; Garnsworthy, P.C. Seasonal variation in milk conjugated linoleic acid and 9-desaturase activity in dairy cows. Livest. Prod. Sci. 2003, 79, 47–59. [Google Scholar] [CrossRef]
- Mohammad, M.H.A.; Jew, S.; Peter, J.H.J. Health benefits and evaluation of healthcare cost savings if oils rich in monounsaturated fatty acids were substituted for conventional dietary oils in the United States. Nutr. Rev. 2017, 75, 163–174. [Google Scholar] [CrossRef]
- Kliem, K.E.; Shingfield, K.J. Manipulation of milk fatty acid composition in lactating cows: Opportunities and challenges. Eur. J. Lipid Sci. Technol. 2016, 118, 1661–1683. [Google Scholar] [CrossRef]
- Wołoszyn, J.; Haraf, G.; Okruszek, A.; Wereńska, M.; Goluch, Z.; Teleszko, M. Fatty acid profiles and health lipid indices in the breast muscles of local Polish goose varieties. Poult. Sci. 2020, 99, 1216–1224. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, H. Nutritional indices for assessing fatty acids: A mini-review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef]
- Idamokoro, E.M.; Muchenje, V.; Afolayan, A.J.; Hugo, A. Comparative fatty-acid profile and atherogenicity index of milk from free grazing Nguni, Boer and non-descript goats in South Africa. Pastoralism 2019, 9, 4. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Mustafa, A.F.; Zhao, X. Effects of flaxseed supplementation to lactating ewes on milk composition, cheese yield, and fatty acid composition of milk and cheese. Small Rumin. Res. 2006, 63, 233–241. [Google Scholar] [CrossRef]
- Johnson, M.E.; Chen, C.M.; Jaeggi, J.J. Effect of rennet coagulation time on composition, yield, and quality of reduced fat Cheddar cheese. J. Dairy Sci. 2001, 84, 1027–1033. [Google Scholar] [CrossRef]
- Furtado, M.M. Principais Problemas dos Queijos: Causas e Prevenção. São Paulo; Fonte Comunicações e Editora: Campinas, Brazil, 2005; p. 200. [Google Scholar]
- Emmons, D.B. Economic importance of cheese yield. In Monograph on Factors Affecting the Yield of Cheese; Emmons, D.B., Ed.; International Dairy Federation: Brussels, Belgium, 1993; pp. 10–11. [Google Scholar]
- De Carvalho Rodrigues, T.C.G.; Santos, S.A.; Cirne, L.G.A.; dos Santos Pina, D.; Alba, H.D.R.; de Araújo, M.L.G.M.L.; Silva, W.P.; de Oliveira Nascimento, C.; Rodrigues, C.S.; Tosto, M.S.L.; et al. Palm kernel cake in high-concentrate diets for feedlot goat kids: Nutrient intake, digestibility, feeding behavior, nitrogen balance, blood metabolites, and performance. Trop. Anim. Health Prod. 2021, 53, 454. [Google Scholar] [CrossRef] [PubMed]
- Lepesioti, S.; Zoidou, E.; Lioliou, D.; Moschopoulou, E.; Moatsou, G. Quark-Type Cheese: Effect of Fat Content, Homogenization, and Heat Treatment of Cheese Milk. Foods 2021, 10, 184. [Google Scholar] [CrossRef] [PubMed]
- Zan, M.; Stibilj, V.; Rogelj, I. Milk fatty acid composition of goats grazing on alpine pasture. Small Rumin. Res. 2006, 64, 45–52. [Google Scholar] [CrossRef]
- Villamil, R.A.; Guzmán, M.P.; Ojeda-Arredondo, M.; Cortés, L.Y.; Archila, E.G.; Giraldo, A.; Mondragón, A.I. Cheese fortification through the incorporation of UFA-rich sources: A review of recent (2010–2020) evidence. Heliyon 2020, 7, e05785. [Google Scholar] [CrossRef] [PubMed]
- Teter, A.; Barłowska, J.; Król, J.; Brodziak, A.; Rutkowska, J.; Litwińczuk, Z. Volatile compounds and amino acid profile of short-ripened farmhouse cheese manufactured from the milk of the White-Backed native cow breed. J. Food Sci. Technol. 2020, 129, 109602. [Google Scholar] [CrossRef]
- Chen, C.; Zhou, W.; Yu, H.; Yuan, J.; Tian, H. Evaluation of the Perceptual Interactions among Aldehydes in a Cheddar Cheese Matrix According to Odor Threshold and Aroma Intensity. Molecules 2020, 25, 4308. [Google Scholar] [CrossRef]
- Colonna, M.A.; Giannico, F.; Tufarelli, V.; Laudadio, V.; Selvaggi, M.; De Mastro, G.; Tedone, L. Dietary supplementation with camelina sativa (L. crantz) forage in autochthonous Ionica goats: Effects on milk and caciotta cheese chemical, fatty acid composition and sensory properties. Animals 2021, 11, 1589. [Google Scholar] [CrossRef]
Variable | Palm Kernel Cake (g kg−1) | Palm Kernel Cake | |||
---|---|---|---|---|---|
0 | 80 | 160 | 240 | ||
Ingredient (g kg−1) | |||||
Maize silage | 400.0 | 400.0 | 400.0 | 400.0 | - |
Palm kernel cake | 0.0 | 80.0 | 160.0 | 240.0 | - |
Ground maize | 320.0 | 260.0 | 200.0 | 140.0 | - |
Cottonseed meal | 180.0 | 160.0 | 140.0 | 120.0 | - |
Maize germ | 40.0 | 40.0 | 40.0 | 40.0 | - |
Soybean meal 1 | 50.0 | 50.0 | 50.0 | 50.0 | - |
Mineral supplement 2 | 10.0 | 10.0 | 10.0 | 10.0 | - |
Chemical composition (g kg−1 DM) | |||||
Dry matter (g kg−1 as-fed) | 681.5 | 683.9 | 686 | 688.8 | 923.4 |
Mineral matter | 31.3 | 33.4 | 35.6 | 37.7 | 47.4 |
Crude protein | 162.4 | 162.9 | 163.3 | 163.8 | 159.3 |
NDFap 3 | 337.8 | 369 | 398.8 | 428.6 | 617.9 |
ADFap 4 | 23.4 | 25.09 | 26.88 | 28.68 | 379.5 |
iNDF 5 | 140.8 | 151.2 | 161.6 | 17.2 | 202.7 |
pdNDF 6 | 196.9 | 217.7 | 237.2 | 256.6 | 415.2 |
Lignin | 78.6 | 83.2 | 87.7 | 92.3 | 135.8 |
Ether extract | 50.7 | 59.8 | 68.8 | 77.8 | 161.9 |
Non-fibrous carbohydrates | 417.8 | 375 | 333.6 | 292.1 | 13.6 |
Total digestible nutrients | 777.8 | 779.0 | 780.3 | 781.7 | 810.7 |
Palm Kernel Cake (g kg−1) | p-Value | ||||||
---|---|---|---|---|---|---|---|
Variable | 0 | 80 | 160 | 240 | SEM 1 | L 2 | Q 3 |
Intake (kg day−1) | |||||||
Dry matter intake 4 | 1.68 | 1.68 | 1.25 | 0.84 | 0.78 | <0.000 | 0.618 |
Crude protein intake 5 | 0.30 | 0.31 | 0.24 | 0.13 | 0.01 | <0.000 | 0.614 |
Milk composition (g day−1) | |||||||
Fat 6 | 35.54 | 40.07 | 31.26 | 19.76 | 2.53 | <0.000 | 0.005 |
Protein 7 | 32.05 | 30.29 | 24.48 | 16.7 | 2.21 | <0.000 | 0.170 |
Lactose 8 | 40.13 | 38.15 | 32.92 | 22.67 | 3.11 | <0.000 | 0.139 |
Total solids 9 | 116.18 | 117.19 | 96.01 | 64.08 | 8.25 | <0.000 | 0.025 |
Casein (%) 10 | 2.87 | 2.93 | 2.61 | 2.39 | 0.09 | 0.0008 | 0.211 |
Variable | Palm Kernel Cake (g kg−1) | SEM 1 | p-Value | ||||
---|---|---|---|---|---|---|---|
0 | 80 | 160 | 240 | L 2 | Q 3 | ||
Fatty acid profile (mg 100 mg−1) | |||||||
Butyric acid (C4:0) | 1.451 | 1.433 | 1.342 | 1.367 | 0.062 | 0.584 | 0.879 |
Caproic acid (C6:0) 4 | 2.074 | 2.000 | 1.65 | 1.512 | 0.093 | 0.014 | 0.842 |
Caprylic acid (C8:0) 5 | 2.409 | 2.223 | 1.722 | 1.435 | 0.152 | 0.011 | 0.946 |
Capric acid (C10:0) 6 | 7.785 | 6.646 | 4.903 | 3.849 | 0.535 | 0.003 | 0.959 |
Lauric acid (C12:0) 7 | 3.36 | 4.812 | 5.703 | 6.184 | 0.423 | 0.012 | 0.509 |
Myristic acid (C14:0) 8 | 8.301 | 8.936 | 9.779 | 10.044 | 0.229 | 0.020 | 0.721 |
Myristoleic acid (C14:1) 9 | 0.093 | 0.122 | 0.129 | 0.142 | 0.009 | 0.014 | 0.781 |
Pentadecanoic acid (C15:0) | 0.593 | 0.694 | 0.679 | 0.704 | 0.045 | 0.485 | 0.708 |
Palmitic acid (C16:0) 10 | 25.364 | 25.163 | 23.851 | 23.06 | 1.58 | 0.049 | 0.723 |
Palmitoleic acid (C16:1) 11 | 0.527 | 0.935 | 0.815 | 0.917 | 0.107 | 0.033 | 0.985 |
Variable | Palm Kernel Cake (g kg−1) | SEM 1 | p-Value | ||||
---|---|---|---|---|---|---|---|
0 | 80 | 160 | 240 | L 2 | Q 3 | ||
Fatty acid profile (mg 100 mg−1) | |||||||
Heptadecanoic acid (C17:0) | 0.465 | 0.018 | 0.026 | 0.150 | 0.078 | 0.161 | 0.064 |
Stearic acid (C18:0) | 11.877 | 12.779 | 13.092 | 12.314 | 0.455 | 0.718 | 0.409 |
Vaccenic acid (C18:1 t11) | 3.215 | 3.245 | 2.070 | 2.739 | 0.496 | 0.598 | 0.771 |
Oleic acid (C18:1 n9c9) | 19.531 | 20.604 | 23.686 | 24.36 | 1.019 | 0.067 | 0.92 |
Linoleic acid (C18:2n6c) 4 | 3.634 | 2.748 | 2.781 | 2.766 | 0.151 | 0.002 | 0.004 |
Arachidic acid (C20:0) | 0.238 | 0.254 | 0.250 | 0.266 | 0.016 | 0.617 | 0.999 |
Linolenic acid (C18:3n3) | 0.141 | 0.114 | 0.208 | 0.228 | 0.033 | 0.221 | 0.087 |
Rumenic acid (C18:2c9t11) | 0.609 | 0.556 | 0.503 | 0.594 | 0.056 | 0.229 | 0.771 |
Arachidonic acid (C20:4n6) | 0.212 | 0.189 | 0.190 | 0.201 | 0.013 | 0.918 | 0.096 |
Eicosapentaenoic acid (C20:5n3) | 0.025 | 0.017 | 0.022 | 0.023 | 0.003 | 0.904 | 0.476 |
Variable | Palm Kernel Cake (g kg−1) | SEM 1 | p-Value | ||||
---|---|---|---|---|---|---|---|
0 | 80 | 160 | 240 | L 2 | Q 3 | ||
Fatty acid profile (mg 100 mg−1) | |||||||
PUFA | 4.384 | 3.418 | 3.491 | 3.589 | 0.16 | 0.090 | |
MUFA 4 | 24.139 | 25.684 | 27.659 | 29.124 | 0.725 | 0.008 | 0.974 |
SFA | 64.347 | 65.358 | 63.315 | 61.620 | 1.787 | 0.092 | 0.284 |
PUFA:SFA 5 | 0.068 | 0.052 | 0.055 | 0.067 | 0.003 | 0.981 | 0.022 |
Total | 92.871 | 94.459 | 94.465 | 94.22 | 1.54 | 0.182 | 0.167 |
n-6 | 3.634 | 2.748 | 2.781 | 2.766 | 0.151 | 0.057 | 0.119 |
n-3 | 0.141 | 0.114 | 0.208 | 0.228 | 0.033 | 0.221 | 0.087 |
n6:n3 | 35.176 | 25.424 | 25.599 | 14.040 | 3.657 | 0.064 | 0.899 |
CLA | 0.609 | 0.556 | 0.503 | 0.594 | 0.056 | 0.862 | 0.568 |
AI | 2.658 | 2.872 | 2.614 | 2.431 | 0.138 | 0.490 | 0.513 |
TI 6 | 3.175 | 3.214 | 2.950 | 2.405 | 0.124 | 0.000 | 0.023 |
h:H | 0.622 | 0.59 | 0.664 | 0.979 | 0.084 | 0.511 | 0.859 |
Palm Kernel Cake (g kg−1) | SEM 1 | p-Value | |||||
---|---|---|---|---|---|---|---|
Variable | 0 | 80 | 160 | 240 | L 2 | Q 3 | |
% of dry matter | |||||||
Moisture 4 | 63.50 | 54.49 | 57.76 | 54.90 | 1.02 | 0.004 | 0.123 |
Crude protein 5 | 44.62 | 44.65 | 42.58 | 44.40 | 0.28 | 0.146 | 0.041 |
Ether extract 6 | 42.21 | 46.08 | 46.76 | 45.89 | 0.53 | <0.000 | 0.002 |
Mineral matter | 7.02 | 6.11 | 6.63 | 6.25 | 0.14 | 0.110 | 0.279 |
kg of cheese per 100 kg of milk | |||||||
Yield 7 | 20.00 | 16.18 | 17.68 | 16.41 | 0.43 | 0.003 | 0.129 |
PCi | Eigenvalue | Proportion of Variance (%) | Cumulative Proportion (%) | Weighting Coefficient | ||||
---|---|---|---|---|---|---|---|---|
Color | Aroma | Taste | Texture | OA | ||||
PC1 | 0.299 | 77.160 | 77.160 | −0.009 | 0.203 | 0.700 | 0.307 | 0.613 |
PC2 | 0.083 | 21.380 | 98.540 | 0.050 | 0.903 | −0.360 | 0.227 | −0.002 |
PC3 | 0.006 | 1.460 | 100.000 | 0.426 | −0.330 | −0.261 | 0.800 | 0.010 |
PC4 | 0.000 | 0.000 | 100.000 | 0.903 | 0.105 | 0.151 | −0.388 | 0.000 |
PC5 | 0.000 | 0.000 | 100.000 | 0.000 | 0.150 | 0.539 | 0.249 | −0.790 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, F.G.; Leite, L.C.; Alba, H.D.R.; Mesquita, B.M.A.d.C.; Santos, S.A.; Tosto, M.S.L.; Costa, M.P.d.; Pina, D.d.S.; Gordiano, L.A.; Garcia, A.O.; et al. Palm Kernel Cake in Diets for Lactating Goats: Qualitative Aspects of Milk and Cheese. Animals 2021, 11, 3501. https://doi.org/10.3390/ani11123501
Ferreira FG, Leite LC, Alba HDR, Mesquita BMAdC, Santos SA, Tosto MSL, Costa MPd, Pina DdS, Gordiano LA, Garcia AO, et al. Palm Kernel Cake in Diets for Lactating Goats: Qualitative Aspects of Milk and Cheese. Animals. 2021; 11(12):3501. https://doi.org/10.3390/ani11123501
Chicago/Turabian StyleFerreira, Fernanda G., Laudí C. Leite, Henry D. R. Alba, Bruna M. A. de C. Mesquita, Stefanie A. Santos, Manuela S. L. Tosto, Marion P. da Costa, Douglas dos S. Pina, Layse A. Gordiano, Arielly O. Garcia, and et al. 2021. "Palm Kernel Cake in Diets for Lactating Goats: Qualitative Aspects of Milk and Cheese" Animals 11, no. 12: 3501. https://doi.org/10.3390/ani11123501
APA StyleFerreira, F. G., Leite, L. C., Alba, H. D. R., Mesquita, B. M. A. d. C., Santos, S. A., Tosto, M. S. L., Costa, M. P. d., Pina, D. d. S., Gordiano, L. A., Garcia, A. O., Mazza, P. H. S., & Carvalho, G. G. P. d. (2021). Palm Kernel Cake in Diets for Lactating Goats: Qualitative Aspects of Milk and Cheese. Animals, 11(12), 3501. https://doi.org/10.3390/ani11123501