Effects of Whole Corn Germ, a Source of Linoleic Acid, on Carcass Characteristics and Meat Quality of Feedlot Lambs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Location and Ethical Considerations
2.2. Animals, Experimental Design, General Procedures, and Diets
2.3. Chemical Analysis of Ingredients and Diets
2.4. Slaughtering Procedures and Carcass Characteristics
2.5. Meat Physicochemical and Sensory Analysis
2.6. Fatty Acid Profile
2.7. Statistical Analyses
3. Results
3.1. Intake and Carcass Characteristics
3.2. Physicochemical Composition and Sensory Attributes of the Meat
3.3. Meat Fatty Acid Profile
4. Discussion
4.1. Nutrient Intake and Carcass Characteristics
4.2. Physicochemical Composition and Sensory Attributes of the Meat
4.3. Fatty Acid Profile
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miller, W.F.; Shirley, J.E.; Titgemeyer, E.C.; Brouk, M.J. Comparison of full-fat corn germ, whole cottonseed, and tallow as fat sources for lactating dairy cattle. J. Dairy Sci. 2009, 92, 3386–3391. [Google Scholar] [CrossRef]
- Miotto, F.R.C.; Neiva, J.N.M.; Restle, J.; Falcão, A.J.D.S.; Castro, K.J.D.; Maciel, R.P. Ingestive behavior of bulls fed diets containing levels of whole corn germ. Ciênc. Anim. Bras. 2014, 15, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Urbano, S.A.; de Andrade Ferreira, M.; Bispo, S.V.; da Silva, E.C.; Suassuna, J.M.A.; de Oliveira, J.P.F. Corn germ meal in replacement of corn in Santa Ines sheep diet: Carcass characteristics and tissue composition. Acta Vet. Bras. 2016, 10, 165–171. [Google Scholar] [CrossRef]
- Lima, M.B.D.; Rabello, C.B.V.; Silva, E.P.D.; Lima, R.B.; Arruda, E.M.F.D.; Albino, L.F.T. Effect of broiler chicken age on ileal digestibility of corn germ meal. Acta Scient. Ani. Sci. 2012, 34, 137–141. [Google Scholar] [CrossRef] [Green Version]
- Abdelqader, M.M.; Hippen, A.R.; Kalscheur, K.F.; Schingoethe, D.J.; Karges, K.; Gibson, M.L. Evaluation of corn germ from ethanol production as an alternative fat source in dairy cow diets. J. Dairy Sci. 2009, 92, 1023–1037. [Google Scholar] [CrossRef] [PubMed]
- Brito, A.B.D.; Stringhini, J.H.; Cruz, C.P.D.; Xavier, S.A.G.; Leandro, N.S.M.; Café, M.B. Effect of whole corn germ on broiler carcass performance and yield. Arq. Bras. Med. Vet. Zootec. 2005, 57, 241–249. [Google Scholar] [CrossRef]
- Silva, E.C.D.; Ferreira, M.D.A.; Véras, A.S.C.; Bispo, S.V.; Conceição, M.G.D.; Siqueira, M.C.B.D.; Souza, A.R.D.L. Replacement of corn meal by corn germ meal in lamb diets. Pesq. Agropec. Bras. 2013, 48, 442–449. [Google Scholar] [CrossRef]
- Urbano, S.A.; Ferreira, M.D.A.; Madruga, M.S.; Azevedo, P.S.D.; Bispo, S.V.; Silva, E.C.D. Corn germ as a substitute for corn in the diet of confined Santa Inês sheep: Chemical and lipid composition of meat. Ciênc. Agrotec. 2014, 38, 581–588. [Google Scholar] [CrossRef] [Green Version]
- Guerreiro, O.; Alves, S.P.; Soldado, D.; Cachucho, L.; Almeida, J.M.; Francisco, A.; Jerónimo, E. Inclusion of the aerial part and condensed tannin extract from Cistus ladanifer L. in lamb diets–Effects on growth performance, carcass and meat quality and fatty acid composition of intramuscular and subcutaneous fat. Meat Sci. 2020, 160, 107945. [Google Scholar] [CrossRef]
- Dugan, M.E.R.; Cletos, M.; Payam, V. Polyunsaturated fatty acid biosynthesis and metabolism in agriculturally important species. In Polyunsaturated Fatty Acid Metabolism; Burdge, G., Ed.; Academic Press: Southampton, UK; AOCS Press: Southampton, UK, 2018; pp. 61–86. [Google Scholar] [CrossRef]
- Dijkstra, A.J. Vegetable Oils: Types and Properties. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Elsevier: Oxford, UK; Academic Press: Waltham, MA, USA, 2016; pp. 517–522. [Google Scholar] [CrossRef]
- NRC—National Research Council. Nutrient Rrequirements of Small Ruminants; National Academic Press: Washington, DC, USA, 2007. [Google Scholar]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 18th ed.; Association of Official Analytical Chemists Inc.: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Mertens, D.R. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: Collaborative study. J. AOAC Int. 2002, 85, 1217–1240. [Google Scholar]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 17th ed.; Association of Official Analytical Chemists Inc.: Washington, DC, USA, 2002. [Google Scholar]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Hall, M.B. Calculation of Non-Structural Carbohydrate Content of Feeds That Contain Non-Protein Nitrogen; University of Florida: Gainesville, FL, USA, 2000. [Google Scholar]
- FAO—Food and Agriculture Organization. Guidelines for Humane Handling, Transport and Slaughter of Livestock: Slaughter of Livestock; Food and Agriculture Organization of United Nation: Bangkok, Thailand, 2001. [Google Scholar]
- Cézar, M.F.; Sousa, W.H. Sheep and Goat Carcasses: Production, Evaluation and Classification; Agropecuária Tropical: Uberaba, Brazil, 2007. [Google Scholar]
- Osório, J.C.S.; Osório, M.T.; Jardim, P.O. Methods for the Evaluation of Sheep Meat Production: ‘In Vivo’, in the Carcass and in the Meat; University Graphic Publisher—UFPEL: Pelotas, Brazil, 1998. [Google Scholar]
- Colomer-Rocher, F.; Morand-Fehr, P.; Kirton, A.H. Standard methods and procedures for goat carcass evaluation, jointing and tissue separation. Livest. Prod. Sci. 1987, 17, 149–159. [Google Scholar] [CrossRef]
- Silva Sobrinho, A.G. Body Composition and Characteristics of Carcass from Lambs of Different Genotypes and Ages at Slaughter. Ph.D. Thesis, Massey University, Palmerston North, New Zealand, 1999. [Google Scholar]
- Cañeque, V.; Sañudo, C. Methodology for the Study of the Quality of the Carcass and Meat in Ruminants; Instituto Nacional de Investigación y Tecnologia y Alimenticia: Madrid, Spain, 2000. [Google Scholar]
- Miltenburg, G.A.; Wensing, T.; Smulders, F.J.; Breukink, H.J. Relationship between blood hemoglobin, plasma and tissue iron, muscle heme pigment, and carcass color of veal. J. Anim. Sci. 1992, 70, 2766–2772. [Google Scholar] [CrossRef] [PubMed]
- Duckett, S.K.; Klein, T.A.; Dodson, M.V.; Snowder, G.D. Tenderness of normal and callipyge lamb aged fresh or after freezing. Meat Sci. 1998, 49, 19–26. [Google Scholar] [CrossRef]
- Wheeler, T.L.; Koohmaraie, M.; Shackelford, S.D. Standardized Warner Bratzler Shear Force Procedures for Meat Tenderness Measurement; Agricultural Research Service: Clay Center, NE, USA, 1995. [Google Scholar] [CrossRef] [Green Version]
- AMSA—American Meat Science Association. Research Guidelines for Cookery, Sensory Evaluation, and Instrumental Tenderness Measurements of Meat, 2nd ed.; American Meat Science Association: Champaign, IL, USA, 2015. [Google Scholar]
- O’Fallon, J.V.; Busboom, J.R.; Nelson, M.L.; Gaskins, C.T. A direct method for fatty acid methyl ester (FAME) synthesis: Application to wet 5 meat tissues, oils and feedstuffs. J. Anim. Sci. 2007, 85, 1511–1521. [Google Scholar] [CrossRef] [Green Version]
- Kramer, J.K.; Fellner, V.; Dugan, M.E.; Sauer, F.D.; Mossoba, M.M.; Yurawecz, M.P. Evaluating acid and base catalysts in the methylation of milk and rumen fatty acids with special emphasis on conjugated dienes and total trans fatty acids. Lipids 1997, 32, 1219–1228. [Google Scholar] [CrossRef]
- Kramer, J.K.; Blackadar, C.B.; Zhou, J. Evaluation of two GC columns (60-m SUPELCOWAX 10 and 100-m CP sil 88) for analysis of milkfat with emphasis on CLA, 18:1, 18:2 and 18:3 isomers, and short-and long-chain FA. Lipids 2002, 37, 823–835. [Google Scholar] [CrossRef]
- Bravo-Lamas, L.; Barron, L.J.; Kramer, J.K.; Etaio, I.; Aldai, N. Characterization of the fatty acid composition of lamb commercially available in northern Spain: Emphasis on the trans-18:1 and CLA content and profile. Meat Sci. 2016, 117, 108–116. [Google Scholar] [CrossRef]
- Sukhija, P.S.; Palmquist, D.L. Rapid method for determination of total fatty acid content and composition of feedstuffs and feces. J. Agric. Food Chem. 1988, 36, 1202–1206. [Google Scholar] [CrossRef]
- Rhee, K.S. Fatty acids in meats and meat products. In Fatty Acids in Foods and Their Health Implications; Chow, C.K., Ed.; Marcel Dekker: New York, NY, USA, 1992; pp. 65–93. [Google Scholar]
- Malau-Aduli, A.E.O.; Siebert, B.D.; Bottema, C.D.K.; Pitchford, W.S. A comparison of the fatty acid composition of tryacilglycerols in adipose tissue from Limousin and Jersey cattle. Aust. J. Agric. Res. 1997, 48, 715–722. [Google Scholar] [CrossRef] [Green Version]
- Kazala, E.C.; Lozeman, F.J.; Mir, P.S.; Laroche, A.; Bailey, D.R.; Weselake, R.J. Relationship of fatty acid composition to intramuscular fat content in beef from crossbred Wagyu cattle. J. Anim. Sci. 1999, 77, 1717–1725. [Google Scholar] [CrossRef] [PubMed]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Bessa, R.J.B. Nutritional revaluation of ruminant fats. In Symposium Europeo—Alimentación en el Siglo XXI; Calcro, R., Gómez-Nieves, J.M., Eds.; Official College of Veterinarians of Badajoz: Badajoz, Spain, 1999; pp. 283–313. [Google Scholar]
- Santos-Silva, J.; Bessa, R.J.B.; Santos-Silva, F. Effect of genotype, feeding system and slaughter weight on the quality of light lambs: Fatty and composition of meat. Livest. Prod. Sci. 2002, 77, 187–194. [Google Scholar] [CrossRef]
- Haddad, S.G.; Younis, H.M. The effect of adding ruminally protected fat in fattening diets on nutrient intake, digestibility and growth performance of Awassi lambs. Anim. Feed Sci. Technol. 2004, 113, 61–69. [Google Scholar] [CrossRef]
- Palmquist, D.L.; Mattos, W.R.S. Lipid metabolism. In Ruminant Nutrition; Berchielli, T.T., Pires, A.V., Oliveira, S.G., Eds.; Funep: Jaboticabal, Brazil, 2006; pp. 287–310. [Google Scholar]
- De Souza, J.; Batistel, F.; Santos, F.A.P. Effect of sources of calcium salts of fatty acids on production, nutrient digestibility, energy balance, and carryover effects of early lactation grazing dairy cows. J. Dairy Sci. 2017, 100, 1072–1085. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, A.R.M.; Orrico, M.A.P., Jr.; Orrico, A.C.A.; Vargas, F.M.D., Jr.; Oliveira, A.B.D.M. Performance and qualitative characteristics of carcasses and meat of lambs finished in confinement and fed diets containing soybean grain or protected fat. Rev. Bras. Zootec. 2011, 40, 1822–1829. [Google Scholar] [CrossRef] [Green Version]
- Brand, T.S.; Van Der Merwe, D.A.; Swart, E.; Hoffman, L.C. The effect of finishing period and dietary energy content on the carcass characteristics of Boer goats. Small Rumin. Res. 2019, 174, 110–117. [Google Scholar] [CrossRef]
- Sañudo, C.; Sierra, I.; Olleta, J.L.; Martin, L.; Campo, M.M.; Santolaria, P.; Wood, J.D.; Nute, G.R. Influence of weaning on carcass quality, fatty acid composition and meat quality in intensive lamb production systems. Anim. Sci. 1998, 66, 175–187. [Google Scholar] [CrossRef]
- Ponnampalam, E.N.; Hopkins, D.L.; Bruce, H.; Li, D.; Baldi, G.; Bekhit, A.E.D. Causes and contributing factors to “dark cutting” meat: Current trends and future directions: A review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 400–430. [Google Scholar] [CrossRef] [Green Version]
- Sañudo, C.; Muela, E.; Campo, M.M. Key factors involved in lamb quality from farm to fork in Europe. J. Integ. Agric. 2013, 12, 1919–1930. [Google Scholar] [CrossRef]
- Bressan, M.C.; Prado, O.V.; Pérez, J.R.O.; Lemos, A.; Bonagurio, S. Effect of slaughter weight of Santa Inês and Bergamácia lambs on the physical and chemical characteristics of meat. Food Sci. Technol. 2001, 21, 293–303. [Google Scholar] [CrossRef] [Green Version]
- Leão, A.G.; Silva Sobrinho, A.G.D.; Moreno, G.M.B.; Souza, H.B.A.D.; Giampietro, A.; Rossi, R.C.; Perez, H.L. Physico-chemical and sensory characteristics of lamb meat finished with diets containing sugar cane or corn silage and two levels of concentrate. Braz. J. Anim. Sci. 2012, 1253–1262. [Google Scholar] [CrossRef] [Green Version]
- Fruet, A.P.B.; Stefanello, F.S.; Júnior, A.G.R.; de Souza, A.N.M.; Tonetto, C.J.; Nörnberg, J.L. Whole grains in the finishing of culled ewes in pasture or feedlot: Performance, carcass characteristics and meat quality. Meat Sci. 2016, 113, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Kirton, A.H.; Crane, B.; Paterson, D.J.; Clare, N.T. Yellow fat in lambs caused by carotenoid pigmentation. N. Z. J. Agric. Res. 1975, 18, 267–272. [Google Scholar] [CrossRef] [Green Version]
- Egesel, C.O.; Wong, J.C.; Lambert, R.J.; Rocheford, T.R. Combining ability of maize inbreds for carotenoids and tocopherols. Crop Sci. 2003, 43, 818–823. [Google Scholar] [CrossRef]
- Krzywicki, K. Assessment of relative content of myoglobin. oxymyoglobin and metmyoglobin at the surface of beef. Meat Sci. 1979, 3, 1–10. [Google Scholar] [CrossRef]
- Bezerra, L.S.; Barbosa, A.M.; Carvalho, G.G.P.; Simionato, J.I.; Freitas, J.E., Jr.; Araújo, M.L.G.M.L.; Pereira, L.; Silva, R.R.; Lacerda, E.C.Q.; Carvalho, B.M.A. Meat quality of lambs fed diets with peanut cake. Meat Sci. 2016, 121, 88–95. [Google Scholar] [CrossRef]
- Majewska, M.P.; Pająk, J.J.; Skomiał, J.; Kowalik, B. The effect of different forms of sunflower products in diets for lambs and storage time on meat quality. Anim. Feed Sci. Technol. 2016, 222, 227–235. [Google Scholar] [CrossRef]
- Facciolongo, A.M.; Lestingi, A.; Colonna, M.A.; Nicastro, F.; De Marzo, D.; Toteda, F. Effect of diet lipid source (linseed vs. soybean) and gender on performance, meat quality and intramuscular fatty acid composition in fattening lambs. Small Rumin. Res. 2018, 159, 11–17. [Google Scholar] [CrossRef]
- Nguyen, D.V.; Malau-Aduli, B.S.; Cavalieri, J.; Nichols, P.D.; Malau-Aduli, A.E.O. Supplementation with plant-derived oils rich in omega-3 polyunsaturated fatty acids for lamb production. Vet. Anim. Sci. 2018. [Google Scholar] [CrossRef] [PubMed]
- Montecillo-Aguado, M.; Tirado-Rodrigues, B.; Tong, Z.; Vega, O.M.; Morales-Martínez, M.; Abkenari, S.; Pedraza-Chaverri, J.; Huerta-Yepez, S. Importance of the Role of ω-3 and ω-6 Polyunsaturated Fatty Acids in the Progression of Brain Cancer. Brain Sci. 2020, 10, 381. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Gan, W.; Liao, X.; Wei, J.; Lu, M.; Chen, H.; Liu, X. Conjugated linoleic acid supplements preserve muscle in high-body-fat adults: A double-blind, randomized, placebo trial. Nutr. Metab. Cardiov. Dis. 2020. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.S.; Brown, M.A.; Wu, J.P.; Liu, Z. Different oilseed supplements alter fatty acid composition of different adipose tissues of adult ewes. Meat Sci. 2010, 85, 542–549. [Google Scholar] [CrossRef]
- Saoussem, H.; Sadok, B.; Habib, K.; Mayer, P.M. Fatty acid accumulation in the different fractions of the developing corn kernel. Food Chem. 2009, 117, 432–437. [Google Scholar] [CrossRef]
- FAO—Food and Agriculture Organization. WHO and FAO Joint Consultation: Fats and oils in human nutrition. Nutr. Rev. 1995, 53, 202–205. [Google Scholar]
Item | Whole Corn Germ (g/kg DM) | WCG | ||||
---|---|---|---|---|---|---|
0 | 30 | 60 | 90 | 120 | ||
Ingredient proportion (g/kg DM) | ||||||
Sorghum silage | 500 | 500 | 500 | 500 | 500 | - |
Ground corn | 330 | 303 | 276 | 248 | 221 | - |
Soybean meal | 145 | 142 | 139 | 137 | 134 | - |
Whole corn germ | 0 | 30 | 60 | 90 | 120 | - |
Urea | 10 | 10 | 10 | 10 | 10 | - |
Mineral supplement 1 | 15 | 15 | 15 | 15 | 15 | - |
Chemical composition (g/kg as-fed) | ||||||
Dry matter (DM) | 594 | 595 | 596 | 596 | 597 | 920 |
Chemical composition (g/kg DM) | ||||||
Organic matter | 843 | 844 | 845 | 846 | 847 | 911 |
Mineral matter | 37 | 37 | 37 | 37 | 36 | 93 |
Crude protein | 175 | 175 | 174 | 174 | 174 | 137 |
Ether extract | 31 | 42 | 54 | 65 | 76 | 414 |
Neutral detergent fiber | 394 | 402 | 409 | 416 | 423 | 418 |
Acid detergent fiber | 198 | 203 | 208 | 213 | 218 | 208 |
NIDP 2 | 7.6 | 7.4 | 7.3 | 7.2 | 7.0 | 11 |
ADIP 3 | 3.8 | 3.7 | 3.7 | 3.7 | 3.6 | 3.0 |
Cellulose | 96 | 100 | 104 | 108 | 112 | 159 |
Hemicellulose | 196 | 198 | 200 | 202 | 204 | 210 |
Lignin | 102 | 103 | 104 | 105 | 106 | 48 |
Non-fibrous carbohydrates | 360 | 343 | 325 | 307 | 289 | 21 |
Fatty acid profile (mg/kg of diet) | ||||||
Total | 21,877 | 33,484 | 45,091 | 56,688 | 68,295 | 434,910 |
Caprylic (C8:0) | 4.0 | 5.0 | 6.0 | 6.0 | 7.0 | 2.0 |
Capric (C10:0) | 36 | 41 | 47 | 52 | 57 | 247 |
Lauric (C12:0) | 50 | 55 | 60 | 66 | 71 | 287 |
Myristic (C14:0) | 419 | 575 | 730 | 885 | 1041 | 6035 |
Palmitic (C16:0) | 3392 | 4924 | 6457 | 7989 | 9522 | 58,344 |
Palmitoleic (C16:1) | 81 | 103 | 125 | 146 | 168 | 875 |
Stearic (C18:0) | 724 | 1016 | 1309 | 1601 | 1894 | 11,181 |
Oleic (C18:1 n-9) | 5848 | 9937 | 14,026 | 18,108 | 22,197 | 150,108 |
Linoleic (C18:2 n-6) | 9974 | 15,079 | 20,183 | 25,283 | 30,387 | 192,030 |
α-linolenic (C18:3 n-3) | 517 | 599 | 680 | 763 | 844 | 3485 |
Item | Inclusion Level of WCG (g/kg DM) | SEM | p-Value 1 | |||||
---|---|---|---|---|---|---|---|---|
0 | 30 | 60 | 90 | 120 | L | Q | ||
Total intake (kg) | ||||||||
Dry matter | 72.9 | 70.6 | 64.7 | 55.2 | 59.2 | 2.26 | <0.01 | 0.30 |
Crude protein | 13.8 | 13.7 | 13.6 | 13.7 | 13.7 | 0.06 | 0.15 | 0.20 |
Ether extract | 2.5 | 3.5 | 4.4 | 5.4 | 6.4 | 0.01 | <0.01 | 0.27 |
Weights (kg) | ||||||||
Initial weight | 26.9 | 28.0 | 26.5 | 25.8 | 25.8 | - | - | - |
Final weight | 42.7 | 43.5 | 42.1 | 41.8 | 41.5 | 0.71 | 0.07 | 0.64 |
Hot carcass weight | 18.2 | 17.9 | 18.0 | 18.0 | 18.1 | 0.63 | 0.99 | 0.68 |
Cold carcass weight | 17.7 | 17.4 | 17.5 | 17.5 | 17.6 | 0.62 | 0.97 | 0.77 |
Yields (%) | ||||||||
Hot carcass yield | 42.5 | 41.5 | 43.0 | 42.9 | 42.0 | 1.13 | 0.98 | 0.75 |
Cold carcass yield | 41.3 | 40.3 | 42.0 | 41.8 | 40.7 | 1.10 | 0.96 | 0.63 |
Subjective evaluation | ||||||||
Conformation | 3.0 | 2.7 | 3.0 | 2.9 | 2.8 | 0.12 | 0.92 | 0.95 |
Finishing | 2.7 | 2.6 | 2.6 | 2.3 | 2.8 | 0.14 | 0.94 | 0.08 |
Marbling | 2.3 | 2.1 | 2.1 | 2.2 | 2.2 | 2.12 | 0.95 | 0.56 |
Morphometric measurements (cm) | ||||||||
External length | 54.5 | 55.0 | 53.5 | 55.1 | 53.8 | 1.02 | 0.74 | 0.91 |
Internal length | 56.2 | 57.6 | 55.2 | 55.8 | 54.2 | 1.47 | 0.24 | 0.61 |
Leg length | 36.5 | 35.8 | 35.5 | 36.6 | 34.4 | 0.83 | 0.22 | 0.61 |
Leg circumference | 44.6 | 44.1 | 44.8 | 44.1 | 41.2 | 0.81 | 0.01 | 0.04 |
Chest width | 25.4 | 24.6 | 24.6 | 24.0 | 24.7 | 0.68 | 0.36 | 0.41 |
Rump width | 20.4 | 20.2 | 20.4 | 20.0 | 20.2 | 0.63 | 0.77 | 0.94 |
Chest depth | 26.8 | 25.3 | 24.8 | 25.3 | 24.2 | 0.58 | 0.01 | 0.44 |
Rump perimeter | 52.5 | 52.0 | 53.8 | 53.2 | 54.5 | 1.08 | 0.18 | 0.79 |
Longissimus lumborum muscle | ||||||||
Loin eye area (cm2) | 10.9 | 10.9 | 10.4 | 11.5 | 11.5 | 0.73 | 0.50 | 0.61 |
Subcutaneous fat thickness (mm) | 2.9 | 2.3 | 2.3 | 2.3 | 3.3 | 0.25 | 0.31 | <0.01 |
Item | Inclusion Level of WCG (g/kg DM) | SEM | p-Value 1 | |||||
---|---|---|---|---|---|---|---|---|
0 | 30 | 60 | 90 | 120 | L | Q | ||
pH 0 h | 6.8 | 7.0 | 6.6 | 6.7 | 7.0 | 0.10 | 0.67 | 0.11 |
pH 24 h | 6.4 | 6.0 | 5.8 | 6.1 | 6.0 | 0.18 | 0.27 | 0.13 |
Color parameter | ||||||||
Lightness (L *) | 36.5 | 38.7 | 39.9 | 39.0 | 37.1 | 1.16 | 0.69 | 0.04 |
Redness (a *) | 19.4 | 20.6 | 20.0 | 20.5 | 20.2 | 0.38 | 0.27 | 0.19 |
Yellowness (b *) | 5.0 | 6.3 | 7.7 | 6.8 | 6.0 | 0.45 | 0.10 | <0.01 |
Shear force (kgf/cm2) | 2.7 | 2.8 | 3.4 | 2.9 | 2.5 | 0.26 | 0.60 | 0.04 |
Cooking weight loss (%) | 20.8 | 18.8 | 20.0 | 17.1 | 18.8 | 2.26 | 0.42 | 0.50 |
Chemical composition | ||||||||
Moisture | 73.8 | 73.6 | 73.5 | 73.2 | 73.7 | 0.38 | 0.64 | 0.40 |
Ash | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 0.02 | 0.45 | 0.27 |
Crude protein | 22.0 | 21.2 | 22.0 | 22.2 | 21.1 | 0.34 | 0.56 | 0.29 |
Ether extract | 3.0 | 3.8 | 3.1 | 3.4 | 3.3 | 0.31 | 0.69 | 0.46 |
Sensory attributes | ||||||||
Flavor | 6.3 | 6.5 | 6.3 | 6.5 | 6.5 | 0.28 | 0.68 | 0.90 |
Tenderness | 7.7 | 7.5 | 7.1 | 7.6 | 7.7 | 0.28 | 0.96 | 0.41 |
Juiciness | 7.3 | 7.1 | 6.7 | 7.3 | 7.3 | 0.27 | 0.95 | 0.42 |
Aroma | 6.6 | 6.9 | 6.7 | 7.1 | 6.7 | 0.26 | 0.62 | 0.56 |
Overall acceptance | 6.9 | 7.0 | 6.7 | 7.0 | 7.0 | 0.27 | 0.73 | 0.72 |
Item | Inclusion Level of WCG (g/kg DM) | SEM | p-Value 1 | |||||
---|---|---|---|---|---|---|---|---|
0 | 30 | 60 | 90 | 120 | L | Q | ||
Saturated fatty acids (SFA) | ||||||||
Caprylic (C8:0) | 11.7 | 15.0 | 17.5 | 15.0 | 17.4 | 2.31 | 0.16 | 0.46 |
Capric (C10:0) | 67.3 | 61.8 | 49.3 | 65.8 | 66.2 | 9.37 | 0.95 | 0.27 |
Lauric (C12:0) | 42.7 | 38.7 | 33.8 | 48.1 | 46.8 | 5.95 | 0.38 | 0.30 |
Myristic (C14:0) | 625 | 575 | 582 | 586 | 617 | 74.4 | 0.98 | 0.58 |
Pentadecanoic (C15:0) | 87.6 | 95.2 | 79.7 | 73.9 | 77.8 | 15.43 | 0.43 | 0.96 |
Palmitic (C16:0) | 7023 | 6459 | 6936 | 5917 | 6557 | 732 | 0.55 | 0.75 |
Heptadecanoic (C17:0) | 316 | 260 | 308 | 296 | 269 | 21.98 | 0.42 | 0.97 |
Stearic (C18:0) | 5098 | 4652 | 6153 | 4952 | 5039 | 375 | 0.88 | 0.27 |
Arachidic (20:0) | 36.8 | 33.1 | 44.0 | 36.1 | 37.3 | 2.61 | 0.63 | 0.39 |
Behenic (22:0) | 97.3 | 72.0 | 91.9 | 81.3 | 77.4 | 5.83 | 0.13 | 0.59 |
Branched-chain fatty acids (BCFA) | ||||||||
Iso—14:0 | 8.5 | 6.1 | 10.8 | 8.4 | 8.2 | 1.20 | 0.66 | 0.58 |
iso—15:0 | 35.3 | 26.1 | 31.6 | 28.8 | 24.0 | 5.80 | 0.31 | 0.98 |
anteiso—15:0 | 37.6 | 28.5 | 42.4 | 36.6 | 30.1 | 4.71 | 0.66 | 0.43 |
iso—16:0 | 46.6 | 34.9 | 56.1 | 43.9 | 39.4 | 4.76 | 0.73 | 0.31 |
iso—17:0 | 7.2 | 6.3 | 5.0 | 5.4 | 4.5 | 1.07 | 0.09 | 0.66 |
anteiso—17:0 | 6.8 | 5.2 | 5.8 | 5.2 | 7.6 | 1.16 | 0.67 | 0.14 |
iso—18:0 | 5.8 | 6.5 | 7.2 | 6.4 | 6.7 | 0.60 | 0.39 | 0.37 |
Monounsaturated fatty acids (MUFA) | ||||||||
Miristoleic (C14:1) | 23.2 | 23.5 | 18.9 | 19.5 | 20.3 | 3.76 | 0.43 | 0.67 |
Palmitoleic (C16:1) | 605 | 544 | 531 | 366 | 495 | 83.21 | 0.17 | 0.48 |
C18:1 trans-9 | 5.4 | 6.6 | 9.3 | 6.2 | 8.4 | 3.12 | 0.60 | 0.78 |
C18:1 trans-10 | 213 | 201 | 252 | 216 | 222 | 19.46 | 0.62 | 0.50 |
Vaccenic (C18:1 trans-11) | 375 | 473 | 532 | 519 | 588 | 88.89 | 0.12 | 0.70 |
Cis-vaccenic (C18:1 cis-11) | 311 | 270 | 271 | 217 | 264 | 34.58 | 0.21 | 0.37 |
Oleic (C18:1 n-9) | 13,181 | 11,427 | 12,667 | 10,021 | 11,417 | 1477 | 0.32 | 0.67 |
Polyunsaturated fatty acids (PUFA) | ||||||||
Linoleic (C18:2 n-6) | 1182 | 1175 | 1538 | 1344 | 1329 | 65.15 | 0.04 | 0.03 |
CLA 2 | 91.9 | 101 | 135 | 102 | 133 | 17.99 | 0.17 | 0.73 |
CLA (C18:2 trans-10 cis-12) | 10.7 | 10.5 | 11.4 | 12.1 | 10.5 | 1.10 | 0.74 | 0.47 |
α-linolenic (C18:3 n-3) | 87.8 | 72.7 | 73.3 | 73.6 | 83.1 | 9.79 | 0.79 | 0.21 |
Arachidonic (C20:4 n-6) | 293 | 277 | 337 | 311 | 265 | 25.88 | 0.79 | 0.16 |
Eicosapentaenoic (EPA; C20:5 n-3) | 57.3 | 45.7 | 71.4 | 45.4 | 36.1 | 10.24 | 0.22 | 0.25 |
Docosapentaenoic (DPA; C22:5 n-3) | 81.3 | 69.7 | 77.1 | 74.7 | 61.9 | 9.43 | 0.29 | 0.74 |
Docosahexaenoic (DHA; C22:6 n-3) | 19.1 | 16.1 | 20.1 | 18.4 | 14.0 | 2.47 | 0.34 | 0.38 |
Item 1 | Inclusion Level of WCG (g/kg DM) | SEM | p-Value 2 | |||||
---|---|---|---|---|---|---|---|---|
0 | 30 | 60 | 90 | 120 | L | Q | ||
SFA | 13,552 | 12,352 | 14,454 | 12,204 | 12,926 | 1114 | 0.70 | 0.90 |
MUFA | 14,714 | 12,835 | 14,277 | 11,365 | 13,014 | 1592 | 0.36 | 0.66 |
PUFA | 1824 | 1768 | 2263 | 1982 | 1933 | 92.04 | 0.17 | 0.04 |
BCFA | 146 | 107 | 158 | 132 | 120 | 16.52 | 0.63 | 0.74 |
MUFA:SFA | 1.1 | 1.0 | 0.9 | 0.9 | 1.0 | 0.05 | 0.15 | 0.27 |
PUFA:SFA | 0.13 | 0.15 | 0.16 | 0.17 | 0.15 | 0.01 | 0.31 | 0.27 |
DFA | 21,637 | 19,256 | 22,694 | 18,300 | 19,987 | 1847 | 0.49 | 0.96 |
Neutral | 5165 | 4713 | 6202 | 5018 | 5106 | 375 | 0.88 | 0.28 |
Total | 32,576 | 29,229 | 33,464 | 27,733 | 30,206 | 2800 | 0.51 | 0.87 |
Ʃ-6 | 385 | 378 | 472 | 413 | 398 | 30.40 | 0.55 | 0.17 |
Ʃ-3 | 158 | 131 | 169 | 138 | 112 | 17.17 | 0.15 | 0.32 |
omega-6:omega-3 | 2.5 | 3.1 | 2.9 | 3.1 | 3.6 | 0.30 | 0.03 | 0.90 |
Atherogenicity index | 0.6 | 0.6 | 0.5 | 0.6 | 0.6 | 0.02 | 0.54 | 0.19 |
Thrombogenicity index | 1.6 | 1.7 | 1.7 | 1.8 | 1.7 | 0.07 | 0.15 | 0.40 |
Hypocholesterolemic (h) | 14,738 | 12,950 | 14,620 | 11,752 | 13,073 | 1454 | 0.35 | 0.76 |
Hypercholesterolemic (H) | 8319 | 8238 | 8101 | 7009 | 7736 | 977 | 0.43 | 0.85 |
h:H index | 1.9 | 1.8 | 1.9 | 1.8 | 1.8 | 0.05 | 0.26 | 0.63 |
Δ9-desaturase C16 | 7.8 | 7.1 | 7.0 | 7.1 | 7.0 | 0.37 | 0.14 | 0.42 |
Δ9-desaturase C18 | 71.3 | 70.0 | 66.8 | 67.0 | 68.6 | 2.07 | 0.24 | 0.26 |
Elongase | 70.6 | 70.1 | 71.6 | 70.7 | 70.0 | 0.74 | 0.77 | 0.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nascimento, C.O.; Pina, D.S.; Cirne, L.G.A.; Santos, S.A.; Araújo, M.L.G.M.L.; Rodrigues, T.C.G.C.; Silva, W.P.; Souza, M.N.S.; Alba, H.D.R.; de Carvalho, G.G.P. Effects of Whole Corn Germ, a Source of Linoleic Acid, on Carcass Characteristics and Meat Quality of Feedlot Lambs. Animals 2021, 11, 267. https://doi.org/10.3390/ani11020267
Nascimento CO, Pina DS, Cirne LGA, Santos SA, Araújo MLGML, Rodrigues TCGC, Silva WP, Souza MNS, Alba HDR, de Carvalho GGP. Effects of Whole Corn Germ, a Source of Linoleic Acid, on Carcass Characteristics and Meat Quality of Feedlot Lambs. Animals. 2021; 11(2):267. https://doi.org/10.3390/ani11020267
Chicago/Turabian StyleNascimento, Camila O., Douglas S. Pina, Luís G. A. Cirne, Stefanie A. Santos, Maria L. G. M. L. Araújo, Thomaz C. G. C. Rodrigues, William P. Silva, Mateus N. S. Souza, Henry D. R. Alba, and Gleidson G. P. de Carvalho. 2021. "Effects of Whole Corn Germ, a Source of Linoleic Acid, on Carcass Characteristics and Meat Quality of Feedlot Lambs" Animals 11, no. 2: 267. https://doi.org/10.3390/ani11020267
APA StyleNascimento, C. O., Pina, D. S., Cirne, L. G. A., Santos, S. A., Araújo, M. L. G. M. L., Rodrigues, T. C. G. C., Silva, W. P., Souza, M. N. S., Alba, H. D. R., & de Carvalho, G. G. P. (2021). Effects of Whole Corn Germ, a Source of Linoleic Acid, on Carcass Characteristics and Meat Quality of Feedlot Lambs. Animals, 11(2), 267. https://doi.org/10.3390/ani11020267