Is Harbor Porpoise (Phocoena phocoena) Exhaled Breath Sampling Suitable for Hormonal Assessments?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Blow Sample Collection Devices
2.1.1. Nitex Dish
2.1.2. Manganese(II) Chloride Tube
2.2. Study Animals
2.2.1. Restrained Free-Ranging Animals
2.2.2. Animals under Human Care
2.3. Hormone Extraction
2.3.1. Nitex
2.3.2. MnCl2
2.4. ELISA
2.5. Data Analysis
2.6. Suggested Sampling Protocol
3. Results
3.1. Evolving Sampling Methodology
3.2. Sampling Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Halpern, B.S.; Walbridge, S.; Selkoe, K.A.; Kappel, C.V.; Micheli, F.; D’Agrosa, C.; Bruno, J.F.; Casey, K.S.; Ebert, C.; Fox, H.E.; et al. A Global Map of Human Impact on Marine Ecosystems. Science 2008, 319, 948–952. [Google Scholar] [CrossRef] [Green Version]
- Siebert, U.; Müller, S.; Gilles, A.; Sundermeyer, J.; Narberhaus, I. Species profiles marine mammals. In Threatened Biodiversity in the German North and Baltic Seas: Sensitivites towards Human Activities and the Effects of Climate Change; Narberhaus, I., Krause, J., Bernitt, U., Eds.; Federal Agency for Nature Conservation: Bonn, Germany, 2012; pp. 488–495. ISBN 978-3-7843-4017-3. [Google Scholar]
- Maxwell, S.M.; Hazen, E.L.; Bograd, S.J.; Halpern, B.S.; Breed, G.A.; Nickel, B.; Teutschel, N.M.; Crowder, L.B.; Benson, S.; Dutton, P.H.; et al. Cumulative human impacts on marine predators. Nat. Commun. 2013, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Dietz, R.; Letcher, R.J.; Desforges, J.-P.; Eulaers, I.; Sonne, C.; Wilson, S.; Andersen-Ranberg, E.; Basu, N.; Barst, B.D.; Bustnes, J.O.; et al. Current state of knowledge on biological effects from contaminants on arctic wildlife and fish. Sci. Total Environ. 2019, 696, 1–40. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Approaches to Understanding the Cumulative Effects of Stressors on Marine Mammals; National Academies Press: Washington, DC, USA, 2017. [Google Scholar] [CrossRef]
- Levin, M. Marine Mammal Immunology. In CRC Handbook of Marine Mammal Medicine, 3rd ed.; Gulland, F.M.D., Dierauf, L.A., Whitman, K.L., Eds.; CRC Press: Boca Raton, FL, USA, 2018; pp. 209–230. ISBN 978-1-4987-9687-3. [Google Scholar]
- Atkinson, S.; Dierauf, L.A. Stress and Marine Mammals. In CRC Handbook of Marine Mammal Medicine, 3rd ed.; Gulland, F.M.D., Dierauf, L.A., Whitman, K.L., Eds.; CRC Press: Boca Raton, FL, USA, 2018; pp. 153–168. ISBN 978-1-4987-9687-3. [Google Scholar]
- Crocker, D.E. Endocrinology. In CRC Handbook of Marine Mammal Medicine, 3rd ed.; Gulland, F.M.D., Dierauf, L.A., Whitman, K.L., Eds.; CRC Press: Boca Raton, FL, USA, 2018; pp. 137–151. ISBN 978-1-4987-9687-3. [Google Scholar]
- Fair, P.A.; Becker, P.R. Review of stress in marine mammals. J. Aquat. Ecosyst. Stress Recover. 2000, 7, 335–354. [Google Scholar] [CrossRef]
- Jepson, P.D.; Bennett, P.M.; Deaville, R.; Allchin, C.R.; Baker, J.R.; Law, R.J. Relationships between polychlorinated biphenyls and health status in harbor porpoises (Phocoena phocoena) stranded in the United Kingdom. Environ. Toxicol. Chem. 2005, 24, 238–248. [Google Scholar] [CrossRef] [PubMed]
- Martin, L.B.; Hopkins, W.A.; Mydlarz, L.D.; Rohr, J.R. The effects of anthropogenic global changes on immune functions and disease resistance. Ann. N. Y. Acad. Sci. 2010, 1195, 129–148. [Google Scholar] [CrossRef]
- Desforges, J.-P.W.; Sonne, C.; Levin, M.; Siebert, U.; De Guise, S.; Dietz, R. Immunotoxic effects of environmental pollutants in marine mammals. Environ. Int. 2016, 86, 126–139. [Google Scholar] [CrossRef]
- Kelly, J.; Mangos, G.; Williamson, P.; Whitworth, J. Cortisol and Hypertension. Clin. Exp. Pharmacol. Physiol. 1998, 25, S51–S56. [Google Scholar] [CrossRef]
- Fraser, R.; Ingram, M.C.; Anderson, N.H.; Morrison, C.; Davies, E.; Connell, J.M.C. Cortisol Effects on Body Mass, Blood Pressure, and Cholesterol in the General Population. Hypertension 1999, 33, 1364–1368. [Google Scholar] [CrossRef] [Green Version]
- Butts, K.A.; Weinberg, J.; Young, A.H.; Phillips, A.G. Glucocorticoid receptors in the prefrontal cortex regulate stress-evoked dopamine efflux and aspects of executive function. Proc. Natl. Acad. Sci. USA 2011, 108, 18459–18464. [Google Scholar] [CrossRef] [Green Version]
- Romano, M.C.; Rodas, A.Z.; Valdez, R.A.; Hernández, S.E.; Galindo, F.; Canales, D.; Brousset, D.M. Stress in Wildlife Species: Noninvasive Monitoring of Glucocorticoids. Neuroimmunomodulation 2010, 17, 209–212. [Google Scholar] [CrossRef] [PubMed]
- Sheriff, M.J.; Dantzer, B.; Delehanty, B.; Palme, R.; Boonstra, R. Measuring stress in wildlife: Techniques for quantifying glucocorticoids. Oecologia 2011, 166, 869–887. [Google Scholar] [CrossRef] [PubMed]
- Cook, N.J. Review: Minimally invasive sampling media and the measurement of corticosteroids as biomarkers of stress in animals. Can. J. Anim. Sci. 2012, 92, 227–259. [Google Scholar] [CrossRef]
- Wendelaar Bonga, S.E. The stress response in fish. Physiol. Rev. 1997, 77, 591–625. [Google Scholar] [CrossRef]
- Carere, C.; Groothuis, T.G.; Möstl, E.; Daan, S.; Koolhaas, J. Fecal corticosteroids in a territorial bird selected for different personalities: Daily rhythm and the response to social stress. Horm. Behav. 2003, 43, 540–548. [Google Scholar] [CrossRef]
- Romero, L.M.; Wingfield, J.C. Tempests, Poxes, Predators, and People; Oxford University Press: Oxford, UK, 2015. [Google Scholar] [CrossRef]
- Kriegsfeld, L.J.; LeSauter, J.; Hamada, T.; Pitts, S.M.; Silver, R. Circadian Rhythms in the Endocrine System. In Hormones, Brain and Behavior; Pfaff, D.W., Arnold, A.P., Fahrbach, S.E., Etgen, A.M., Rubin, R.T., Eds.; Elsevier: Amsterdam, The Netherlands, 2002; pp. 33–91. [Google Scholar] [CrossRef]
- Suzuki, M.; Uchida, S.; Ueda, K.; Tobayama, T.; Katsumata, E.; Yoshioka, M.; Aida, K. Diurnal and annual changes in serum cortisol concentrations in Indo-Pacific bottlenose dolphins Tursiops aduncus and killer whales Orcinus orca. Gen. Comp. Endocrinol. 2003, 132, 427–433. [Google Scholar] [CrossRef]
- Schmitt, T.L.; St. Aubin, D.J.; Schaefer, A.M.; Dunn, J.L. Baseline, diurnal variations, and stress-induced changes of stress hormones in three captive beluga, Delphinapterus leucas. Mar. Mammal Sci. 2010, 26, 635–647. [Google Scholar] [CrossRef]
- Katsu, Y.; Iguchi, T. Cortisol. In Handbook of Hormones; Takei, Y., Ando, H., Tsutsui, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; p. 533-e95D-2. [Google Scholar] [CrossRef]
- Cook, C.J.; Mellor, D.J.; Harris, P.J.; Ingram, J.R.; Matthews, L.R. Hands-on and hands-off measurement of stress. In The Biology of Animal Stress: Basic Principles and Implications for Animal Welfare; Moberg, G.P., Mench, J.A., Eds.; CABI: Wallingford, UK, 2000; pp. 123–146. [Google Scholar] [CrossRef]
- Desportes, G.; Buholzer, L.; Anderson-Hansen, K.; Blanchet, M.-A.; Aquarone, M.; Sheppard, G.; Brando, S.; Vossen, A.; Siebert, U. Decrease stress: Train your animals. The effect of handling methods on cortisol levels in harbour porpoises, (Phocoena phocoena), under human care. Aquat. Mamm. 2007, 33, 286–292. [Google Scholar] [CrossRef]
- Eskesen, I.G.; Teilmann, J.; Geertsen, B.M.; Desportes, G.; Rigét, F.; Dietz, R.; Larsen, F.; Siebert, U. Stress level in wild harbour porpoises (Phocoena phocoena) during satellite tagging measured by respiration, heart rate and cortisol. J. Mar. Biol. Assoc. U. K. 2009, 89, 885–892. [Google Scholar] [CrossRef]
- Fair, P.A.; Schaefer, A.M.; Romano, T.A.; Bossart, G.D.; Lamb, S.V.; Reif, J.S. Stress response of wild bottlenose dolphins (Tursiops truncatus) during capture-release health assessment studies. Gen. Comp. Endocrinol. 2014, 206, 203–212. [Google Scholar] [CrossRef]
- Moberg, G.P. Problems in defining stress and distress in animals. J. Am. Vet. Med. Assoc. 1987, 191, 1207–1211. [Google Scholar] [PubMed]
- Burgess, E.A.; Hunt, K.E.; Kraus, S.D.; Rolland, R.M. Quantifying hormones in exhaled breath for physiological assessment of large whales at sea. Sci. Rep. 2018, 8, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Bechshøft, T.; Wright, A.J.; Weisser, J.J.; Teilmann, J.; Dietz, R.; Hansen, M.; Björklund, E.; Styrishave, B. Developing a new research tool for use in free-ranging cetaceans: Recovering cortisol from harbour porpoise skin. Conserv. Physiol. 2015, 3, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vining, R.F.; McGinley, R.A.; Maksvytis, J.J.; Ho, K.Y. Salivary Cortisol: A Better Measure of Adrenal Cortical Function than Serum Cortisol. Ann. Clin. Biochem. Int. J. Lab. Med. 1983, 20, 329–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Constable, S.; Parslow, A.; Dutton, G.; Rogers, T.; Hogg, C. Urinary cortisol sampling: A non-invasive technique for examining cortisol concentrations in the Weddell seal, Leptonychotes weddellii. Zoo Biol. 2006, 25, 137–144. [Google Scholar] [CrossRef]
- Hunt, K.E.; Rolland, R.M.; Kraus, S.D.; Wasser, S.K. Analysis of fecal glucocorticoids in the North Atlantic right whale (Eubalaena glacialis). Gen. Comp. Endocrinol. 2006, 148, 260–272. [Google Scholar] [CrossRef]
- Hogg, C.J.; Rogers, T.L.; Shorter, A.; Barton, K.; Miller, P.J.O.; Nowacek, D. Determination of steroid hormones in whale blow: It is possible. Mar. Mammal Sci. 2009, 25, 605–618. [Google Scholar] [CrossRef]
- Champagne, C.D.; Kellar, N.M.; Crocker, D.E.; Wasser, S.K.; Booth, R.K.; Trego, M.L.; Houser, D.S. Blubber cortisol qualitatively reflects circulating cortisol concentrations in bottlenose dolphins. Mar. Mammal Sci. 2017, 33, 134–153. [Google Scholar] [CrossRef]
- Hogg, C.J.; Vickers, E.R.; Rogers, T.L. Determination of testosterone in saliva and blow of bottlenose dolphins (Tursiops truncatus) using liquid chromatography-mass spectrometry. J. Chromatogr. B 2005, 814, 339–346. [Google Scholar] [CrossRef]
- Hunt, K.E.; Moore, M.J.; Rolland, R.M.; Kellar, N.M.; Hall, A.J.; Kershaw, J.; Raverty, S.A.; Davis, C.E.; Yeates, L.C.; Fauquier, D.A.; et al. Overcoming the challenges of studying conservation physiology in large whales: A review of available methods. Conserv. Physiol. 2013, 1, 1–24. [Google Scholar] [CrossRef]
- Dunstan, J.; Gledhill, A.; Hall, A.; Miller, P.; Ramp, C. Quantification of the hormones progesterone and cortisol in whale breath samples using novel, non-invasive sampling and analysis with highly-sensitive ACQUITY UPLC and Xevo TQ-S. Waters Appl. Note 2012, 1–8. Available online: http://www.waters.com/webassets/cms/library/docs/720004277en.pdf (accessed on 14 October 2020). [CrossRef]
- Hunt, K.E.; Rolland, R.M.; Kraus, S.D. Detection of steroid and thyroid hormones via immunoassay of North Atlantic right whale (Eubalaena glacialis) respiratory vapor. Mar. Mammal Sci. 2014, 30, 796–809. [Google Scholar] [CrossRef]
- Acevedo-Whitehouse, K.; Rocha-Gosselin, A.; Gendron, D. A novel non-invasive tool for disease surveillance of free-ranging whales and its relevance to conservation programs. Anim. Conserv. 2010, 13, 217–225. [Google Scholar] [CrossRef]
- Thompson, L.A.; Spoon, T.R.; Goertz, C.E.C.; Hobbs, R.C.; Romano, T.A. Blow Collection as a Non-Invasive Method for Measuring Cortisol in the Beluga (Delphinapterus leucas). PLoS ONE 2014, 9, e114062. [Google Scholar] [CrossRef] [PubMed]
- Richard, J.T.; Robeck, T.R.; Osborn, S.D.; Naples, L.; McDermott, A.; LaForge, R.; Romano, T.A.; Sartini, B.L. Testosterone and progesterone concentrations in blow samples are biologically relevant in belugas (Delphinapterus leucas). Gen. Comp. Endocrinol. 2017, 246, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Mingramm, F.M.J.; Dunlop, R.A.; Blyde, D.; Whitworth, D.J.; Keeley, T. Evaluation of respiratory vapour and blubber samples for use in endocrine assessments of bottlenose dolphins (Tursiops spp.). Gen. Comp. Endocrinol. 2019, 274, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Henk, W.G.; Haldiman, J.T. Microanatomy of the lung of the bowhead whale Balaena mysticetus. Anat. Rec. 1990, 226, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Piscitelli, M.A.; Raverty, S.A.; Lillie, M.A.; Shadwick, R.E. A review of cetacean lung morphology and mechanics. J. Morphol. 2013, 274, 1425–1440. [Google Scholar] [CrossRef] [PubMed]
- Pennington, J.E. Penetration of Antibiotics into Respiratory Secretions. Clin. Infect. Dis. 1981, 3, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Vichyanond, P.; Irvin, C.G.; Larsen, G.L.; Szefler, S.J.; Hill, M.R. Penetration of corticosteroids into the lung: Evidence for a difference between methylprednisolone and prednisolone. J. Allergy Clin. Immunol. 1989, 84, 867–873. [Google Scholar] [CrossRef]
- Mutlu, G.M.; Garey, K.W.; Robbins, R.A.; Danziger, L.H.; Rubinstein, I. Collection and analysis of exhaled breath condensate in humans. Am. J. Respir. Crit. Care Med. 2001, 164, 731–737. [Google Scholar] [CrossRef]
- Davis, M.D.; Montpetit, A.; Hunt, J. Exhaled Breath Condensate. Immunol. Allergy Clin. N. Am. 2012, 32, 363–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubáň, P.; Foret, F. Exhaled breath condensate: Determination of non-volatile compounds and their potential for clinical diagnosis and monitoring. A review. Anal. Chim. Acta 2013, 805, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Effros, R.M.; Murphy, C.; Ozker, K.; Hacker, A. Kinetics of urea exchange in air-filled and fluid-filled rat lungs. Am. J. Physiol. 1992, 263, L619–L626. [Google Scholar] [CrossRef] [PubMed]
- Bjørge, A.; Tolley, K.A. Harbor Porpoise: Phocoena phocoena. In Encyclopedia of Marine Mammals; Perrin, W.F., Würsig, B., Thewissen, J.G.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 448–451. [Google Scholar] [CrossRef]
- ICES. Scientific Reports. In Working Group on Marine Mammal Ecology (WGMME); International Council for the Exploration of the Sea: Barcelona, Spain, 2020; Volume 2. [Google Scholar] [CrossRef]
- Meinig, H.; Boye, P.; Dähne, M.; Hutterer, R.; Lang, J. Rote Liste und Gesamtartenliste der Säugetiere (Mammalia) Deutschlands. Nat. Biol. Vielfalt 2020, 170, 1–73. [Google Scholar] [CrossRef]
- Evans, P.G.H. Conservation agreements for the protection of whales, dolphins and porpoises. In European Whales, Dolphins, and Porpoises Marine Mammal Conservation in Practice; Elsevier: Amsterdam, The Netherlands, 2020; pp. 25–44. [Google Scholar] [CrossRef]
- Bossart, G.D. Marine Mammals as Sentinel Species for Oceans and Human Health. Vet. Pathol. 2011, 48, 676–690. [Google Scholar] [CrossRef] [Green Version]
- IJsseldijk, L.L.; ten Doeschate, M.T.I.; Davison, N.J.; Gröne, A.; Brownlow, A.C. Crossing boundaries for cetacean conservation: Setting research priorities to guide management of harbour porpoises. Mar. Policy 2018, 95, 77–84. [Google Scholar] [CrossRef]
- Fonfara, S.; Siebert, U.; Prange, A. Cytokines and acute phase proteins as markers for infection in harbor porpoises (Phocoena phocoena). Mar. Mammal Sci. 2007, 23, 931–942. [Google Scholar] [CrossRef]
- Siebert, U.; Pozniak, S.; Anderson Hansen, K.; Nordstrom, G.; Teilmann, J.; van Elk, N.; Vossen, A.; Dietz, R. Investigations of thyroid and stress hormones in free-ranging and captive harbor porpoises (Phocoena phocoena): A pilot study. Aquat. Mamm. 2011, 37, 443–453. [Google Scholar] [CrossRef]
- Müller, S.; Lehnert, K.; Seibel, H.; Driver, J.; Ronnenberg, K.; Teilmann, J.; van Elk, C.; Kristensen, J.; Everaarts, E.; Siebert, U. Evaluation of immune and stress status in harbour porpoises (Phocoena phocoena): Can hormones and mRNA expression levels serve as indicators to assess stress? BMC Vet. Res. 2013, 9, 145:1–145:11. [Google Scholar] [CrossRef] [Green Version]
- Rolland, R.; Hamilton, P.; Kraus, S.; Davenport, B.; Gillett, R.; Wasser, S. Faecal sampling using detection dogs to study reproduction and health in North Atlantic right whales (Eubalaena glacialis). J. Cetacean Res. Manag. 2006, 8, 121–125. [Google Scholar]
- Burgess, E.A.; Hunt, K.E.; Kraus, S.D.; Rolland, R.M. Get the most out of blow hormones: Validation of sampling materials, field storage and extraction techniques for whale respiratory vapour samples. Conserv. Physiol. 2016, 4, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Frère, C.H.; Krzyszczyk, E.; Patterson, E.M.; Hunter, S.; Ginsburg, A.; Mann, J. Thar she blows! A novel method for DNA collection from cetacean blow. PLoS ONE 2010, 5, e12299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borowska, E.I.; Nowak, Z.; van Elk, C.; Wahlberg, M. Short Note: Determining Genotypes from Blowhole Exhalation Samples of Harbour Porpoises (Phocoena phocoena). Aquat. Mamm. 2014, 40, 407–411. [Google Scholar] [CrossRef]
- Clements, A.D.; Parker, C.R. The relationship between salivary cortisol concentrations in frozen versus mailed samples. Psychoneuroendocrinology 1998, 23, 613–616. [Google Scholar] [CrossRef]
- Garde, A.H.; Hansen, A.M. Long-term stability of salivary cortisol. Scand. J. Clin. Lab. Investig. 2005, 65, 433–436. [Google Scholar] [CrossRef]
- Hunt, K.E.; Rolland, R.M.; Kraus, S.D. Development of Respiratory Sampling to Assess Stress Responses in North Atlantic Right Whales. Annu. Rept. Def. Tech. Inf. Cent. 2012, 1–7. [Google Scholar] [CrossRef]
- Nalla, A.A.; Thomsen, G.; Knudsen, G.M.; Frokjaer, V.G. The effect of storage conditions on salivary cortisol concentrations using an enzyme immunoassay. Scand. J. Clin. Lab. Investig. 2015, 75, 92–95. [Google Scholar] [CrossRef]
- Teilmann, J.; Larsen, F.; Desportes, G. Time allocation and diving behaviour of harbour porpoises (Phocoena phocoena) in Danish and adjacent waters. J. Cetacean Res. Manag. 2007, 9, 201–210. [Google Scholar]
- Ruser, A.; Dähne, M.; van Neer, A.; Lucke, K.; Sundermeyer, J.; Siebert, U.; Houser, D.S.; Finneran, J.J.; Everaarts, E.; Meerbeek, J.; et al. Assessing auditory evoked potentials of wild harbor porpoises (Phocoena phocoena). J. Acoust. Soc. Am. 2016, 140, 442–452. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 14 October 2020).
- Ridgway, S.H.; Scronce, B.L.; Kanwisher, J. Respiration and Deep Diving in the Bottlenose Porpoise. Science 1969, 166, 1651–1654. [Google Scholar] [CrossRef]
- Fahlman, A.; Loring, S.H.; Levine, G.; Rocho-Levine, J.; Austin, T.; Brodsky, M. Lung mechanics and pulmonary function testing in cetaceans. J. Exp. Biol. 2015, 218, 2030–2038. [Google Scholar] [CrossRef] [Green Version]
- Kastelein, R.A.; Vaughan, N.; Groenenberg, H.J.; Boekholt, H.A.; Schreurs, V.V.A.M. Respiration in harbour porpoises. In The Biology of the Harbour Porpoise; Read, A.J., Wiepkema, P.R., Nachtigall, P.E., Eds.; De Spil Publishers: Woerden, The Netherlands, 1997; pp. 203–215. [Google Scholar]
- Pedernera-Romano, C.; Valdez, R.A.; Singh, S.; Chiappa, X.; Romano, M.C.; Galindo, F. Salivary cortisol in captive dolphins (Tursiops truncatus): A non-invasive technique. Anim. Welf. 2006, 15, 359–362. [Google Scholar]
- St. Aubin, D.J.; Ridgway, S.H.; Wells, R.S.; Rhinehart, H. Dolphin thyroid and adrenal hormones: Circulating levels in wild and semidomesticated Tursiops truncatus, and influence of sex, age, and season. Mar. Mammal Sci. 1996, 12, 1–13. [Google Scholar] [CrossRef]
- Yang, C.Z.; Yaniger, S.I.; Jordan, V.C.; Klein, D.J.; Bittner, G.D. Most plastic products release estrogenic chemicals: A potential health problem that can be solved. Environ. Health Perspect. 2011, 119, 989–996. [Google Scholar] [CrossRef] [PubMed]
- Davies, N.; Gillett, A.; McAlpine, C.; Seabrook, L.; Baxter, G.; Lunney, D.; Bradley, A. The effect of ACTH upon faecal glucocorticoid excretion in the koala. J. Endocrinol. 2013, 219, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gundlach, N.H.; Piechotta, M.; Siebert, U. Is lachrymal fluid a potential method for cortisol measurement in wild harbor seals?: A pilot study. Int. J. Vet. Med. Res. Rep. 2014, 2014, 967043:1–967043:12. [Google Scholar] [CrossRef] [Green Version]
- Fels, M.; Rauterberg, S.; Schwennen, C.; Ligges, U.; Herbrandt, S.; Kemper, N.; Schmicke, M. Cortisol/dehydroepiandrosterone ratio in saliva: Endocrine biomarker for chronic stress in pigs? Livest. Sci. 2019, 222, 21–24. [Google Scholar] [CrossRef]
- Rushen, J. Some problems with the physiological concept of “stress”. Aust. Vet. J. 1986, 63, 359–361. [Google Scholar] [CrossRef]
- Apprill, A.; Miller, C.A.; Moore, M.J.; Durban, J.W.; Fearnbach, H.; Barrett-Lennard, L.G. Extensive Core Microbiome in Drone-Captured Whale Blow Supports a Framework for Health Monitoring. mSystems 2017, 2, e00119-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geoghegan, J.L.; Pirotta, V.; Harvey, E.; Smith, A.; Buchmann, J.P.; Ostrowski, M.; Eden, J.-S.; Harcourt, R.; Holmes, E.C. Virological Sampling of Inaccessible Wildlife with Drones. Viruses 2018, 10, 300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrell, G.K.; Montgomery, G.W. Absence of circadian patterns of secretion of melatonin or cortisol in Weddell seals under continuous natural daylight. J. Endocrinol. 1989, 122, 445–449. [Google Scholar] [CrossRef] [PubMed]
- Oki, C.; Atkinson, S. Diurnal patterns of cortisol and thyroid hormones in the Harbor seal (Phoca vitulina) during summer and winter seasons. Gen. Comp. Endocrinol. 2004, 136, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Centelleghe, C.; Carraro, L.; Gonzalvo, J.; Rosso, M.; Esposti, E.; Gili, C.; Bonato, M.; Pedrotti, D.; Cardazzo, B.; Povinelli, M.; et al. The use of Unmanned Aerial Vehicles (UAVs) to sample the blow microbiome of small cetaceans. PLoS ONE 2020, 15, e0235537. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reckendorf, A.; Schmicke, M.; Bunskoek, P.; Anderson Hansen, K.; Thybo, M.; Strube, C.; Siebert, U. Is Harbor Porpoise (Phocoena phocoena) Exhaled Breath Sampling Suitable for Hormonal Assessments? Animals 2021, 11, 907. https://doi.org/10.3390/ani11030907
Reckendorf A, Schmicke M, Bunskoek P, Anderson Hansen K, Thybo M, Strube C, Siebert U. Is Harbor Porpoise (Phocoena phocoena) Exhaled Breath Sampling Suitable for Hormonal Assessments? Animals. 2021; 11(3):907. https://doi.org/10.3390/ani11030907
Chicago/Turabian StyleReckendorf, Anja, Marion Schmicke, Paulien Bunskoek, Kirstin Anderson Hansen, Mette Thybo, Christina Strube, and Ursula Siebert. 2021. "Is Harbor Porpoise (Phocoena phocoena) Exhaled Breath Sampling Suitable for Hormonal Assessments?" Animals 11, no. 3: 907. https://doi.org/10.3390/ani11030907
APA StyleReckendorf, A., Schmicke, M., Bunskoek, P., Anderson Hansen, K., Thybo, M., Strube, C., & Siebert, U. (2021). Is Harbor Porpoise (Phocoena phocoena) Exhaled Breath Sampling Suitable for Hormonal Assessments? Animals, 11(3), 907. https://doi.org/10.3390/ani11030907