Evaluation of Virtual Water and Water Sustainability of Dairy Production in Trentino Alto Adige (North-Eastern Italy)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Data Sources and Description
2.3. Metodological and Empirical Framework
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Palmieri, N.; Forleo, M.B.; Salimei, E. Environmental impacts of a dairy cheese chain including whey feeding: An Italian case study. J. Clean. Prod. 2017, 140, 881–889. [Google Scholar] [CrossRef]
- Röös, E.; Bajželj, B.; Smith, P.; Patel, M.; Little, D.; Garnett, T. Greedy or needy? Land use and climate impacts of food in 2050 under different livestock futures. Glob. Environ. Chang. 2017, 47, 1–12. [Google Scholar] [CrossRef]
- Béné, C.; Oosterveer, P.; Lamotte, L.; Brouwer, I.D.; de Haan, S.; Prager, S.D.; Khoury, C.K. When food systems meet sustainability–Current narratives and implications for actions. World Dev. 2019, 113, 116–130. [Google Scholar] [CrossRef]
- Fischer, C.; Miglietta, P.P. The links between human diets and health and climate outcomes in the world’s macro-regions during the last 50 years. Int. J. Environ. Res. Public Health 2020, 17, 1219. [Google Scholar] [CrossRef] [Green Version]
- Mekonnen, M.M.; Hoekstra, A.Y. A global assessment of the water footprint of farm animal products. Ecosystems 2012, 15, 401–415. [Google Scholar] [CrossRef] [Green Version]
- Lamastra, L.; Miglietta, P.P.; Toma, P.; De Leo, F.; Massari, S. Virtual water trade of agri-food products: Evidence from Italian-Chinese relations. Sci. Total Environ. 2017, 599, 474–482. [Google Scholar] [CrossRef] [PubMed]
- Mirabella, N.; Castellani, V.; Sala, S. Current options for the valorization of food manufacturing waste: A review. J. Clean. Prod. 2014, 65, 28–41. [Google Scholar] [CrossRef] [Green Version]
- Prazeres, A.R.; Carvalho, F.; Rivas, J. Cheese whey management: A review. J. Environ. Manag. 2012, 110, 48–68. [Google Scholar] [CrossRef] [PubMed]
- ISMEA. Latte e Derivati Bovini—I Numeri Dal Settore. 2021. Available online: http://www.ismeamercati.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/3723 (accessed on 27 March 2021).
- ISMEA. Le Filiere Agroalimentari Nelle Regioni Italiane. Report No. 2. 2018. Available online: http://www.ismea.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/10577 (accessed on 27 March 2021).
- Battaglini, L.; Bovolenta, S.; Gusmeroli, F.; Salvador, S.; Sturaro, E. Environmental sustainability of Alpine livestock farms. Ital. J. Anim. Sci. 2014, 13, 3155. [Google Scholar] [CrossRef]
- Bittante, G. Modeling rennet coagulation time and curd firmness of milk. JDS 2011, 94, 5821–5832. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, A.Y. (Ed.) Virtual water: An introduction. In Proceedings of the International Expert Meeting on Virtual Water Trade; IHE: Delft, The Netherlands, 2003; pp. 14–23. Available online: https://www.worldwatercouncil.org/fileadmin/wwc/Programs/Virtual_Water/VirtualWater_Proceedings_IHE.pdf#page=13 (accessed on 27 March 2021).
- Cai, B.; Zhang, W.; Hubacek, K.; Feng, K.; Li, Z.; Liu, Y.; Liu, Y. Drivers of virtual water flows on regional water scarcity in China. J. Clean. Prod. 2019, 207, 1112–1122. [Google Scholar] [CrossRef]
- Murphy, E.; de Boer, I.J.M.; van Middelaar, C.E.; Holden, N.M.; Shalloo, L.; Curran, T.P.; Upton, J. Water footprinting of dairy farming in Ireland. J. Clean. Prod. 2017, 140, 547–555. [Google Scholar] [CrossRef] [Green Version]
- Ridoutt, B.G.; Baird, D.L.; Bastiaans, K.; Darnell, R.; Hendrie, G.A.; Riley, M.; Keating, B.A. A food-systems approach to assessing dairy product waste. JDS 2014, 97, 6107–6110. [Google Scholar] [CrossRef]
- Huang, J.; Xu, C.C.; Ridoutt, B.G.; Liu, J.J.; Zhang, H.L.; Chen, F.; Li, Y. Water availability footprint of milk and milk products from large-scale dairy production systems in Northeast China. J. Clean. Prod. 2014, 79, 91–97. [Google Scholar] [CrossRef]
- Drastig, K.; Prochnow, A.; Kraatz, S.; Klauss, H.; Plöchl, M. Water footprint analysis for the assessment of milk production in Brandenburg (Germany). Adv. Geosci. 2010, 27, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Manazza, J.F.; Iglesias, D.H. Water Footprint in Milk Chains in the Central Subhumid and Semiarid Region of Argentina. In Proceedings of the International Association of Agricultural Economists (IAAE) Triennial Conference, Foz do Iguaçu, Brazil, 18–24 August 2012. [Google Scholar] [CrossRef]
- Zonderland-Thomassen, M.A.; Lieffering, M.; Ledgard, S.F. Water footprint of beef cattle and sheep produced in New Zealand: Water scarcity and eutrophication impacts. J. Clean. Prod. 2014, 73, 253–262. [Google Scholar] [CrossRef]
- Amarasinghe, U.A.; Shah, T.; Smakhtin, V. Water–milk nexus in India: A path to a sustainable water future? Int. J. Agric. Sustain. 2012, 10, 93–108. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. The Green, Blue and Grey Water Footprint of Farm Animals and Animal Products; Unesco-IHE Institute for Water Education: Delft, The Netherlands, 2010; Volume 2. [Google Scholar]
- Noya, I.; González-García, S.; Berzosa, J.; Baucells, F.; Feijoo, G.; Moreira, M.T. Environmental and water sustainability of milk production in Northeast Spain. Sci. Total Environ. 2018, 616, 1317–1329. [Google Scholar] [CrossRef]
- Ibidhi, R.; Salem, H.B. Water footprint of livestock products and production systems: A review. Anim. Prod. Sci. 2020, 60, 1369–1380. [Google Scholar] [CrossRef]
- Gerbens-Leenes, P.W.; Mekonnen, M.M.; Hoekstra, A.Y. The water footprint of poultry, pork and beef: A comparative study in different countries and production systems. Water Resour. Ind. 2013, 1, 25–36. [Google Scholar] [CrossRef] [Green Version]
- de Miguel, Á.; Hoekstra, A.Y.; García-Calvo, E. Sustainability of the water footprint of the Spanish pork industry. Ecol. Indic. 2015, 57, 465–474. [Google Scholar] [CrossRef]
- Palhares, J.C.P.; Pezzopane, J.R.M. Water footprint accounting and scarcity indicators of conventional and organic dairy production systems. J. Clean. Prod. 2015, 93, 299–307. [Google Scholar] [CrossRef]
- Sultana, M.; Ahmed, J.U.; Shiratake, Y. Sustainable conditions of agriculture cooperative with a case study of dairy cooperative of Sirajgonj District in Bangladesh. JCOM 2020, 8, 100105. [Google Scholar] [CrossRef]
- Ridoutt, B.; Hodges, D. From ISO14046 to water footprint labeling: A case study of indicators applied to milk production in south-eastern Australia. Sci. Total Environ. 2017, 599, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Bosire, C.K.; Rao, E.J.O.; Muchenje, V.; van Wijk, M.; Ogutu, J.O.; Mekonnen, M.M.; Hammond, J. Adaptation opportunities for smallholder dairy farmers facing resource scarcity: Integrated livestock, water and land management. Agric. Ecosyst. Environ. 2014, 284, 106592. [Google Scholar] [CrossRef]
- Toro-Mujica, P.; Vera, R.; Pinedo, P.; Bas, F.; Enríquez-Hidalgo, D.; Vargas-Bello-Pérez, E. Adaptation strategies based on the historical evolution for dairy production systems in temperate areas: A case study approach. Agric. Syst. 2020, 182, 102841. [Google Scholar] [CrossRef]
- Ibidhi, R.; Hoekstra, A.Y.; Gerbens-Leenes, P.W.; Chouchane, H. Water, land and carbon footprints of sheep and chicken meat produced in Tunisia under different farming systems. Ecol. Indic. 2017, 77, 304–313. [Google Scholar] [CrossRef]
- Palhares, J.C.P.; Morelli, M.; Junior, C.C. Impact of roughage-concentrate ratio on the water footprints of beef feedlots. Agric. Syst. 2017, 155, 126–135. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Wu, M.; Guo, X.; Zheng, Y.; Gong, Y.; Wu, N.; Wang, W. Assessing water scarcity in agricultural production system based on the generalized water resources and water footprint framework. Sci. Total Environ. 2017, 609, 587–597. [Google Scholar] [CrossRef]
- Finnegan, W.; Goggins, J.; Clifford, E.; Zhan, X. Global warming potential associated with dairy products in the Republic of Ireland. J. Clean. Prod. 2017, 163, 262–273. [Google Scholar] [CrossRef]
- Berton, M.; Bittante, G.; Zendri, F.; Ramanzin, M.; Schiavon, S.; Sturaro, E. Environmental impact and efficiency of use of resources of different mountain dairy farming systems. Agric. Syst. 2020, 181, 102806. [Google Scholar] [CrossRef]
- Salvador, S.; Corazzin, M.; Romanzin, A.; Bovolenta, S. Greenhouse gas balance of mountain dairy farms as affected by grassland carbon sequestration. J. Environ. Manag. 2017, 196, 644–650. [Google Scholar] [CrossRef] [PubMed]
- Kühl, S.; Flach, L.; Gauly, M. Economic assessment of small-scale mountain dairy farms in South Tyrol depending on feed intake and breed. Ital. J. Anim. Sci. 2020, 19, 41–50. [Google Scholar] [CrossRef]
- De Castro, P.; Miglietta, P.P.; Vecchio, Y. The Common Agricultural Policy 2021–2027: A new history for European agriculture. Ital. Rev. Agric. Econ. 2020, 75, 5–12. [Google Scholar] [CrossRef]
- Benedini, M. Italy’s Outline. In Water Resources of Italy; Springer: Cham, Switzerland, 2020; pp. 3–28. [Google Scholar] [CrossRef]
- Agnoletti, M.; Biasi, R. Trentino-Alto Adige. In Italian Historical Rural Landscapes; Springer: Dordrecht, The Netherlands, 2013; pp. 247–262. [Google Scholar] [CrossRef]
- Ministero delle Politiche Agricole Alimentari e Forestali [MiPAAF]. 2021. Available online: https://www.politicheagricole.it/flex/FixedPages/Common/miepfy700_riferimentiAgro.php/L/IT?parm1=0184%20parm2=1422%20parm3=sprm%20name=C%20period=12m%20nomeParam=Precipitazione (accessed on 27 March 2021).
- ISTAT. Giornata Mondiale Dell’acqua le Statistiche Dell’Istat. 2011. Available online: https://www.istat.it/it/files//2011/03/testointegrale20110321.pdf (accessed on 27 March 2021).
- ISMEA. Allevamento Bovino da Latte: L’Orientamento delle Imprese Italiane Nel Post-Quote. 2013. Available online: http://www.ismea.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/8708 (accessed on 27 March 2021).
- Tasser, E.; Walde, J.; Tappeiner, U.; Teutsch, A.; Noggler, W. Land-use changes and natural reforestation in the Eastern Central Alps. Agric. Ecosyst. Environ. 2007, 118, 115–129. [Google Scholar] [CrossRef]
- Bernués, A.; Ruiz, R.; Olaizola, A.; Villalba, D.; Casasús, I. Sustainability of pasture-based livestock farming systems in the European Mediterranean context: Synergies and trade-offs. Livest. Sci. 2011, 139, 44–57. [Google Scholar] [CrossRef]
- Revello Chion, A.R.; Tabacco, E.; Giaccone, D.; Peiretti, P.G.; Battelli, G.; Borreani, G. Variation of fatty acid and terpene profiles in mountain milk and “Toma piemontese” cheese as affected by diet composition in different seasons. Food Chem. 2010, 121, 393–399. [Google Scholar] [CrossRef]
- CLAL. Quadri Nazionali, Regione Trentino—Alto Adige. Available online: https://www.clal.it/?section=quadro_trentinoaltoadige (accessed on 27 March 2021).
- Borreani, G.; Coppa, M.; Revello Chion, A.; Comino, L.; Giaccone, D.; Ferlay, A.; Tabacco, E. Effect of different feeding strategies in intensive dairy farming systems on milk fatty acid profiles, and implications on feeding costs in Italy. JDS 2013, 96, 6840–6855. [Google Scholar] [CrossRef] [Green Version]
- Engel, E.; Ferlay, A.; Cornu, A.; Chilliard, Y.; Agabriel, C.; Bielicki, G.; Martin, B. Relevance of isotopic and molecular biomarkers for the authentication of milk according to production zone and type of feeding of the cow. J. Agric. Food Chem. 2007, 55, 9099–9108. [Google Scholar] [CrossRef]
- Bozoudi, D.; Kondyli, E.; Claps, S.; Hatzikamari, M.; Michaelidou, A.; Biliaderis, C.G.; Litopoulou-Tzanetaki, E. Compositional characteristics and volatile organic compounds of traditional PDO feta cheese made in two different mountainous areas of Greece. Int. J. Dairy Technol. 2018, 71, 673–682. [Google Scholar] [CrossRef]
- Martin, B.; Verdier-Metz, I.; Buchin, S.; Hurtaud, C.; Coulon, J.B. How do the nature of forages and pasture diversity influence the sensory quality of dairy livestock products? Anim. Sci. 2005, 81, 205–212. [Google Scholar] [CrossRef]
- Owusu-Sekyere, E.; Jordaan, H.; Chouchane, H. Evaluation of water footprint and economic water productivities of dairy products of South Africa. Ecol. Indic. 2017, 83, 32–40. [Google Scholar] [CrossRef]
- Miglietta, P.P.; Morrone, D.; Lamastra, L. Water footprint and economic water productivity of Italian wines with appellation of origin: Managing sustainability through an integrated approach. Sci. Total Environ. 2018, 633, 1280–1286. [Google Scholar] [CrossRef]
- Abdelkader, A.; Elshorbagy, A.; Tuninetti, M.; Laio, F.; Ridolfi, L.; Fahmy, H.; Hoekstra, A.Y. National water, food, and trade modeling framework: The case of Egypt. Sci. Total Environ. 2018, 639, 485–496. [Google Scholar] [CrossRef]
- Delbourg, E.; Dinar, S. The globalization of virtual water flows: Explaining trade patterns of a scarce resource. World Dev. 2020, 131, 104917. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.H.; Tian, Q.; Liu, Z.H.; Zhang, H.L. Virtual water trade of agricultural products: A new perspective to explore the Belt and Road, Sci. Total Environ. 2018, 622, 988–996. [Google Scholar] [CrossRef]
- ISTAT. Latte e Prodotti Lattiero Caseari. 2021. Available online: http://dati.istat.it/Index.aspx?DataSetCode=DCSP_LATTE (accessed on 27 March 2021).
- Hoekstra, A.Y.; Chapagain, A.K.; Mekonnen, M.M.; Aldaya, M.M. The Water Footprint Assessment Manual: Setting the Global Standard; Routledge: London, UK, 2011. [Google Scholar] [CrossRef]
- Hoekstra, A.Y. The Water Footprint of Modern Consumer Society; Routledge: London, UK, 2019. [Google Scholar] [CrossRef]
- Scarascia, M.V.; Battista, F.D.; Salvati, L. Water resources in Italy: Availability and agricultural uses. Irrig. Drain. 2006, 55, 115–127. [Google Scholar] [CrossRef]
- FAO. Review of Water Resources by Country; Water Report No. 23. FAO: Rome, Italy, 2003. Available online: http://www.fao.org/tempref/agl/AGLW/ESPIM/CD-ROM/documents/5C_e.pdf (accessed on 27 March 2021).
- Kennessey, B. Lefolyási Tényezők és Retenciók. Hidrológiai Tanulmány [Flow Factors and Retention. Hydrological study]. Vízügyi Közlemények 1930, 12, 55–76. Available online: https://adtplus.arcanum.hu/en/collection/VizugyiKozlemenyek (accessed on 27 March 2021).
- Borin, M.; Bigon, E.; Zanin, G.; Fava, L. Performance of a narrow buffer strip in abating agricultural pollutants in the shallow subsurface water flux. Environ. Pollut. 2004, 131, 313–321. [Google Scholar] [CrossRef]
- Roibás, L.; Martínez, I.; Goris, A.; Barreiro, R.; Hospido, A. An analysis on how switching to a more balanced and naturally improved milk would affect consumer health and the environment. Sci. Total Environ. 2016, 566, 685–697. [Google Scholar] [CrossRef]
- Santos, H.C.M.; Maranduba, H.L.; de Almeida Neto, J.A.; Rodrigues, L.B. Life cycle assessment of cheese production process in a small-sized dairy industry in Brazil. Environ. Sci. Pollut. Res. Int. 2017, 24, 3470–3482. [Google Scholar] [CrossRef]
- Risner, D.; Tomasino, E.; Hughes, P.; Meunier-Goddik, L. Volatile aroma composition of distillates produced from fermented sweet and acid whey. JDS 2019, 102, 202–210. [Google Scholar] [CrossRef] [Green Version]
- Berlin, J. Environmental life cycle assessment (LCA) of Swedish semi-hard cheese. Int. Dairy J. 2002, 12, 939–953. [Google Scholar] [CrossRef]
- FAO. Water for Sustainable Food and Agriculture; A Report Produced for the G20 Presidency of Germany. FAO: Rome, Italy, 2015. Available online: http://www.fao.org/3/i7959e/i7959e.pdf (accessed on 27 March 2021).
- Ridoutt, B.G.; Pfister, S. A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity. Glob. Environ. Chang. 2010, 20, 113–120. [Google Scholar] [CrossRef]
- Hoekstra, A.Y. The hidden water resource use behind meat and dairy. Anim. Front. 2012, 2, 3–8. [Google Scholar] [CrossRef]
- Gerber, P.; Vellinga, T.; Opio, C.; Steinfeld, H. Productivity gains and greenhouse gas emissions intensity in dairy systems. Livest. Sci. 2011, 139, 100–108. [Google Scholar] [CrossRef]
- Penati, C.A.; Tamburini, A.; Bava, L.; Zucali, M.; Sandrucci, A. Environmental impact of cow milk production in the central Italian Alps using Life Cycle Assessment. Ital. J. Anim. Sci. 2013, 12, e96. [Google Scholar] [CrossRef]
- Talukder, B.; Agnusdei, G.P.; Hipel, K.W.; Dubé, L. Multi-Indicator Supply Chain Management Framework for Food Convergent Innovation in the Dairy Business. Sustain. Futures 2021, 3, 100045. [Google Scholar] [CrossRef]
Macro-Category | HS Code | Data Acquired | Acronym | Data Source |
---|---|---|---|---|
Water Footprint | / | Green Water Footprint (m3/ton) | WFGreen | [22] |
/ | Blue Water Footprint (m3/ton) | WFBlue | ||
/ | Grey Water Footprint (m3/ton) | WFGrey | ||
Dairy Production | 040110 | Skimmed milk (ton) | DP | [58] |
040120 | Low-fat milk (ton) | |||
Whole milk (ton) | ||||
040510 | Butter (ton) | |||
040610 | Fresh and soft cheese (ton) | |||
040606 | Semi-hard and hard cheese (ton) | |||
Water Availability | / | Precipitation (mm) | P | [42] |
/ | Real evapotranspiration (mm) | ETr |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miglietta, P.P.; De Leo, F.; Coluccia, B.; Vecchio, Y.; Capitanio, F. Evaluation of Virtual Water and Water Sustainability of Dairy Production in Trentino Alto Adige (North-Eastern Italy). Animals 2021, 11, 1047. https://doi.org/10.3390/ani11041047
Miglietta PP, De Leo F, Coluccia B, Vecchio Y, Capitanio F. Evaluation of Virtual Water and Water Sustainability of Dairy Production in Trentino Alto Adige (North-Eastern Italy). Animals. 2021; 11(4):1047. https://doi.org/10.3390/ani11041047
Chicago/Turabian StyleMiglietta, Pier Paolo, Federica De Leo, Benedetta Coluccia, Yari Vecchio, and Fabian Capitanio. 2021. "Evaluation of Virtual Water and Water Sustainability of Dairy Production in Trentino Alto Adige (North-Eastern Italy)" Animals 11, no. 4: 1047. https://doi.org/10.3390/ani11041047