Flow Cytometric Assessment of the Viability and Functionality of Uterine Polymorphonuclear Leukocytes in Postpartum Dairy Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Animals and Management
2.3. Experiment 1: Assessment of PMN Viability in Blood and Endometrial Samples
2.3.1. Blood Sample Collection and PMN Isolation
2.3.2. Endometrial Sample Collection and PMN Isolation
2.3.3. Blood and Endometrial PMN Immunolabeling
2.3.4. Sorting CH138A Positive Cells
2.3.5. Flow Cytometric Approach to Evaluate PMN Viability
2.4. Experiment 2: Blood and Endometrial PMN Functionality Tests
2.4.1. Oxidative Burst
2.4.2. Phagocytosis
2.4.3. Intracellular Proteolytic Degradation by DQ Ovalbumin
2.4.4. Flow Cytometric Approach to Evaluate PMN Functionality
2.4.5. Intra-Assay Validation Approach
2.4.6. Inter-Assay Validation Approach
2.5. Statistics
3. Results
3.1. PMN Isolation and Immunolabeling
3.2. PMN Viability
3.3. Blood and Endometrial PMN Functionality Tests
3.3.1. Intra-Assay Validation Approach
3.3.2. Inter-Assay Validation Approach
3.4. Blood Versus Endometrial PMN Functionality
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Drackley, J.K. Biology of dairy cows during the transition period: The final frontier. J. Dairy Sci. 1999, 82, 2259–2273. [Google Scholar] [CrossRef]
- Butler, W.R.; Everett, R.W.; Coppock, C.E. The relationships between energy balance, milk production and ovulation in postpartum Holstein cows. J. Anim. Sci. 1981, 53, 742–748. [Google Scholar] [CrossRef] [Green Version]
- Bogado Pascottini, O.; Leroy, J.; Opsomer, G. Metabolic stress in the transition period of dairy cows: Focusing on the prepartum period. Animals 2020, 10, 1419. [Google Scholar] [CrossRef] [PubMed]
- Herdt, T.H. Ruminant adaptation to negative energy balance. Influences on the etiology of ketosis and fatty liver. Vet. Clin. N. Am. Food Anim. Pract. 2000, 16, 215–230. [Google Scholar] [CrossRef]
- Grummer, R.R.; Mashek, D.G.; Hayirli, A. Dry matter intake and energy balance in the transition period. Vet. Clin. N. Am. Food Anim. Pract. 2004, 20, 447–470. [Google Scholar] [CrossRef] [PubMed]
- Huzzey, J.M.; Veira, D.M.; Weary, D.M.; von Keyserlingk, M.A.G. Prepartum behavior and dry matter intake identify dairy cows at risk for metritis. J. Dairy Sci. 2007, 90, 3220–3233. [Google Scholar] [CrossRef] [Green Version]
- Dubuc, J.; Duffield, T.F.; Leslie, K.E.; Walton, J.S.; LeBlanc, S.J. Risk factors for postpartum uterine diseases in dairy cows. J. Dairy Sci. 2010, 93, 5764–5771. [Google Scholar] [CrossRef] [PubMed]
- Bogado Pascottini, O.; LeBlanc, S.J. Metabolic markers for purulent vaginal discharge and subclinical endometritis in dairy cows. Theriogenology 2020, 155, 43–48. [Google Scholar] [CrossRef]
- Sheldon, I.M.; Noakes, D.E.; Rycroft, A.N.; Pfeiffer, D.U.; Dobson, H. Influence of uterine bacterial contamination after parturition on ovarian dominant follicle selection and follicle growth and function in cattle. Reproduction 2002, 123, 837–845. [Google Scholar] [CrossRef]
- Williams, E.J.; Sibley, K.; Miller, A.N.; Lane, E.A.; Fishwick, J.; Nash, D.M.; Herath, S.; England, G.C.; Dobson, H.; Sheldon, I.M. The effect of Escherichia coli lipopolysaccharide and tumour necrosis factor alpha on ovarian function. Am. J. Reprod. Immunol. 2008, 60, 462–473. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, R.O. The effects of endometritis on the establishment of pregnancy in cattle. Reprod. Fertil. Dev. 2011, 24, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Dadarwal, D.; Palmer, C.; Griebel, P. Mucosal immunity of the postpartum bovine genital tract. Theriogenology 2017, 104, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Alhussien, M.N.; Dang, A.K. Potential roles of neutrophils in maintaining the health and productivity of dairy cows during various physiological and physiopathological conditions: A review. Immunol. Res. 2019, 67, 21–38. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, S.; Rosowski, E.E.; Huttenlocher, A. Neutrophil migration in infection and wound repair: Going forward in reverse. Nat. Rev. Immunol. 2016, 16, 378–391. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, R.O.; Gröhn, Y.T.; Miller, P.M.; Hoffman, D.J. Effect of parity on periparturient neutrophil function in dairy cows. Vet. Immunol. Immunopathol. 1993, 36, 75–82. [Google Scholar] [CrossRef]
- LeBlanc, S.J. Review: Relationships between metabolism and neutrophil function in dairy cows in the peripartum period. Animal 2020, 14, s44–s54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammon, D.S.; Evjen, I.M.; Dhiman, T.R.; Goff, J.P.; Walters, J.L. Neutrophil function and energy status in Holstein cows with uterine health disorders. Vet. Immunol. Immunopathol. 2006, 113, 21–29. [Google Scholar] [CrossRef]
- Singh, J.; Murray, R.D.; Mshelia, G.; Woldehiwet, Z. The immune status of the bovine uterus during the peripartum period. Vet. J. 2008, 175, 301–309. [Google Scholar] [CrossRef]
- Chapwanya, A.; Meade, K.G.; Foley, C.; Narciandi, F.; Evans, A.C.; Doherty, M.L.; Callanan, J.J.; O’Farrelly, C. The postpartum endometrial inflammatory response: A normal physiological event with potential implications for bovine fertility. Reprod. Fertil. Dev. 2012, 24, 1028–1039. [Google Scholar] [CrossRef]
- Gilbert, R.O.; Santos, N.R. Dynamics of postpartum endometrial cytology and bacteriology and their relationship to fertility in dairy cows. Theriogenology 2016, 85, 1367–1374. [Google Scholar] [CrossRef] [Green Version]
- Bogado Pascottini, O.; LeBlanc, S.J. Modulation of immune function in the bovine uterus peripartum. Theriogenology 2020, 150, 193–200. [Google Scholar] [CrossRef]
- Dubuc, J.; Duffield, T.F.; Leslie, K.E.; Walton, J.S.; LeBlanc, S.J. Definitions and diagnosis of postpartum endometritis in dairy cows. J. Dairy Sci. 2010, 93, 5225–5233. [Google Scholar] [CrossRef]
- Wagener, K.; Gabler, C.; Drillich, M. A review of the ongoing discussion about definition, diagnosis and pathomechanism of subclinical endometritis in dairy cows. Theriogenology 2017, 94, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Bogado Pascottini, O.; Hostens, M.; Dini, P.; Vandepitte, J.; Ducatelle, R.; Opsomer, G. Comparison between cytology and histopathology to evaluate subclinical endometritis in dairy cows. Theriogenology 2016, 86, 1550–1556. [Google Scholar] [CrossRef]
- Kampen, A.H.; Tollersrud, T.; Larsen, S.; Roth, J.A.; Frank, D.E.; Lund, A. Repeatability of flow cytometric and classical measurement of phagocytosis and respiratory burst in bovine polymorphonuclear leukocytes. Vet. Immunol. Immunopathol. 2004, 97, 105–114. [Google Scholar] [CrossRef]
- Kimura, K.; Goff, J.P.; Canning, P.; Wang, C.; Roth, J.A. Effect of recombinant bovine granulocyte colony-stimulating factor covalently bound to polyethylene glycol injection on neutrophil number and function in periparturient dairy cows. J. Dairy Sci. 2014, 97, 4842–4851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bogado Pascottini, O.; Baquero, M.; Serrenho, R.C.; Van Schyndel, S.J.; Bienzle, D.; LeBlanc, S.J. Technical note: Assessment of neutrophil endocytosis and proteolytic degradation and its relationship with phagocytosis and oxidative burst in dairy cows. J. Dairy Sci. 2019, 102, 9396–9400. [Google Scholar] [CrossRef]
- Miltenburg, C.L.; Duffield, T.F.; Bienzle, D.; Scholtz, E.L.; LeBlanc, S.J. The effect of prepartum feeding and lying space on metabolic health and immune function. J. Dairy Sci. 2018, 101, 5294–5306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, W.C.; Marusic, S.; Lewin, H.A.; Splitter, G.A.; Perryman, L.E.; McGuire, T.C.; Gorham, J.R. The development and analysis of species specific and cross reactive monoclonal antibodies to leukocyte differentiation antigens and antigens of the major histocompatibility complex for use in the study of the immune system in cattle and other species. Vet. Immunol. Immunopathol. 1987, 15, 337–376. [Google Scholar] [CrossRef]
- Naessens, J.; Nthale, J.M.; Muiya, P. Biochemical analysis of preliminary clusters in the non-lineage panel. Vet. Immunol. Immunopathol. 1996, 52, 347–356. [Google Scholar] [CrossRef]
- Piepers, S.; De Vliegher, S.; Demeyere, K.; Lambrecht, B.N.; de Kruif, A.; Meyer, E.; Opsomer, G. Technical note: Flow cytometric identification of bovine milk neutrophils and simultaneous quantification of their viability. J. Dairy Sci. 2009, 92, 626–631. [Google Scholar] [CrossRef]
- Edmonson, A.J.; Lean, I.J.; Weaver, L.D.; Farver, T.; Webster, G. A body condition scoring chart for Holstein dairy cows. J. Dairy Sci. 1989, 72, 68–78. [Google Scholar] [CrossRef]
- Akoglu, H. User’s guide to correlation coefficients. Turk. J. Emerg. Med. 2018, 18, 91–93. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Fox, J.; Bouchet-Valat, M. Rcmdr: R Commander. R Package Version 2.7-1. 2020. Available online: https://socialsciences.mcmaster.ca/jfox/Misc/Rcmdr/ (accessed on 10 December 2020).
- Signorell, A. DescTools: Tools for Descriptive Statistics. R Package Version 0.99.40. 2021. Available online: https://cran.r-project.org/package=DescTools (accessed on 10 December 2020).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; Available online: https://ggplot2.tidyverse.org (accessed on 10 December 2020).
- Kassambara, A. R Package Ggpubr Version 0.4.0. 2020. Available online: https://rpkgs.datanovia.com/ggpubr (accessed on 10 December 2020).
- Prunner, I.; Wagener, K.; Pothmann, H.; Ehling-Schulz, M.; Drillich, M. Risk factors for uterine diseases on small- and medium-sized dairy farms determined by clinical, bacteriological, and cytological examinations. Theriogenology 2014, 82, 857–865. [Google Scholar] [CrossRef] [PubMed]
- Moretti, P.; Probo, M.; Cantoni, A.; Paltrinieri, S.; Giordano, A. Fluctuation of neutrophil counts around parturition in Holstein dairy cows with and without retained placenta. Res. Vet. Sci. 2016, 107, 207–212. [Google Scholar] [CrossRef]
- Jain, N.C.; Paape, M.J.; Miller, R.H. Use of flow cytometry for determination of differential leukocyte counts in bovine blood. Am. J. Vet. Res. 1991, 52, 630–636. [Google Scholar]
- Paape, M.J.; Bannerman, D.D.; Zhao, X.; Lee, J.W. The bovine neutrophil: Structure and function in blood and milk. Vet. Res. 2003, 34, 597–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kroemer, G.; Galluzzi, L.; Vandenabeele, P.; Abrams, J.; Alnemri, E.S.; Baehrecke, E.H.; Blagosklonny, M.V.; El-Deiry, W.S.; Golstein, P.; Green, D.R.; et al. Classification of cell death: Recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 2009, 16, 3–11. [Google Scholar] [CrossRef]
- Geering, B.; Simon, H.U. Peculiarities of cell death mechanisms in neutrophils. Cell Death Differ. 2011, 18, 1457–1469. [Google Scholar] [CrossRef] [Green Version]
- Andersen, M.N.; Al-Karradi, S.N.; Kragstrup, T.W.; Hokland, M. Elimination of erroneous results in flow cytometry caused by antibody binding to Fc receptors on human monocytes and macrophages. Cytom. A 2016, 89, 1001–1009. [Google Scholar] [CrossRef]
- Keeney, M.; Gratama, J.W.; Chin-Yee, I.H.; Sutherland, D.R. Isotype controls in the analysis of lymphocytes and CD34+ stem and progenitor cells by flow cytometry—Time to let go! Cytometry 1998, 34, 280–283. [Google Scholar] [CrossRef]
- Maecker, H.T.; Trotter, J. Flow cytometry controls, instrument setup, and the determination of positivity. Cytom. A 2006, 69, 1037–1042. [Google Scholar] [CrossRef] [PubMed]
- Hulspas, R.; O’Gorman, M.R.; Wood, B.L.; Gratama, J.W.; Sutherland, D.R. Considerations for the control of background fluorescence in clinical flow cytometry. Cytom. B Clin. Cytom. 2009, 76, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Dhaliwal, G.S.; Murray, R.D.; Woldehiwet, Z. Some aspects of immunology of the bovine uterus related to treatments for endometritis. Anim. Reprod. Sci. 2001, 67, 135–152. [Google Scholar] [CrossRef]
- Oliveira, B.M.; Pinto, A.; Correia, A.; Ferreira, P.G.; Vilanova, M.; Teixeira, L. Characterization of myeloid cellular populations in mesenteric and subcutaneous adipose tissue of Holstein-Friesian cows. Sci. Rep. 2020, 10, 1771. [Google Scholar] [CrossRef] [PubMed]
- Brodzki, P.; Kostro, K.; Brodzki, A.; Lisiecka, U.; Kurek, L.; Marczuk, J. Phenotyping of leukocytes and granulocyte and monocyte phagocytic activity in the peripheral blood and uterus of cows with endometritis. Theriogenology 2014, 82, 403–410. [Google Scholar] [CrossRef]
- Hussain, A.M.; Daniel, R.C.W. Phagocytosis by uterine fluid and blood neutrophils and hematological changes in postpartum cows following normal and abnormal parturition. Theriogenology 1992, 37, 1253–1267. [Google Scholar] [CrossRef]
- Mateus, L.; Lopes Da Costa, L.; Carvalho, H.; Serra, P.; Robalo Silva, J. Blood and intrauterine leukocyte profile and function in dairy cows that spontaneously recovered from postpartum endometritis. Reprod. Domest. Anim. 2002, 37, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Chiang, M.C.; Tullett, K.M.; Lee, Y.S.; Idris, A.; Ding, Y.; McDonald, K.J.; Kassianos, A.; Leal Rojas, I.M.; Jeet, V.; Lahoud, M.H.; et al. Differential uptake and cross-presentation of soluble and necrotic cell antigen by human DC subsets. Eur. J. Immunol. 2016, 46, 329–339. [Google Scholar] [CrossRef]
- Quach, A.; Glowik, S.; Putty, T.; Ferrante, A. Delayed blood processing leads to rapid deterioration in the measurement of the neutrophil respiratory burst by the dihydrorhodamine-123 reduction assay. Cytom. B Clin. Cytom. 2019, 96, 389–396. [Google Scholar] [CrossRef]
- Lacy, P. Mechanisms of degranulation in neutrophils. Allergy Asthma Clin. Immunol. 2006, 2, 98–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zerbe, H.; Schuberth, H.J.; Hoedemaker, M.; Grunert, E.; Leibold, W. A new model system for endometritis: Basic concepts and characterization of phenotypic and functional properties of bovine uterine neutrophils. Theriogenology 1996, 46, 1339–1356. [Google Scholar] [CrossRef]
Variable | Sample | Mean ± SD (in %) | Range (in %) | CCC (95% CI) | p-Value |
---|---|---|---|---|---|
PMN in endometrial cytology | A | 29.3 ± 30.7 | 0–80 | 0.97 (0.90–0.99) | <0.001 |
B | 28.7 ± 30.5 | 1–90 | |||
CH138A+ cells in endometrium | A | 31.7 ± 22.0 | 1.4–62.0 | 0.85 (0.62–0.95) | <0.001 |
B | 30.6 ± 21.5 | 5.7–68.1 | |||
Viable PMN in blood | A | 91.6 ± 5.82 | 80.3–99.1 | 0.86 (0.66–0.95) | <0.001 |
B | 92.1 ± 4.76 | 82.5–99.0 | |||
Apoptotic PMN in blood | A | 7.4 ± 5.7 | 0.3–18.9 | 0.86 (0.67–0.95) | <0.001 |
B | 6.9 ± 4.7 | 0.3–15.9 | |||
Necrotic PMN in blood | A | 0.7 ± 0.29 | 0.2–1.1 | 0.67 (0.26–0.87) | 0.006 |
B | 0.7 ± 0.3 | 0.3–1.2 | |||
Viable PMN in endometrium | A | 40.0 ± 15.7 | 14.2–75.7 | 0.68 (0.25–0.88) | 0.008 |
B | 37.6 ± 19.4 | 10.9–75.1 | |||
Apoptotic PMN in endometrium | A | 24.3 ± 17.6 | 4.6–59.9 | 0.95 (0.25–0.88) | <0.001 |
B | 23.0 ± 16.8 | 5.5–63.1 | |||
Necrotic PMN in endometrium | A | 32.2 ± 19.1 | 6.1–58.3 | 0.77 (0.44–0.92) | 0.001 |
B | 34.7 ± 23.2 | 8.0–70.6 |
Variable | Gating Strategy | Outcome | Range | CCC (95% CI) | p-Value |
---|---|---|---|---|---|
PPC in blood (in %) | Morphometrics | 83.82 | 69.36–92.03 | 0.70 (0.38–0.87) | 0.021 |
CH138A+ | 88.21 | 71.96–96.56 | |||
MFIPC in blood | Morphometrics | 1,780,888 | 483,827–4,043,406 | 0.89 (0.72–0.96) | <0.001 |
CH138A+ | 2,156,790 | 505,748–4,659,214 | |||
MFIOB in blood | Morphometrics | 242,081 | 58,924–573,332 | 0.97 (0.93–0.99) | <0.001 |
CH138A+ | 273,634 | 114,311–595,864 | |||
MFIDQ in blood | Morphometrics | 2519 | 1092–4631 | 0.94 (0.86–0.98) | <0.001 |
CH138A+ | 2845 | 1223–5447 | |||
PPC in endometrium (in %) | Morphometrics | 40.35 | 15.44–70.15 | 0.65 (0.24–0.87) | <0.001 |
CH138A+ | 49.92 | 20.02–91.76 | |||
MFIPC in endometrium | Morphometrics | 90,579 | 445–421,532 | 0.86 (0.56–0.96) | <0.001 |
CH138A+ | 140,235 | 384–424,773 | |||
MFIOB in endometrium | Morphometrics | −3073 | −172,034–116,458 | 0.87 (0.71–0.95) | 0.07 |
CH138A+ | 14,643 | −198,069–234,887 | |||
MFIDQ in endometrium | Morphometrics | 11,498 | 2392–19,693 | 0.41 (−0.25–0.81) | 0.15 |
CH138A+ | 8410 | 1982–18,191 |
Variable | CH138A | Outcome | Range | CCC (95% CI) | p-Value |
---|---|---|---|---|---|
PPC in blood (in %) | No | 78.20 | 61.38–87.82 | 0.57 (0.20–0.80) | 0.031 |
Yes | 83.82 | 69.36–92.03 | |||
MFIPC in blood | No | 1,116,458 | 450,894–1,841,761 | 0.20 (−0.19–0.53) | 0.06 |
Yes | 1,780,888 | 483,827–4,043,406 | |||
MFIOB in blood | No | 373,274 | 85,403–1,013,163 | 0.69 (0.39–0.85) | 0.007 |
Yes | 242,081 | 58,924–573,332 | |||
MFIDQ in blood | No | 974 | 404–1998 | 0.19 (0.01–0.35) | 0.001 |
Yes | 2519 | 1092–4631 | |||
PPC in endometrium (in %) | No | 37.67 | 15.05–57.66 | 0.80 (0.44–0.94) | 0.017 |
Yes | 40.35 | 15.44–70.15 | |||
MFIPC in endometrium | No | 38,637 | 375–244,415 | 0.61 (0.23–0.83) | 0.021 |
Yes | 169,632 | 445–421,532 | |||
MFIOB in endometrium | No | 56,358 | −13,006–477,606 | 0.43 (0–0.73) | 0.067 |
Yes | −3073 | −172,034–116,458 | |||
MFIDQ in endometrium | No | 16,513 | 763–66,290 | 0.74 (0.11–0.95) | 0.17 |
Yes | 11,498 | 2392–19,693 |
Variable | Outcome | Range | CCC (95% CI) | p-Value | |
---|---|---|---|---|---|
PPC (in %) | Blood | 78.20 | 61.38–87.82 | 0.04 (−0.04–0.12) | 0.34 |
Endometrium | 37.67 | 15.05–57.66 | |||
MFIPC | Blood | 1,116,458 | 450,894–1,841,761 | 0.01 (−0.03–0.04) | 0.61 |
Endometrium | 38,637 | 375–244,415 | |||
MFIOB | Blood | 373,274 | 85,403–1,013,163 | 0.08 (−0.21–0.36) | 0.18 |
Endometrium | 56,358 | −13,006–477,606 | |||
MFIDQ | Blood | 974 | 404–1998 | −0.01 (−0.03–0.00) | 0.005 |
Endometrium | 16,513 | 763–66,290 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lietaer, L.; Demeyere, K.; Heirbaut, S.; Meyer, E.; Opsomer, G.; Bogado Pascottini, O. Flow Cytometric Assessment of the Viability and Functionality of Uterine Polymorphonuclear Leukocytes in Postpartum Dairy Cows. Animals 2021, 11, 1081. https://doi.org/10.3390/ani11041081
Lietaer L, Demeyere K, Heirbaut S, Meyer E, Opsomer G, Bogado Pascottini O. Flow Cytometric Assessment of the Viability and Functionality of Uterine Polymorphonuclear Leukocytes in Postpartum Dairy Cows. Animals. 2021; 11(4):1081. https://doi.org/10.3390/ani11041081
Chicago/Turabian StyleLietaer, Leen, Kristel Demeyere, Stijn Heirbaut, Evelyne Meyer, Geert Opsomer, and Osvaldo Bogado Pascottini. 2021. "Flow Cytometric Assessment of the Viability and Functionality of Uterine Polymorphonuclear Leukocytes in Postpartum Dairy Cows" Animals 11, no. 4: 1081. https://doi.org/10.3390/ani11041081
APA StyleLietaer, L., Demeyere, K., Heirbaut, S., Meyer, E., Opsomer, G., & Bogado Pascottini, O. (2021). Flow Cytometric Assessment of the Viability and Functionality of Uterine Polymorphonuclear Leukocytes in Postpartum Dairy Cows. Animals, 11(4), 1081. https://doi.org/10.3390/ani11041081