Improving the Quality and Safety of Fresh Camel Meat Contaminated with Campylobacter jejuni Using Citrox, Chitosan, and Vacuum Packaging to Extend Shelf Life
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Camel Meat Samples
2.2. Campylobacter jejuni
2.3. Preparation of Citrox
2.4. Camel Meat Samples, Inoculation, Treatment, and Packaging
Treatment Groups
2.5. In Vitro Activity of Citrox and Chitosan Towards C. jejuni
2.6. Microbiological Analysis
2.7. Chemical Analysis
2.7.1. Total Volatile Base Nitrogen (TVB-N)
2.7.2. pH
2.7.3. Color
2.7.4. Sensory Panel Evaluations
2.8. Statistical Analysis
3. Results and Discussion
3.1. Activity of Citrox and Chitosan toward C. jejuni
3.2. Total Viable Count
3.3. pH
3.4. Total Volatile Base Nitrogen (TVB-N)
3.5. Colour Values
3.6. Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harvala, H.; Rosendal, T.; Lahti, E.; Engvall, E.O.; Brytting, M.; Wallensten, A.; Lindberg, A. Epidemiology of Campylobacter jejuni infections in Sweden, November 2011–October 2012: Is the severity of infection associated with C. jejuni sequence type? Infect. Ecol. Epidemiol. 2016, 6, 1–10. [Google Scholar] [CrossRef]
- Iglesias-Torrens, Y.; Miró, E.; Guirado, P.; Llovet, T.; Muñoz, C.; Cerdà-Cuéllar, M.; Madrid, C.; Balsalobre, C.; Navarro, F. Population structure, antimicrobial resistance, and virulence-associated genes in Campylobacter jejuni isolated from three ecological niches: Gastroenteritis patients, broilers, and wild birds. Front. Microbiol. 2018, 9, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Nisar, M.; Mushtaq, M.H.; Shehzad, W.; Hussain, A.; Nasar, M.; Nagaraja, K.V.; Goyal, S.M. Occurrence of Campylobacter in retail meat in Lahore, Pakistan. Acta Trop. 2018, 185, 42–45. [Google Scholar] [CrossRef]
- Hsieh, Y.H.; Sulaiman, I.M. Campylobacteriosis: An emerging infectious foodborne disease. In Foodborne Diseases; Holban, A.M., Grumezescu, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 119–155. [Google Scholar]
- Sharma, K.P.; Chattopadhyay, U.K.; Naskar, K. Prevalence of Campylobacter species in raw meat samples sold in open markets of Kolkata city. Int. J. Environ. Agric. Biotech. 2016, 9, 535–539. [Google Scholar] [CrossRef]
- Carron, M.; Chang, Y.M.; Momanyi, K.; Akoko, J.; Kiiru, J.; Bettridge, J.; Chaloner, G.; Rushton, J.; O’Brien, S.; Williams, N.; et al. Campylobacter, a zoonotic pathogen of global importance: Prevalence and risk factors in the fast-evolving chicken meat system of Nairobi, Kenya. PLoS Negl. Trop. Dis. 2018, 12, 1–18. [Google Scholar]
- Zanetti, F.; Varoli, O.; Stampi, S.; de Luca, G. Prevalence of thermophilic Campylobacter and Arcobacter butzleri in food of animal origin. Int. J. Food Microbiol. 1996, 33, 315–321. [Google Scholar] [CrossRef]
- Jorgensen, F.; Bailey, R.; Williams, S.; Henderson, P.; Wareing, D.R.; Bolton, F.J.; Frost, J.A.; Ward, L.; Humphrey, T.J. Prevalence and numbers of Salmonella and Campylobacter spp. on raw, whole chickens in relation to sampling methods. Int. J. Food Microbiol. 2002, 76, 151–164. [Google Scholar] [CrossRef]
- Whyte, P.; McGill, K.; Cowley, D.; Madden, R.H.; Moran, L.; Scates, P.; Carroll, C.; O’Leary, A.; Fanning, S.; Collins, J.D.; et al. Occurrence ofCampylobacter in retail foods in Ireland. Int. J. Food Microbiol. 2004, 95, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Ndahi, M.D.; Kwaga, J.K.P.; Bello, M.; Kabir, J.; Umoh, V.J.; Yakubu, S.E.; Nok, A.J. Prevalence and antimicrobial susceptibili ty of Listeria monocytogenes and methicillin-resistant Staphylococcus aureus strains from raw meat and meat products in Zaria, Nigeria. Lett. Appl. Microbiol. 2013, 58, 262–269. [Google Scholar] [CrossRef]
- Camino, F.M.M.; Arisseto-Bragotto, A.P.; Block, J.M. Food quality, food-borne diseases, and food safety in the Brazilian food industry. FQS 2017, 1, 13–27. [Google Scholar]
- Epps, S.; Harvey, R.; Hume, M.; Phillips, T.; Anderson, R.; Nisbet, D. Foodborne Campylobacter: Infections, metabolism, pathogenesis and reservoirs. Int. J. Environ. Res. Public Health. 2013, 10, 6292–6304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Badawi, A.Y. The present situation of animal protein in Egypt and the role of camels in providing cheap and healthy meat for people in poor greenery lands. Int. J. Avian Wildl. Biol. 2018, 3, 319–322. [Google Scholar]
- Schirone, M.; Visciano, P.; Tofalo, R.; Suzzi, G. Editorial: Biological Hazards in Food. Front. Microbiol. 2017. [Google Scholar] [CrossRef] [Green Version]
- Naas, H.T.; Almajdoubi, Z.; Garbaj, A.M.; Azwai, S.M.; Gammoudi, F.T.; Abolghait, S.K.; Eldaghayes, I.M. Molecular identification and antibiogram of Enterococcus spp. isolated on Enterococcus selective differential (ESD) media from meat, meat products and seafood in Libya. J. Microbiol. Biotechnol. Food Sci. 2020, 10, 1264–1268. [Google Scholar] [CrossRef] [Green Version]
- Seda Tiğli, R.; Karakeçili, A.; Gümüşderelioğlu, M. In vitro characterization of chitosan scaffolds: Influence of composition and deacetylation degree. J. Mater. Sci. Mater. Med. 2007, 18, 1665–1674. [Google Scholar] [CrossRef]
- Biagini, B.; Muzzarelli, R.A.; Giardino, R.; Castaldini, C. Biological materials for wound healing. In Advances in Chitin and Chitosan; Brine, C.J., Sandford, P.A., Zikakis, J.P., Eds.; Elsevier: London, UK, 1992; pp. 16–24. [Google Scholar]
- Zhang, J.; Xia, W.; Liu, P.; Cheng, Q.; Tahirou, T.; Gu, W.; Li, B. Chitosan modification and pharmaceutical/biomedical applications. Mar. Drugs 2010, 8, 1962–1987. [Google Scholar] [CrossRef] [Green Version]
- Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Sankararamakrishnan, N.; Sanghi, R. Preparation and characterization of a novel xanthated chitosan. Carbohydr. Polym. 2006, 66, 160–167. [Google Scholar] [CrossRef]
- Kurita, K. Chitin and chitosan: Functional biopolymers from marine crustaceans. Mar. Biotechnol. 2006, 8, 203–226. [Google Scholar] [CrossRef] [PubMed]
- Mourya, V.K.; Inamdar, N.N.; Tiwari, A. Carboxymethyl chitosan and its applications. Adv. Mater. Lett. 2010, 1, 11–33. [Google Scholar] [CrossRef]
- Kong, M.; Chen, X.G.; Xing, K.; Park, H.J. Antimicrobial properties of chitosan and mode of action: A state of the art review. Int. J. Food Microbiol. 2010, 144, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Roller, S.; Sagoo, S.; Board, R.; O’Mahony, T.; Caplice, E.; Fitzgerald, G.; Fogden, M.; Owen, M.; Fletcher, H. Novel combinations of chitosan, carnocin and sulphite for the preservation of chilled pork sausages. Meat Sci. 2002, 62, 165–177. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 3rd ed.; Association of Official Analytical Chemist: Washington, DC, USA, 1990. [Google Scholar]
- SAS Institute Inc. SAS/STAT User’s Guide; Release 6.03; SAS Inst.: Cary, NC, USA, 1998. [Google Scholar]
- Nedwell, D.B. Effect of low temperature on microbial growth: lowered affinity for substrates limits growth at low temperature. FEMS Microbiol. Ecol. 1999, 30, 101–111. [Google Scholar] [CrossRef]
- Smolander, M.; Alakomi, H.L.; Ritvanen, T.; Vainionpää, J.; Ahvenainen, R. Monitoring of the quality of modified atmosphere-packaged broiler chicken cuts stored in different temperatures conditions. A time-temperature indicators as quality indicating tools. Food Control 2004, 15, 217–229. [Google Scholar] [CrossRef]
- Karadag, D.; Puhakka, J.A. Effect of changing temperature on anaerobic hydrogen production and microbial community composition in an open-mixed culture bioreactor. Int. J. Hydrog. Energy 2010, 35, 10954–10959. [Google Scholar] [CrossRef]
- Hazeleger, W.C.; Wouters, J.A.; Rombouts, F.M.; Abee, T. Physiological activity of Campylobacter jejuni far below the minimal growth temperature. Appl. Environ. Microbiol. 1998, 64, 3917–3922. [Google Scholar] [CrossRef] [Green Version]
- Chan, K.F.; Le Tran, H.; Kanenaka, R.Y.; Kathariou, S. Survival of clinical and poultry–derived isolates of Campylobacter jejuni at a low temperature (4 °C). Appl. Environ. Microbiol. 2001, 67, 4186–4191. [Google Scholar] [CrossRef] [Green Version]
- Franciosi, E.; Settanni, L.; Cologna, N.; Cavazza, A.; Poznanski, E. Microbial analysis of raw cows’ milk used for cheese making: Influence of storage treatments on microbial composition and other technological traits. World J. Microbiol. Biotechnol. 2011, 27, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Debretsion, A.; Habtemariam, T.; Wilson, S.; Nganwa, D.; Yehualaeshet, T. Real-time PCR assay for rapid detection and quantification of Campylobacter jejuni on chicken rinses from poultry processing plant. Mol. Cell. Probes. 2007, 21, 177–181. [Google Scholar] [CrossRef]
- Humphrey, T.J. Campylobacter jejuni: some aspects of epidemiology, detection and control. Br. Food J. 1992, 94, 21–25. [Google Scholar] [CrossRef]
- Vercellone, P.A.; Smibert, R.M.; Kreig, N.R. Catalase activity in Campylobacter jejuni: comparison of a wild—Type strain with an aerotolerant variant. Can. J. Microbiol. 1990, 36, 449–451. [Google Scholar] [CrossRef]
- Jones, D.M.; Sutcliffe, E.M.; Rios, R.; Fox, A.J.; Curry, A. Campylobacter jejuni adapts to aerobic metabolism in the environment. J. Med. Microbiol. 1993, 38, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Chaveerach, P.; Ter Huurne, A.A.H.M.; Lipman, L.J.A.; Van Knapen, F. Survival and Resuscitation of Ten Strains of Campylobacter jejuni and Campylobacter coli under Acid Conditions. Appl. Environ. Microbiol. 2003, 69, 711–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rio, D.E.; Muriente, R.; Prieto, M.; Alonso-calleja, C.; Capite, R. Effectiveness of trisodium phosphate, acidified sodium chlorite, citric acid and peroxy acids against pathogenic bacteria on poultry during refrigerated storage. J. Food Prot. 2007, 70, 2063–2071. [Google Scholar] [PubMed]
- Sammel, L.M.; Claus, J.R. Citric acid and sodium citrate effects on reducing pink color defect of cooked intact turkey breast and ground turkey rolls. J. Food Sci. 2003, 68, 874–878. [Google Scholar] [CrossRef]
- Doyle, M.P.; Roman, D.J. Growth and survival of Campylobacter fetus subsp. jejuni as a function of temperature and pH. J. Food Prot. 1981, 44, 596–601. [Google Scholar] [CrossRef]
- Christopher, F.M.; Smith, G.C.; Vanderzant, C. Effect of temperature and pH on the survival of Campylobacter fetus. J. Food Prot. 1982, 45, 253–259. [Google Scholar] [CrossRef]
- Bell, R.G.; Garout, A.M. The effective product life of vaccum-packaged beef imported into Saudi Arabia by sea, as assessed by chemical, microbiological and organoleptic criteria. Meat Sci. 1994, 36, 381–396. [Google Scholar] [CrossRef]
- Yehia, H.M.; Elkhadragy, M.F.; Al-Megrin, W.A.; Al-Masoud, A.H. Citrox improves the quality and shelf life of chicken fillets packed under vacuum and protects against some foodborne pathogens. Animals 2019, 9, 1062. [Google Scholar] [CrossRef] [Green Version]
- Tsiraki, M.I.; Yehia, H.M.; Elobeid, T.; Osaili, T.; Sakkas, H.; Savvaidis, I.N. Viability of and Escherichia coli O157:H7 and Listeria monocytogenes in a delicatessen appetizer (yogurt-based) salad as affected by citrus extract (Citrox©) and storage temperature. Food Microbiol. 2018, 69, 11–17. [Google Scholar] [CrossRef]
- Min, J.S.; Lee, S.O.; Jang, A.; Lee, M.; Kim, Y. Production of biogenic amines by microflora inoculated in meats. Asian Australas J. Anim. Sci. 2004, 17, 1472–1478. [Google Scholar] [CrossRef]
- Min, J.S.; Lee, S.O.; Jang, A.; Jo, C.; Park, C.S.; Lee, M. Relationship between the concentration of biogenic amines and volatile basic nitrogen in fresh beef, pork, and chicken meat. Asian Australas J. Anim. Sci. 2007, 20, 1278–1284. [Google Scholar] [CrossRef]
- Vinci, G.; Antonelli, M. Iogenic amines: Quality index of freshness in red and white meat. Food Control 2002, 13, 519–524. [Google Scholar] [CrossRef]
- Stern, N.; Rothenberg, P.J.; Stone, J.M. Enumeration and reduction of Campylobacter jejuni in poultry and red meats. J. Food Prot. 1985, 73, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Kieffer, K.J.; Claus, J.R.; Wang, H. Inhibition of pink color development in cooked uncured ground turkey by the addition of citric acid. J. Muscle Foods 2000, 11, 235–243. [Google Scholar] [CrossRef]
- Bilgil, S.F.; Conner, D.E.; Pinion, J.L.; Tamblyn, K.C. Broiler Skin Color as Affected by Organic Acids: Influence of Concentration and Method of Application. Poult. Sci. 1998, 77, 751–757. [Google Scholar] [CrossRef]
- Heath, J.L.; Thomas, O.P. The xanthophyll content and color of broiler skin after scalding. Poult. Sci. 1973, 52, 967–971. [Google Scholar] [CrossRef]
- Heath, J.L.; Thomas, O.P. The effect of scalding conditions on the xanthophyll content and color of broiler skin. Poult. Sci. 1974, 53, 1880–1885. [Google Scholar] [CrossRef]
- Lyon, C.E.; Cason, J.A. Effect of water chilling on objective color of bruised and unbruised broiler tissue. Poult. Sci. 1995, 74, 1894–1899. [Google Scholar] [CrossRef]
- Kotula, K.L.; Thelappurate, R. Microbiological and sensory attributes of retail cuts of beef treated with acetic and lactic acid solutions. J. Food Prot. 1994, 57, 665–670. [Google Scholar] [CrossRef]
- Faustman, C.; Cassens, R.G. The biochemical basis for discoloration in fresh meat: A review. J. Muscle Foods 1990, 1, 217–243. [Google Scholar] [CrossRef]
- Djamel, D.; Luis, M.; Armida, S.; José, A.; Pedro, R. Antioxidant effect of carnosine and carnitine in fresh beef steaks stored under modified atmosphere. J. Food Chem. 2003, 85, 453–459. [Google Scholar]
- McKee, S.R.; Townsend, J.C.; Bilgili, S.F. Use of a scald additive to reduce levels of Salmonella typhimurium during poultry processing. Poult. Sci. 2008, 87, 1672–1677. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Hong, G.E.; Lim, K.W.; Park, W.; Lee, C.H. Influence of citric acid on the pink color and characteristics of sous vide processed chicken breasts during chill storage. Korean J. Food Sci. Anim. Resour. 2015, 35, 585–596. [Google Scholar] [CrossRef] [Green Version]
- Mexis, S.F.; Chouliara, E.; Kontominas, M.G. Shelf life extension of ground chicken meat using an oxygen absorber and a citrus extract. LWT-Food Sci. Technol. 2012, 49, 21–27. [Google Scholar] [CrossRef]
- Vardaka, V.D.; Yehia, H.M.; Savvaidis, I.N. Effects of Citrox and chitosan on the survival of Escherichia coli O157:H7 and Salmonella enterica in vacuum-packaged turkey meat. Food Microbiol. 2016, 58, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Petrou, S.; Tsiraki, M.; Giatrakou, V.; Savvaidis, I.N. Chitosan dipping or oregano oil treatments, singly or combined on modified atmosphere packaged chicken breast meat. Int. J. Food Microbiol. 2012, 156, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Ganzle, M.G. Challenges and opportunities related to the use of chitosan as a food preservative. J. Appl. Microbiol. 2018, 126, 1318–1331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawrie, R.A. Undesirable odor and taste. In Meat Science; Lawrie, R., Ed.; Woodhead Publishing: Cambridge, UK, 1991; pp. 219–230. [Google Scholar]
- Angelo, A.S.; Vercellotti, J.R.; Legendre, M.G.; VinnelT, C.H.; Kuan, J.W.; James, C., Jr.; Dupuy, H.P. Chemical and instrumental analyses of wormed-over flavor in beef. J. Food Sci. 1987, 52, 1163–1168. [Google Scholar] [CrossRef]
- Calkins, C.R.; Hodgen, J.M. A fresh look at meat flavor. Meat Sci. 2007, 77, 63–80. [Google Scholar] [CrossRef]
Hunter Color | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Temperatures (°C) | 4 | 10 | 4 | 10 | 4 | 10 | 4 | 10 | 4 | 10 | 4 | 10 | 4 | 10 | 4 | 10 | 4 | 10 | 4 | 10 | 4 | 10 | Mean | ||
Treatments | |||||||||||||||||||||||||
L * | M-S (A) | 39.76 | 38.25 | 40.67 | 38.47 | 40.81 | 38.91 | 40.45 | 40.23 | 40.51 | 40.39 | 47.93 | 51.6 | 46.47 | 48.29 | 45.74 | 47.13 | 45 | 45.05 | 44.99 | 42.2 | 44 | 43 | 43.17 e | |
M-S-C. jejuni (B) | 37.71 | 37.93 | 43.5 | 41.33 | 43.18 | 41.48 | 45.07 | 42.02 | 45.22 | 44.48 | 45.65 | 45.72 | 46.07 | 48.93 | 43.88 | 46.21 | 43.84 | 4487 | 41.2 | 42.84 | 41 | 42.02 | 43.37 c | ||
M-S-C. jejuni-C 1% (C) | 39.33 | 38.37 | 40.24 | 39.11 | 44.22 | 39.39 | 49.1 | 43.17 | 49.45 | 44.79 | 49.21 | 45.22 | 48.81 | 46.7 | 45.07 | 45.24 | 43.09 | 43.01 | 42.41 | 40.96 | 42.01 | 40.54 | 43.36 d | ||
M-S-C. jejuni-C 2% (D) | 34.92 | 38.86 | 39.21 | 43.55 | 40.29 | 43.96 | 42.65 | 44.2 | 44.46 | 47.7 | 47.93 | 46.68 | 47.19 | 46.33 | 46.63 | 46.14 | 44.45 | 45.67 | 42.6 | 42.77 | 42 | 42.66 | 43.61 b | ||
M-S-C. jejuni-C 1%–C 1% (E) | 41.87 | 39.64 | 42.15 | 42.8 | 44.78 | 48.41 | 45.43 | 50.98 | 47.17 | 50.92 | 48.93 | 53.58 | 48.2 | 49.63 | 46.63 | 49.94 | 44.83 | 48.2 | 42.5 | 46.38 | 42.52 | 45 | 46.38 a | ||
M-S-C. jejuni-C 1%–C 2% (F) | 40.3 | 40.96 | 42.77 | 40.99 | 43.21 | 41.54 | 47.18 | 44.46 | 47.53 | 46.6 | 46.36 | 48.73 | 45.5 | 44.1 | 45.4 | 44 | 44.56 | 43.52 | 43.2 | 43 | 42.33 | 42.36 | 44.02 f | ||
Mean | 38.98 | 39 | 41.42 | 41 | 42.74 | 42.28 | 44.98 | 44.17 | 45.72 | 45.81 | 47.66 | 48.58 | 47.04 | 47.33 | 45.55 | 46.44 | 44.29 | 45.05 | 42.81 | 43.02 | 42.31 | 42.59 | - | ||
a * | M-S (A) | 6.7 | 10.35 | 8.69 | 12.23 | 7.7 | 9.9 | 7.27 | 9.42 | 10.97 | 9.38 | 12.1 | 8.82 | 9.47 | 7.48 | 9.05 | 6.92 | 6.65 | 6 | 6.5 | 5.46 | 6 | 5.44 | 8.29 e | |
M-S-C. jejuni (B) | 10.46 | 8.35 | 11.9 | 8.52 | 12.4 | 12.5 | 13.8 | 12.49 | 12.8 | 12.67 | 11.62 | 11.49 | 11.44 | 10.99 | 11.34 | 8.68 | 8.03 | 7.05 | 6.48 | 6.25 | 6.25 | 7.58 | 10.14 b | ||
M-S-C. jejuni-C 1% (C) | 6.07 | 9.65 | 9.06 | 9.34 | 9.78 | 9.5 | 11.7 | 10.84 | 12.57 | 12.83 | 14.21 | 9.92 | 11.45 | 8.78 | 8.06 | 6.81 | 7.3 | 7.81 | 5.16 | 6.58 | 6.5 | 6 | 9.08 c | ||
M-S-C. jejuni-C 2% (D) | 6.82 | 4.51 | 7.77 | 9.1 | 8.31 | 9.19 | 8.81 | 10.42 | 15.97 | 11.79 | 15.38 | 13.59 | 13.48 | 10.95 | 12.79 | 10.49 | 11.97 | 9.76 | 8.92 | 9.59 | 6 | 8 | 10.16 a | ||
M-S-C. jejuni-C 1%–C 1% (E) | 6.95 | 9.57 | 8.35 | 9.89 | 8.24 | 10.65 | 9.18 | 11.06 | 11.71 | 8.85 | 11.15 | 8.25 | 9.79 | 7.99 | 9.09 | 7 | 8.25 | 7 | 6.05 | 6.2 | 6 | 4.47 | 8.44 d | ||
M-S-C. jejuni-C 2%–Ch 1% (F) | 6.25 | 3.53 | 6.19 | 5.45 | 6.61 | 6.41 | 12.32 | 7.94 | 12.94 | 7.43 | 8.21 | 8.57 | 7.12 | 8.97 | 7.1 | 7 | 5.08 | 6 | 6 | 6 | 5.99 | 4.56 | 7.07 f | ||
Mean | 7.2 | 7.66 | 8.66 | 9.08 | 8.84 | 9.69 | 10.51 | 10.36 | 12.82 | 10.49 | 12.11 | 10.1 | 10.45 | 9.19 | 9.57 | 7.81 | 7.88 | 7.27 | 6.51 | 6.68 | 6.12 | 6 | - | ||
b * | M-S (A) | 4.27 | 6.29 | 4.58 | 6.23 | 5.88 | 7 | 7.42 | 7.5 | 7.65 | 7.99 | 8.79 | 8 | 9.98 | 8.95 | 10.24 | 9.86 | 9.89 | 7 | 8.02 | 6.66 | 6 | 5.99 | 7.46 e | |
M-S-C. jejuni (B) | 7.21 | 6.22 | 7.83 | 6.65 | 8.32 | 7.37 | 8.5 | 8.05 | 9.8 | 7.58 | 11.55 | 9.69 | 8.02 | 8.99 | 6.4 | 6.58 | 5.39 | 6.43 | 5.94 | 4.59 | 5.5 | 5 | 7.34 f | ||
M-S-C. jejuni -C 1% (C) | 6.51 | 5.72 | 7.04 | 6.33 | 8.12 | 7 | 9.11 | 7.5 | 9.92 | 8.7 | 10.77 | 8.7 | 10.28 | 8.78 | 7.63 | 7.2 | 6.78 | 6.3 | 6.48 | 5.56 | 6 | 5.12 | 7.52 d | ||
M-S-C. jejuni-C 2% (D) | 6.96 | 5.62 | 7.7 | 7.03 | 8.84 | 9.45 | 11.73 | 9.53 | 11.07 | 10.35 | 10.92 | 11.92 | 8.45 | 11.11 | 5.66 | 9.75 | 5.38 | 9.99 | 4.64 | 8.19 | 4.56 | 4.38 | 8.32 c | ||
M-S-C. jejuni-C 1%–C 1% (E) | 6.6 | 6.99 | 7.74 | 9.41 | 8.03 | 9.88 | 9.02 | 10.19 | 9.92 | 0.241 | 12.23 | 10.96 | 10.6 | 11.26 | 9.71 | 9.21 | 9.23 | 8.83 | 6.23 | 8.63 | 6 | 5.66 | 8.48 b | ||
M-S-C. jejuni-C 2%–Ch 1% (F) | 6 | 7.14 | 8.47 | 10.92 | 9.72 | 9.66 | 9.85 | 11.28 | 11.43 | 12.95 | 11.17 | 11.63 | 10.63 | 10.49 | 9.53 | 10 | 9 | 8.55 | 8.5 | 8 | 6 | 6 | 9.40 a | ||
Mean | 6.25 | 6.33 | 7.227 | 7.76 | 8.157 | 8.39 | 9.27 | 9 | 9.965 | 7.968 | 10.9 | 10.15 | 10.15 | 9.93 | 8.195 | 8.767 | 7.61 | 7.85 | 6.63 | 6.93 | 5.67 | 5.35 | - |
Treatments | Color | Odor | Flavor | Taste | Tenderness | Overall Acceptability |
---|---|---|---|---|---|---|
Camel meat-salt (group A) | 5.0 c | 4.0 d,e | 4.5 c | 5.0 c | 4.5 b | 5.2 c |
Camel meat-C. jejuni (group B) | 3.0 d | 2.0 f | 2.0 d | 2.0 e | 2.3 d | 2.5 e |
Camel meat-C. jejuni- Citrox 1% (group C) | 4.9 a,b,c | 4.65 d | 4.6 c | 4.9 d | 4.5 b | 4.0 d |
Camel meat-C. jejuni- Citrox 2% (group D) | 5.0 c | 5.0 c | 4.9 a,b | 5.0 c | 4.4 b | 4.0 d |
Camel meat-C. jejuni- Citrox 1%- Chitosan 1% (group E) | 5.5 a,b | 6.0 a,b | 5.0 b | 5.5 b | 4.5 b | 6.0 b |
Camel meat-C. jejuni- Citrox 2%- Chitosan 1% (group F) | 6.0 a | 6.2 a | 5.5 a | 6.0 a | 4.6 a | 6.4 a |
Mean | 4.9 a | 4.6 c,d | 4.41 e | 4.73 b | 4.0 f | 4.68 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yehia, H.M.; Al-Masoud, A.H.; Elkhadragy, M.F.; Korany, S.M.; Nada, H.M.S.; Albaridi, N.A.; Alzahrani, A.A.; AL-Dagal, M.M. Improving the Quality and Safety of Fresh Camel Meat Contaminated with Campylobacter jejuni Using Citrox, Chitosan, and Vacuum Packaging to Extend Shelf Life. Animals 2021, 11, 1152. https://doi.org/10.3390/ani11041152
Yehia HM, Al-Masoud AH, Elkhadragy MF, Korany SM, Nada HMS, Albaridi NA, Alzahrani AA, AL-Dagal MM. Improving the Quality and Safety of Fresh Camel Meat Contaminated with Campylobacter jejuni Using Citrox, Chitosan, and Vacuum Packaging to Extend Shelf Life. Animals. 2021; 11(4):1152. https://doi.org/10.3390/ani11041152
Chicago/Turabian StyleYehia, Hany M., Abdulrahman H. Al-Masoud, Manal F. Elkhadragy, Shereen M. Korany, Hend M. S. Nada, Najla A. Albaridi, Abdulhakeem A. Alzahrani, and Mosffer M. AL-Dagal. 2021. "Improving the Quality and Safety of Fresh Camel Meat Contaminated with Campylobacter jejuni Using Citrox, Chitosan, and Vacuum Packaging to Extend Shelf Life" Animals 11, no. 4: 1152. https://doi.org/10.3390/ani11041152
APA StyleYehia, H. M., Al-Masoud, A. H., Elkhadragy, M. F., Korany, S. M., Nada, H. M. S., Albaridi, N. A., Alzahrani, A. A., & AL-Dagal, M. M. (2021). Improving the Quality and Safety of Fresh Camel Meat Contaminated with Campylobacter jejuni Using Citrox, Chitosan, and Vacuum Packaging to Extend Shelf Life. Animals, 11(4), 1152. https://doi.org/10.3390/ani11041152