Supplementing Trace Minerals to Beef Cows during Gestation to Enhance Productive and Health Responses of the Offspring
Abstract
:Simple Summary
Abstract
1. Introduction
2. Developmental Programming
2.1. Dietary Factors and Developmental Programming
2.2. Trace Minerals
2.3. Inorganic vs. Organic Trace Mineral Supplementation
3. Supplementing Organic-Complexed Trace Minerals during Late-Gestation
4. Supplementing Organic-Complexed Trace Minerals Mid- to Late-Gestation
Impacts on Female Progeny Reared as Replacement Heifers
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- 2050 High-Level Experts Forum: The Forum. Available online: http://www.fao.org/wsfs/forum2050/wsfs-forum/en/ (accessed on 11 February 2021).
- Robinson, D.L.; Cafe, L.M.; Greenwood, P.L. Meat science and muscle biology symposium: Developmental programming in cattle: Consequences for growth, efficiency, carcass, muscle, and beef quality characteristics. J. Anim. Sci. 2013, 91, 1428–1442. [Google Scholar] [CrossRef]
- Wu, G.; Bazer, F.W.; Wallace, J.M.; Spencer, T.E. BOARD-INVITED REVIEW: Intrauterine growth retardation: Implications for the animal sciences. J. Anim. Sci. 2006, 84, 2316–2337. [Google Scholar] [CrossRef]
- Patel, M.S.; Srinivasan, M. Metabolic programming in the immediate postnatal life. Ann. Nurt. Metab. 2011, 58, 18–28. [Google Scholar] [CrossRef] [Green Version]
- Du, M.; Tong, J.; Zhao, J.; Underwood, K.R.; Zhu, M.; Ford, S.P.; Nathanielsz, P.W. Fetal programming of skeletal muscle development in ruminant animals. J. Anim. Sci. 2010, 88, E51–E60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carcass beef grades and standards|Agricultural Marketing Service. Available online: https://www.ams.usda.gov/grades-standards/carcass-beef-grades-and-standards (accessed on 12 February 2021).
- Roberts, A.J.; Petersen, M.K.; Funston, R.N. BEEF SPECIES SYMPOSIUM: Can we build the cowherd by increasing longevity of females? J. Anim. Sci. 2015, 93, 4235–4243. [Google Scholar] [CrossRef] [PubMed]
- Ireland, J.J.; Smith, G.W.; Scheetz, D.; Jimenez-Krassel, F.; Folger, J.K.; Ireland, J.L.H.; Mossa, F.; Lonergan, P.; Evans, A.C.O. Does size matter in females? An Overview of the impact of the high variation in the ovarian reserve on ovarian function and fertility, utility of anti-Müllerian hormone as a diagnostic marker for fertility and causes of variation in the ovarian reserve in cattle. Reprod. Fertil. Dev. 2010, 23, 1–14. [Google Scholar] [CrossRef]
- Sullivan, T.M.; Micke, G.C.; Greer, R.M.; Irving-Rodgers, H.F.; Rodgers, R.J.; Perry, V.E.A. Dietary manipulation of Bos indicus × heifers during gestation affects the reproductive development of their heifer calves. Reprod. Fertil. Dev. 2009, 21, 773–784. [Google Scholar] [CrossRef] [PubMed]
- Barker, D.J.; Clark, P.M. Fetal undernutrition and disease in later life. Rev. Reprod. 1997, 2, 105–112. [Google Scholar] [CrossRef]
- Bell, A.W. Prenatal programming of postnatal productivity and health of livestock: A brief review. Aust. J. Exp. Agric. 2006, 46, 725–732. [Google Scholar] [CrossRef]
- Robinson, J.J.; Sinclair, K.D.; McEvoy, T.G. Nutritional effects on foetal growth. Anim. Sci. J. 1999, 68, 315–331. [Google Scholar] [CrossRef]
- Funston, R.N.; Larson, D.M.; Vonnahme, K.A. Effects of maternal nutrition on conceptus growth and offspring performance: Implications for beef cattle production. J. Anim. Sci. 2010, 88, E205–E215. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M.-J.; Ford, S.P.; Nathanielsz, P.W.; Du, M. Effect of maternal nutrient restriction in sheep on the development of fetal skeletal muscle. Biol. Reprod. 2004, 71, 1968–1973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, X.; Zhu, M.-J.; Dodson, M.V.; Du, M. Developmental Programming of fetal skeletal muscle and adipose tissue development. J. Genom. 2013, 1, 29–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, J.; Zhu, M.J.; Underwood, K.R.; Hess, B.W.; Ford, S.P.; Du, M. AMP-activated protein kinase and adipogenesis in sheep fetal skeletal muscle and 3T3-L1 cells. J. Anim. Sci. 2008, 86, 1296–1305. [Google Scholar] [CrossRef]
- Yan, X.; Huang, Y.; Zhao, J.-X.; Long, N.M.; Uthlaut, A.B.; Zhu, M.-J.; Ford, S.P.; Nathanielsz, P.W.; Du, M. Maternal obesity-impaired insulin signaling in sheep and induced lipid accumulation and fibrosis in skeletal muscle of offspring. Biol. Reprod. 2011, 85, 172–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perry, G.A.; Cushman, R. Effect of age at puberty/conception date on cow longevity. Vet. Clin. N. Am. Food Anim. 2013, 29, 579–590. [Google Scholar] [CrossRef]
- Martin, J.L.; Vonnahme, K.A.; Adams, D.C.; Lardy, G.P.; Funston, R.N. Effects of dam nutrition on growth and reproductive performance of heifer calves. J. Anim. Sci. 2007, 85, 841–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mossa, F.; Kenny, D.; Jimenez-Krassel, F.; Smith, G.W.; Berry, D.; Butler, S.; Fair, T.; Lonergan, P.; Ireland, J.J.; Evans, A.C.O. Undernutrition of heifers during the first trimester of pregnancy diminishes size of the ovarian reserve in female offspring. Biol. Reprod. 2009, 81, 135. [Google Scholar] [CrossRef]
- Mossa, F.; Carter, F.; Walsh, S.W.; Kenny, D.A.; Smith, G.W.; Ireland, J.L.H.; Hildebrandt, T.B.; Lonergan, P.; Ireland, J.J.; Evans, A.C.O. Maternal undernutrition in cows impairs ovarian and cardiovascular systems in their offspring. Biol. Reprod. 2013, 88. [Google Scholar] [CrossRef]
- Ireland, J.L.H.; Scheetz, D.; Jimenez-Krassel, F.; Themmen, A.P.N.; Ward, F.; Lonergan, P.; Smith, G.W.; Perez, G.I.; Evans, A.C.O.; Ireland, J.J. Antral follicle count reliably predicts number of morphologically healthy oocytes and follicles in ovaries of young adult cattle. Biol. Reprod. 2008, 79, 1219–1225. [Google Scholar] [CrossRef] [Green Version]
- Cushman, R.A.; Allan, M.F.; Kuehn, L.A.; Snelling, W.M.; Cupp, A.S.; Freetly, H.C. Evaluation of antral follicle count and ovarian morphology in crossbred beef cows: Investigation of influence of stage of the estrous cycle, age, and birth weight. J. Anim. Sci. 2009, 87, 1971–1980. [Google Scholar] [CrossRef] [PubMed]
- Mossa, F.; Walsh, S.W.; Butler, S.T.; Berry, D.P.; Carter, F.; Lonergan, P.; Smith, G.W.; Ireland, J.J.; Evans, A.C.O. Low numbers of ovarian follicles ≥ 3 mm in diameter are associated with low fertility in dairy cows. J. Dairy Sci. 2012, 95, 2355–2361. [Google Scholar] [CrossRef] [Green Version]
- O’Neil, M.M.; West, S.M.; Maia, T.S.; Cardoso, R.C.; Williams, G.L. Effects of maternal nutrition on secretion of leptin in the neonatal heifer and interaction of maternal and postnatal nutrition on age at puberty and postpubertal secretion of luteinizing hormone. J. Anim. Sci. 2019, 97, 140–141. [Google Scholar] [CrossRef]
- Larson, D.M.; Martin, J.L.; Adams, D.C.; Funston, R.N. Winter grazing system and supplementation during late gestation influence performance of beef cows and steer progeny. J. Anim. Sci. 2009, 87, 1147–1155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cushman, R.A.; Perry, G.A. Developmental programming of fertility in livestock. Vet. Clin. N. Am. Food Anim. 2019, 35, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.; Chidzanja, S.; Kind, K.; Lok, F.; Owens, P.; Owens, J. Placental control of fetal growth. Reprod. Fertil. Dev. 1995, 7, 333–344. [Google Scholar] [CrossRef] [PubMed]
- Bohnert, D.W.; Stalker, L.A.; Mills, R.R.; Nyman, A.; Falck, S.J.; Cooke, R.F. Late gestation supplementation of beef cows differing in body condition score: Effects on cow and calf performance. J. Anim. Sci. 2013, 91, 5485–5491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, T.B.; Faulkner, D.B.; Shike, D.W. Influence of prepartum dietary energy on beef cow performance and calf growth and carcass characteristics. Livest. Sci. 2016, 184, 21–27. [Google Scholar] [CrossRef]
- Radunz, A.E.; Fluharty, F.L.; Relling, A.E.; Felix, T.L.; Shoup, L.M.; Zerby, H.N.; Loerch, S.C. Prepartum dietary energy source fed to beef cows: II. Effects on progeny postnatal growth, glucose tolerance, and carcass composition. J. Anim. Sci. 2012, 90, 4962–4974. [Google Scholar] [CrossRef] [Green Version]
- Hostetler, C.E.; Kincaid, R.L.; Mirando, M.A. The role of essential trace elements in embryonic and fetal development in livestock. Vet. J. 2003, 166, 125–139. [Google Scholar] [CrossRef]
- Spears, J.W. Minerals in Forages. In Forage Quality, Evaluation, and Utilization; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1994; pp. 281–317. ISBN 978-0-89118-579-6. [Google Scholar]
- McDowell, L.R. Feeding minerals to cattle on pasture. Anim. Feed Sci. Technol. 1996, 60, 247–271. [Google Scholar] [CrossRef]
- Greene, L.W. Designing mineral supplementation of forage programs for beef cattle. J. Anim. Sci. 2000, 77, 1–9. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Beef Cattle: Eighth Revised Edition; The National Academies Press: Washington, DC, USA, 2016; ISBN 978-0-309-31702-3. [Google Scholar]
- Underwood, E.J.; Suttle, N.F. The mineral Nutrition of Livestock, 3rd ed.; CABI Publishing: Wallingford, Oxon, UK, 1999; ISBN 978-0-85199-128-3. [Google Scholar]
- Hidiroglou, M.; Knipfel, J.E. Maternal-fetal relationships of copper, manganese, and sulfur in ruminants. A review. J. Dairy Sci. 1981, 64, 1637–1647. [Google Scholar] [CrossRef]
- Gooneratne, S.R.; Christensen, D.A. A survey of maternal copper status and fetal tissue copper concentrations in Saskatchewan bovine. Can. J. Anim. Sci. 2011, 69, 141–150. [Google Scholar] [CrossRef]
- Hansard, S.L. Physiological Behavior of Manganese in Gravid Cattle, Sheep and Swine. In Proc. Isotope Studies on the Physiology of Domestic Animals; International Atomic Energy Agency: Vienna, Austria, 1972. [Google Scholar]
- Spears, J.W. Organic trace minerals in ruminant nutrition. Anim. Feed Sci. Technol. 1996, 58, 151–163. [Google Scholar] [CrossRef]
- Brown, T.F.; Zeringue, L.K. laboratory evaluations of solubility and structural integrity of complexed and chelated trace mineral supplements. J. Dairy Sci. 1994, 77, 181–189. [Google Scholar] [CrossRef]
- Nocek, J.E.; Socha, M.T.; Tomlinson, D.J. The effect of trace mineral fortification level and source on performance of dairy cattle. J. Dairy Sci. 2006, 89, 2679–2693. [Google Scholar] [CrossRef] [Green Version]
- Kellogg, D.W.; Socha, M.T.; Tomlinson, D.J.; Johnson, A.B. Effects of feeding cobalt glucoheptonate and metal specific amino acid complexes of zinc, manganese, and copper on lactation and reproductive performance of dairy cows. Prof. Anim. Sci. 2003, 19, 1–9. [Google Scholar] [CrossRef]
- Griffiths, L.M.; Loeffler, S.H.; Socha, M.T.; Tomlinson, D.J.; Johnson, A.B. Effects of supplementing complexed zinc, manganese, copper and cobalt on lactation and reproductive performance of intensively grazed lactating dairy cattle on the south island of New Zealand. Anim. Feed Sci. Technol. 2007, 137, 69–83. [Google Scholar] [CrossRef]
- Uchida, K.; Mandebvu, P.; Ballard, C.S.; Sniffen, C.J.; Carter, M.P. Effect of feeding a combination of zinc, manganese and copper amino acid complexes, and cobalt glucoheptonate on performance of early lactation high producing dairy cows. Anim. Feed Sci. Technol. 2001, 93, 193–203. [Google Scholar] [CrossRef]
- Dantas, F.G.; Reese, S.T.; Filho, R.V.O.; Carvalho, R.S.; Franco, G.A.; Abbott, C.R.; Payton, R.R.; Edwards, J.L.; Russell, J.R.; Smith, J.K.; et al. Effect of complexed trace minerals on cumulus-oocyte complex recovery and in vitro embryo production in beef cattle. J. Anim. Sci. 2019, 97, 1478–1490. [Google Scholar] [CrossRef] [PubMed]
- Rabiee, A.R.; Lean, I.J.; Stevenson, M.A.; Socha, M.T. Effects of feeding organic trace minerals on milk production and reproductive performance in lactating dairy cows: A meta-analysis. J. Dairy Sci. 2010, 93, 4239–4251. [Google Scholar] [CrossRef] [Green Version]
- Ahola, J.K.; Baker, D.S.; Burns, P.D.; Mortimer, R.G.; Enns, R.M.; Whittier, J.C.; Geary, T.W.; Engle, T.E. Effect of copper, zinc, and manganese supplementation and source on reproduction, mineral status, and performance in grazing beef cattle over a two-year period. J. Anim. Sci. 2004, 82, 2375–2383. [Google Scholar] [CrossRef] [PubMed]
- Osorio, J.S.; Trevisi, E.; Li, C.; Drackley, J.K.; Socha, M.T.; Loor, J.J. Supplementing Zn, Mn, and Cu from amino acid complexes and Co from cobalt glucoheptonate during the peripartal period benefits postpartal cow performance and blood neutrophil function. J. Dairy Sci. 2016, 99, 1868–1883. [Google Scholar] [CrossRef] [Green Version]
- Batistel, F.; Osorio, J.S.; Ferrari, A.; Trevisi, E.; Socha, M.T.; Loor, J.J. Immunometabolic status during the peripartum period is enhanced with supplemental Zn, Mn, and Cu from Amino Acid complexes and Co from Co glucoheptonate. PLoS ONE 2016, 11, e0155804. [Google Scholar] [CrossRef]
- Overton, T.R.; Yasui, T. Practical applications of trace minerals for dairy cattle. J. Anim. Sci. 2014, 92, 416–426. [Google Scholar] [CrossRef] [Green Version]
- Abuelo, A.; Hernández, J.; Benedito, J.L.; Castillo, C. The importance of the oxidative status of dairy cattle in the periparturient period: Revisiting antioxidant supplementation. J. Anim. Physiol. Anim. Nutr. 2015, 99, 1003–1016. [Google Scholar] [CrossRef]
- Roshanzamir, H.; Rezaei, J.; Fazaeli, H. Colostrum and milk performance, and blood immunity indices and minerals of Holstein cows receiving organic Mn, Zn and Cu sources. Anim. Nutr. 2020, 6, 61–68. [Google Scholar] [CrossRef]
- Formigoni, A.; Fustini, M.; Archetti, L.; Emanuele, S.; Sniffen, C.; Biagi, G. Effects of an organic source of copper, manganese and zinc on dairy cattle productive performance, health status and fertility. Anim. Feed Sci. Technol. 2011, 164, 191–198. [Google Scholar] [CrossRef]
- Van Emon, M.; Sanford, C.; McCoski, S. Impacts of bovine trace mineral supplementation on maternal and offspring production and health. Animals 2020, 10, 2404. [Google Scholar] [CrossRef] [PubMed]
- Weiss, W.P.; Colenbrander, V.F.; Cunningham, M.D.; Callahan, C.J. Selenium/vitamin E: Role in disease prevention and weight gain of neonatal calves. J. Dairy Sci. 1983, 66, 1101–1107. [Google Scholar] [CrossRef]
- Pepper, M.R.; Black, M.M. B12 in fetal development. Semin. Cell Dev. Biol. 2011, 22, 619–623. [Google Scholar] [CrossRef] [PubMed]
- Marques, R.S.; Cooke, R.F.; Rodrigues, M.C.; Cappellozza, B.I.; Mills, R.R.; Larson, C.K.; Moriel, P.; Bohnert, D.W. Effects of organic or inorganic cobalt, copper, manganese, and zinc supplementation to late-gestating beef cows on productive and physiological responses of the offspring. J. Anim. Sci. 2016, 94, 1215–1226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nutrient Requirements of Beef Cattle: Seventh Revised Edition; The National Academies Press: Washington, DC, USA, 2000.
- Stanton, T.L.; Whittier, J.C.; Geary, T.W.; Kimberling, C.V.; Johnson, A.B. Effects of trace mineral supplementation on cow-calf performance, reproduction, and immune function. Prof. Anim. Sci. 2000, 16, 121–127. [Google Scholar] [CrossRef]
- Arthington, J.D.; Swensont, C.K. Effects of trace mineral source and feeding method on the productivity of grazing Braford cows. Prof. Anim. Sci. 2004, 20, 155–161. [Google Scholar] [CrossRef]
- Kegley, E.B.; Ball, J.J.; Beck, P.A. Bill E. Kunkle Interdisciplinary Beef Symposium: Impact of mineral and vitamin status on beef cattle immune function and health. J. Anim. Sci. 2016, 94, 5401–5413. [Google Scholar] [CrossRef]
- McClure, S.J. How minerals may influence the development and expression of immunity to endoparasites in livestock. Parasite Immunol. 2008, 30, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Wintergerst, E.S.; Maggini, S.; Hornig, D.H. Contribution of selected vitamins and trace elements to immune function. Ann. Nutr. Metab. 2007, 51, 301–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacometo, C.B.; Osorio, J.S.; Socha, M.; Corrêa, M.N.; Piccioli-Cappelli, F.; Trevisi, E.; Loor, J.J. Maternal consumption of organic trace minerals alters calf systemic and neutrophil mRNA and MicroRNA indicators of inflammation and oxidative stress. J. Dairy Sci. 2015, 98, 7717–7729. [Google Scholar] [CrossRef]
- Reynolds, L.P.; Vonnahme, K.A. Livestock as models for developmental programming. Anim. Front. 2017, 7, 12–17. [Google Scholar] [CrossRef] [Green Version]
- Caton, J.S.; Crouse, M.S.; Reynolds, L.P.; Neville, T.L.; Dahlen, C.R.; Ward, A.K.; Swanson, K.C. Maternal nutrition and programming of offspring energy requirements. Transl. Anim. Sci. 2019, 3, 976–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashworth, C.J.; Antipatis, C. Micronutrient programming of development throughout gestation. Reproduction 2001, 122, 527–535. [Google Scholar] [CrossRef]
- Du, M.; Ford, S.P.; Zhu, M.-J. Optimizing livestock production efficiency through maternal nutritional management and fetal developmental programming. Anim. Front. 2017, 7, 5–11. [Google Scholar] [CrossRef]
- USDA APHIS|NAHMS Beef Cow-Calf Studies. Available online: https://www.aphis.usda.gov/aphis/ourfocus/animalhealth/monitoring-and-surveillance/nahms/nahms_beef_cowcalf_studies (accessed on 12 February 2021).
- Harvey, K.M.; Cooke, R.F.; Colombo, E.A.; Rett, B.; Sousa, O.A.; Harvey, L.M.; Russell, J.R.; Pohler, K.G.; Brandão, A.P. Supplementing organic-complexed or inorganic Co, Cu, Mn, and Zn to beef cows during gestation: Physiological and productive responses of cows and their offspring until weaning. J. Anim. Sci. 2021. [Google Scholar] [CrossRef]
- McDowell, L.R. Minerals in Animal and Human Nutrition, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2003; ISBN 978-0-444-51367-0. [Google Scholar]
- Sturtz, L.A.; Diekert, K.; Jensen, L.T.; Lill, R.; Culotta, V.C. A Fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria: A physiological role for SOD1 in guarding against mitochondrial oxidative damage*. J. Biol. Chem. 2001, 276, 38084–38089. [Google Scholar] [CrossRef] [PubMed]
- Coyle, P.; Philcox, J.C.; Carey, L.C.; Rofe, A.M. Metallothionein: The multipurpose protein. Cell. Mol. Life Sci. 2002, 59, 627–647. [Google Scholar] [CrossRef]
- Prohaska, J.R.; Gybina, A.A. Intracellular copper transport in mammals. J. Nutr. 2004, 134, 1003–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, H.; Archibeque, S.L.; Engle, T.E. Characterization and identification of hepatic mRNA related to copper metabolism and homeostasis in cattle. Biol. Trace Elem. Res. 2009, 129, 130–136. [Google Scholar] [CrossRef]
- Hansen, S.L.; Ashwell, M.S.; Legleiter, L.R.; Fry, R.S.; Lloyd, K.E.; Spears, J.W. The addition of high manganese to a copper-deficient diet further depresses copper status and growth of cattle. Br. J. Nutr. 2008, 101, 1068–1078. [Google Scholar] [CrossRef] [Green Version]
- López-Alonso, M.; Prieto, F.; Miranda, M.; Castillo, C.; Hernández, J.; Benedito, J.L. The role of metallothionein and zinc in hepatic copper accumulation in cattle. Vet. J. 2005, 169, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Ohashi, K.; Nagata, Y.; Wada, E.; Zammit, P.S.; Shiozuka, M.; Matsuda, R. Zinc promotes proliferation and activation of myogenic cells via the PI3K/Akt and ERK signaling cascade. Exp. Cell Res. 2015, 333, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Zhang, L.; Zhou, X.; Du, M.; Jiang, Z.; Hausman, G.J.; Bergen, W.G.; Zan, L.; Dodson, M.V. Emerging roles of zinc finger proteins in regulating adipogenesis. Cell. Mol. Life Sci. 2013, 70, 4569–4584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lönnerdal, B. Trace element transport in the mammary gland. Annu. Rev. Nutr. 2007, 27, 165–177. [Google Scholar] [CrossRef] [PubMed]
- Price, D.M.; O’Neil, M.M.; Watson, W.B., III; West, R.; Rae, D.O.; Irsik, D.M.; Hersom, M.J.; Yelich, J.V. 1262 Effect of pre- and postnatal trace mineral (TM) source on angus and Brangus heifer growth and reproductive performance. J. Anim. Sci. 2016, 94, 609. [Google Scholar] [CrossRef]
- Nilsson, E.E.; Skinner, M.K. Progesterone regulation of primordial follicle assembly in bovine fetal ovaries. Mol. Cell. Endocrinol. 2009, 313, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Harvey, K.M.; Cooke, R.F.; Colombo, E.A.; Rett, B.; Sousa, O.A.; Harvey, L.M.; Russell, J.R.; Pohler, K.G.; Brandão, A.P. Supplementing organic-complexed or inorganic Co, Cu, Mn, and Zn to beef cows during gestation:post-weaning responses of offspring reared as replacement heifers or feeder cattle. J. Anim. Sci. 2021. [Google Scholar] [CrossRef]
- Schillo, K.K.; Hall, J.B.; Hileman, S.M. effects of nutrition and season on the onset of puberty in the beef heifer. J. Anim. Sci. 1992, 70, 3994–4005. [Google Scholar] [CrossRef]
- Le Grand, F.; Rudnicki, M.A. Skeletal muscle satellite cells and adult myogenesis. Curr. Opin. Cell Biol. 2007, 19, 628–633. [Google Scholar] [CrossRef] [Green Version]
- Seale, P.; Sabourin, L.A.; Girgis-Gabardo, A.; Mansouri, A.; Gruss, P.; Rudnicki, M.A. Pax7 is required for the specification of myogenic satellite cells. Cell 2000, 102, 777–786. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Gonzalez, J.M.; Walker, D.K.; Hersom, M.J.; Ealy, A.D.; Johnson, S.E. Evidence of heterogeneity within bovine satellite cells isolated from young and adult animals. J. Anim. Sci. 2011, 89, 1751–1757. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, I.M.; Paulino, P.V.R.; Marcondes, M.I.; de Valadares Filho, S.C.; Detmann, E.; Cavali, J.; de Duarte, M.S.; Mezzomo, R. Pattern of tissue deposition, gain and body composition of Nellore, F1 Simmental × Nellore and F1 Angus × Nellore steers fed at maintenance or ad libitum with two levels of concentrate in the diet. Rev. Bras. Zootec. 2011, 40, 2886–2893. [Google Scholar] [CrossRef] [Green Version]
- Lammoglia, M.A.; Bellows, R.A.; Grings, E.E.; Bergman, J.W.; Bellows, S.E.; Short, R.E.; Hallford, D.M.; Randel, R.D. Effects of dietary fat and sire breed on puberty, weight, and reproductive traits of F1 beef heifers. J. Anim. Sci. 2000, 78, 2244–2252. [Google Scholar] [CrossRef] [Green Version]
- Garcia, M.R.; Amstalden, M.; Williams, S.W.; Stanko, R.L.; Morrison, C.D.; Keisler, D.H.; Nizielski, S.E.; Williams, G.L. Serum leptin and its adipose gene expression during pubertal development, the estrous cycle, and different seasons in cattle. J. Anim. Sci. 2002, 80, 2158–2167. [Google Scholar] [CrossRef]
- Roberts, A.J.; da Silva, A.G.; Summers, A.F.; Geary, T.W.; Funston, R.N. Developmental and reproductive characteristics of beef heifers classified by pubertal status at time of first breeding. J. Anim. Sci. 2017, 95, 5629–5636. [Google Scholar] [CrossRef] [PubMed]
- Picard, B.; Lefaucheur, L.; Berri, C.; Duclos, M.J. Muscle fibre ontogenesis in farm animal species. Reprod. Nutr. Dev. 2002, 42, 415–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez, M.L.; Busse, N.I.; Waits, C.M.; Johnson, S.E. Satellite cells and their regulation in livestock. J. Anim. Sci. 2020, 98, skaa081. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, Y.; Otsuka, K.; Ebina, M.; Igarashi, K.; Takehara, A.; Matsumoto, M.; Kanai, A.; Igarashi, K.; Soga, T.; Matsui, Y. Distinct requirements for energy metabolism in mouse primordial germ cells and their reprogramming to embryonic germ cells. Proc. Natl. Acad. Sci. USA 2017, 114, 8289–8294. [Google Scholar] [CrossRef] [Green Version]
- Özkaya, M.O.; Nazıroğlu, M. Multivitamin and mineral supplementation modulates oxidative stress and antioxidant vitamin levels in serum and follicular fluid of women undergoing in vitro fertilization. Fertil. Steril. 2010, 94, 2465–2466. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Yue, W.; Zhang, C.; Ren, Y.; Zhu, X.; Wang, Q.; Shi, L.; Lei, F. effects of maternal and dietary selenium (Se-enriched yeast) on oxidative status in testis and apoptosis of germ cells during spermatogenesis of their offspring in goats. Anim. Reprod. Sci. 2010, 119, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Hurley, L.; Keen, C. Fetal and neonatal development in relation to maternal trace element nutrition: Manganese, zinc, and copper. In Vitamins and Minerals in Pregnancy and Lactation; Berger, H., Ed.; Raven Press: New York, NY, USA, 1988; Volume 16, pp. 215–230. [Google Scholar]
Item | CON | INR | AAC |
---|---|---|---|
Cow liver 2, mg/kg | |||
Co | 0.21 a | 0.40 b | 0.44 c |
Cu | 69 a | 155 b | 129 c |
Mn | 8.7 | 9.0 | 8.7 |
Zn | 211 a | 230 b | 235 b |
Cotyledon 3, mg/kg | |||
Co | 0.13 a | 0.20 b | 0.24 b |
Cu | 3.88 a | 4.75 a,b | 5.12 b |
Mn | 22.0 | 18.2 | 22.9 |
Zn | 65 | 66 | 68 |
Calf liver 3, mg/kg | |||
Co | 0.09 a | 0.12 b | 0.13 b |
Cu | 362 a | 428 a,b | 450 b |
Mn | 5.82 | 5.22 | 5.83 |
Zn | 456 a | 562 a,b | 660 b |
Calf birth BW, kg | 42.1 | 41.6 | 40.8 |
Calf weaning BW, kg | 212 a | 223 a,b | 236 b |
Treated for BRD symptoms 4, % | 42.3 a | 59.1 a | 20.0 b |
BW prior to slaughter, kg | 649 a | 663 a,b | 680 b |
Hot carcass weight, kg | 409 a | 418 a,b | 428 b |
Item | INR | AAC |
---|---|---|
Liver mineral profile | ||
Co, mg/kg | ||
Late gestation | 0.59 b | 0.68 a |
Calving | 0.58 | 0.55 |
Cu, mg/kg | ||
Late gestation | 125 a | 81.9 b |
Calving | 118 a | 42.9 b |
Mn, mg/kg | ||
Late gestation | 10.5 | 10.0 |
Calving | 12.0 | 10.6 |
Zn, mg/kg | ||
Late gestation | 307 | 341 |
Calving | 173 a | 129 b |
Gene mRNA expression 3 | ||
Cu-transporter protein | ||
Late gestation | 1.67 | 1.70 |
Calving | 1.95 | 1.75 |
Metallothionein 1A | ||
Late gestation | 26.1 | 22.8 |
Calving | 36.4 b | 65.6 a |
Superoxide dismutase 1 | ||
Late gestation | 1.99 | 2.11 |
Calving | 2.02 | 2.04 |
Item | INR | AAC |
---|---|---|
Liver mineral profile | ||
Co, mg/kg | ||
Cotyledon | 0.494 | 0.533 |
Calf birth | 0.202 | 0.188 |
Calf 24 h after birth | 0.153 | 0.148 |
Cu, mg/kg | ||
Cotyledon | 8.38 | 9.07 |
Calf birth | 394 | 399 |
Calf 24 h after birth | 303 | 291 |
Mn, mg/kg | ||
Cotyledon | 18.9 | 18.4 |
Calf birth | 5.96 | 6.06 |
Calf 24 h after birth | 4.70 | 4.83 |
Zn, mg/kg | ||
Cotyledon | 90.9 | 93.4 |
Calf birth | 823 | 869 |
Calf 24 h after birth | 676 | 637 |
Gene mRNA expression 3 | ||
Cu-transporter protein | ||
Birth | 2.19 | 2.23 |
24 h after birth | 2.51 | 2.53 |
Metallothionein 1A | ||
Birth | 33.7 | 32.9 |
24 h after birth | 59.4 | 68.4 |
Superoxide dismutase 1 | ||
Birth | 2.92 | 2.96 |
24 h after birth | 2.77 | 2.70 |
Item | INR | AAC |
---|---|---|
Lactation responses | ||
Milk yield, kg/d | 6.62 | 6.98 |
Milk mineral profile | ||
Co, ppm | ||
Colostrum | 0.0052 | 0.0055 |
Milk | 0.00030 | 0.00035 |
Cu, ppm | ||
Colostrum | 0.985 | 0.997 |
Milk | 0.049 | 0.062 |
Mn, ppm | ||
Colostrum | 0.061 | 0.055 |
Milk | 0.014 | 0.016 |
Zn, ppm | ||
Colostrum | 15.3 | 13.7 |
Milk | 0.014 | 0.016 |
Calf performance responses | ||
Calf birth BW, kg | 30.5 | 30.8 |
Calf weaning BW, kg | 183 | 178 |
Item | INR | AAC |
---|---|---|
Initial body weight 2, kg | 202 | 197 |
Final body weight 2, kg | 332 | 326 |
Average daily gain 2, kg/d | 0.618 | 0.604 |
Final puberty attainment 3, % | 83.5 | 86.4 |
Age at puberty, d | 418 a | 399 b |
Body weight at puberty, kg | 319 | 310 |
mRNA expression 4 | ||
Adipocyte fatty acid binding protein | 4.68 | 5.10 |
Myogenin | 4.59 a | 2.87 b |
Paired box gene 7 | 1.91 x | 1.70 y |
Peroxisome proliferator-activated receptor-γ | 1.62 | 1.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harvey, K.M.; Cooke, R.F.; Marques, R.d.S. Supplementing Trace Minerals to Beef Cows during Gestation to Enhance Productive and Health Responses of the Offspring. Animals 2021, 11, 1159. https://doi.org/10.3390/ani11041159
Harvey KM, Cooke RF, Marques RdS. Supplementing Trace Minerals to Beef Cows during Gestation to Enhance Productive and Health Responses of the Offspring. Animals. 2021; 11(4):1159. https://doi.org/10.3390/ani11041159
Chicago/Turabian StyleHarvey, Kelsey Margaret, Reinaldo Fernandes Cooke, and Rodrigo da Silva Marques. 2021. "Supplementing Trace Minerals to Beef Cows during Gestation to Enhance Productive and Health Responses of the Offspring" Animals 11, no. 4: 1159. https://doi.org/10.3390/ani11041159
APA StyleHarvey, K. M., Cooke, R. F., & Marques, R. d. S. (2021). Supplementing Trace Minerals to Beef Cows during Gestation to Enhance Productive and Health Responses of the Offspring. Animals, 11(4), 1159. https://doi.org/10.3390/ani11041159