Antibacterial Activity of Some Molecules Added to Rabbit Semen Extender as Alternative to Antibiotics
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Extenders Composition
2.2. Experimental Design
2.2.1. Experiment 1: In Vitro Evaluation
Animals
Semen Collection
Microbiological Analysis
Seminal Quality Evaluation
2.2.2. Experiment 2: In Vivo Evaluation
2.3. Statistical Analysis
3. Results
3.1. Experiment 1: In Vitro Evaluation
3.2. Experiment 2: In Vivo Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial insemination |
ANOVA | Analysis of variance |
CASA | Computer assisted sperm analysis |
CFU | Colony-forming unit |
DE | Digestible energy |
EB | Tris-citric acid-glucose supplemented with EDTA and bestatin |
EDTA | Ethylenediaminetetraacetic acid |
HOST | Hypo-osmotic swelling test |
LSM | Least square means |
NAR | Normal apical ridge |
PI | Iodide propidium |
QEB | Tris-citric acid-glucose supplemented with EDTA, bestatin and nanoparticles of chitosan-alginate |
SEM | Standard error of the means |
TCG | Tris-citric acid-glucose |
TCG-AB | Tris-citric acid-glucose without antibiotics |
TCG+AB | Tris-citric acid-glucose plus antibiotics |
VRBD | Violet Red Bile Dextrose |
References
- Waberski, D.; Riesenbeck, A.; Schulze, M.; Weitze, K.F.; Johnson, L. Application of preserved boar semen for artificial insemination: Past, present and future challenges. Theriogenology 2019, 137, 2–7. [Google Scholar] [CrossRef]
- Da Costa, P.M.; Loureiro, L.; Matos, A.J.F. Transfer of multidrug-resistant bacteria between intermingled ecological niches: The interface between humans, animals and the environment. Int. J. Environ. Res. Public Health 2013, 10, 278–294. [Google Scholar] [CrossRef]
- Agrawal, Y.; Vanha-Perttula, T. Alanyl aminopeptidase of bovine seminal vesicle secretion. Int. J. Biochem. 1986, 18, 725–729. [Google Scholar] [CrossRef]
- Althouse, G.C.; Lu, K.G. Bacteriospermia in extended porcine semen. Theriogenology 2005, 63, 573–584. [Google Scholar] [CrossRef] [PubMed]
- Halkman, H.B.D.; Halkman, A.K. Indicator Organisms. In Encyclopedia of Food Microbiology, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2014; pp. 358–363. ISBN 9780123847331. [Google Scholar]
- Asociación Española de Normalización y Certificación. Microbiology of the Food Chain. Horizontal Method for the Detection and Enumeration of Enterobacteriaceae. Part 2: Colony-Count Technique (ISO 21528-2:2017, Corrected Version 2018-06-01). 2018. Available online: https://www.en.une.org/_layouts/15/r.aspx?c=N0059874 (accessed on 20 March 2021).
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union Summary Report on Antimicrobial Resistance in Zoonotic and Indicator Bacteria from Humans, Animals and Food in 2017/2018. EFSA J. 2020, 18, e06007. [Google Scholar] [CrossRef]
- Moretti, E.; Capitani, S.; Figura, N.; Pammolli, A.; Federico, M.G.; Giannerini, V.; Collodel, G. The presence of bacteria species in semen and sperm quality. J. Assist. Reprod. Genet. 2009, 26, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Úbeda, J.L.; Ausejo, R.; Dahmani, Y.; Falceto, M.V.; Usan, A.; Malo, C.; Perez-Martinez, F.C. Adverse effects of members of the Enterobacteriaceae family on boar sperm quality. Theriogenology 2013, 80, 565–570. [Google Scholar] [CrossRef] [PubMed]
- Marco-Jiménez, F.; Borrás, S.; Garcia-Dominguez, X.; D’Auria, G.; Vicente, J.S.; Marin, C. Roles of host genetics and sperm microbiota in reproductive success in healthy rabbit. Theriogenology 2020, 158, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Althouse, G. Sanitary Procedures for the Production of Extended Semen. Reprod. Domest. Anim. 2008, 43, 374–378. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Takahara, S.; Kinouchi, T.; Takeyama, M.; Ishida, T.; Ueyama, H.; Nishi, K.; Ohkubo, I. Alanyl Aminopeptidase from Human Seminal Plasma: Purification, Characterization, and Immunohistochemical Localization in the Male Genital Tract. J. Biochem. 1997, 122, 779–787. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Fernández, D.; Valdivia, A.; Irazusta, J.; Ochoa, C.; Casis, L. Peptidase activities in human semen. Peptides 2002, 23, 461–468. [Google Scholar] [CrossRef]
- Irazusta, J.; Valdivia, A.; Fernández, D.; Agirregoitia, E.; Ochoa, C.; Casis, L. Enkephalin-degrading enzymes in normal and subfertile human semen. J. Androl. 2004, 25, 733–739. [Google Scholar] [CrossRef]
- Osada, T.; Watanabe, G.; Kondo, S.; Toyoda, M.; Sakaki, Y.; Takeuchi, T. Male reproductive defects caused by puromycin-sensitive aminopeptidase deficiency in mice. Mol. Endocrinol. 2001, 15, 960–971. [Google Scholar] [CrossRef] [PubMed]
- Viudes-de-Castro, M.P.; Mocé, E.; Lavara, R.; Marco-Jiménez, F.; Vicente, J.S. Aminopeptidase activity in seminal plasma and effect of dilution rate on rabbit reproductive performance after insemination with an extender supplemented with buserelin acetate. Theriogenology 2014, 81, 1223–1228. [Google Scholar] [CrossRef] [PubMed]
- Bhosale, M.; Kadthur, J.C.; Nandi, D. Roles of Salmonella enterica serovar Typhimurium encoded Peptidase N during systemic infection of Ifnγ -/- mice. Immunobiology 2012, 217, 354–362. [Google Scholar] [CrossRef]
- Correa, A.F.; Bastos, I.M.D.; Neves, D.; Kipnis, A.; Junqueira-Kipnis, A.P.; de Santana, J.M. The activity of a hexameric M17 metallo-aminopeptidase is associated with survival of Mycobacterium tuberculosis. Front. Microbiol. 2017, 8, 504. [Google Scholar] [CrossRef] [PubMed]
- Agyare, C.; Etsiapa Boamah, V.; Ngofi Zumbi, C.; Boateng Osei, F. Antibiotic Use in Poultry Production and Its Effects on Bacterial Resistance. In Antimicrobial Resistance—A Global Threat; IntechOpen: London, UK, 2019. [Google Scholar]
- Sharma, V.K.; Johnson, N.; Cizmas, L.; McDonald, T.J.; Kim, H. A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes. Chemosphere 2016, 150, 702–714. [Google Scholar] [CrossRef]
- Nicholson, C.M.; Abramsson, L.; Holm, S.E.; Bjurulf, E. Bacterial contamination and sperm recovery after semen preparation by density gradient centrifugation using silane-coated silica particles at different g forces. Hum. Reprod. 2000, 15, 662–666. [Google Scholar] [CrossRef]
- Morrell, J.M.; Klein, C.; Lundeheim, N.; Erol, E.; Troedsson, M.H.T. Removal of bacteria from stallion semen by colloid centrifugation. Anim. Reprod. Sci. 2014, 145, 47–53. [Google Scholar] [CrossRef]
- Guimarães, T.; Lopes, G.; Pinto, M.; Silva, E.; Miranda, C.; Correia, M.J.; Damásio, L.; Thompson, G.; Rocha, A. Colloid centrifugation of fresh stallion semen before cryopreservation decreased microorganism load of frozen-thawed semen without affecting seminal kinetics. Theriogenology 2015, 83, 186–191. [Google Scholar] [CrossRef]
- Martínez-Pastor, F.; Lacalle, E.; Martínez-Martínez, S.; Fernández-Alegre, E.; Álvarez-Fernández, L.; Martinez-Alborcia, M.-J.; Bolarin, A.; Morrell, J.M. Low density Porcicoll separates spermatozoa from bacteria and retains sperm quality. Theriogenology 2021, 165. [Google Scholar] [CrossRef]
- Ramires Neto, C.; Sancler da Silva, Y.F.R.; Resende, H.L.; Guasti, P.N.; Monteiro, G.A.; Papa, P.M.; Dell’aqua Júnior, J.A.; Puoli Filho, J.N.P.; Alvarenga, M.A.; Papa, F.O. Control methods and evaluation of bacterial growth on fresh and cooled stallion semen. J. Equine Vet. Sci. 2015, 35, 277–282. [Google Scholar] [CrossRef]
- Finnegan, S.; Percival, S.L. EDTA: An Antimicrobial and Antibiofilm Agent for Use in Wound Care. Adv. Wound Care 2015, 4, 415–421. [Google Scholar] [CrossRef]
- Rabea, E.I.; Badawy, M.E.T.; Stevens, C.V.; Smagghe, G.; Steurbaut, W. Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules 2003, 4, 1457–1465. [Google Scholar] [CrossRef]
- Sahariah, P.; Másson, M. Antimicrobial Chitosan and Chitosan Derivatives: A Review of the Structure-Activity Relationship. Biomacromolecules 2017, 18, 3846–3868. [Google Scholar] [CrossRef] [PubMed]
- Rudramurthy, G.R.; Swamy, M.K.; Sinniah, U.R.; Ghasemzadeh, A. Nanoparticles: Alternatives against drug-resistant pathogenic microbes. Molecules 2016, 21, 836. [Google Scholar] [CrossRef] [PubMed]
- Bahar, A.; Ren, D. Antimicrobial Peptides. Pharmaceuticals 2013, 6, 1543–1575. [Google Scholar] [CrossRef] [PubMed]
- Mahlapuu, M.; Håkansson, J.; Ringstad, L.; Björn, C. Antimicrobial peptides: An emerging category of therapeutic agents. Front. Cell. Infect. Microbiol. 2016, 6, 194. [Google Scholar] [CrossRef]
- Dickneite, G.; Schorlemmer, H.U.; Hofstaetter, T.; Sedlacek, H.-H. Immunostimulation as a Therapeutic Principle in Bacterial Infections: The Effect of the Immunomodulator Bestatin on the Experimental Chronic E. coli Urinary Tract Infection. In Experimentelle Urologie; Springer: Berlin/Heidelberg, Germany, 1985; pp. 229–235. [Google Scholar]
- Root, J.L.; McIntyre, O.R.; Jacobs, N.J.; Daghlian, C.P. Inhibitory effect of disodium EDTA upon the growth of Staphylococcus epidermidis in vitro: Relation to infection prophylaxis of Hickman catheters. Antimicrob. Agents Chemother. 1988, 32, 1627–1631. [Google Scholar] [CrossRef] [PubMed]
- Gil, M.L.; Casanova, M.; Martínez, J.P. Changes in the cell wall glycoprotein composition of Candida albicans associated to the inhibition of germ tube formation by EDTA. Arch. Microbiol. 1994, 161, 489–494. [Google Scholar] [CrossRef] [PubMed]
- Percival, S.L.; Kite, P.; Eastwood, K.; Murga, R.; Carr, J.; Arduino, M.J.; Donlan, R.M. Tetrasodium EDTA as a Novel Central Venous Catheter Lock Solution Against Biofilm. Infect. Control Hosp. Epidemiol. 2005, 26, 515–519. [Google Scholar] [CrossRef]
- Li, J.; Cai, C.; Li, J.; Li, J.; Li, J.; Sun, T.; Wang, L.; Wu, H.; Yu, G. Chitosan-Based Nanomaterials for Drug Delivery. Molecules 2018, 23, 2661. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.F.; Guan, Y.L.; Yang, D.Z.; Li, Z.; Yao, K. Antibacterial action of chitosan and carboxymethylated chitosan. J. Appl. Polym. Sci. 2001, 79, 1324–1335. [Google Scholar] [CrossRef]
- Hosseinnejad, M.; Jafari, S.M. Evaluation of different factors affecting antimicrobial properties of chitosan. Int. J. Biol. Macromol. 2016, 85, 467–475. [Google Scholar] [CrossRef]
- Casares-Crespo, L.; Vicente, J.S.; Talaván, A.M.; Viudes-de-Castro, M.P. Does the inclusion of protease inhibitors in the insemination extender affect rabbit reproductive performance? Theriogenology 2016, 85, 928–932. [Google Scholar] [CrossRef] [PubMed]
- Casares-Crespo, L.; Fernández-Serrano, P.; Viudes-de-Castro, M.P. Protection of GnRH analogue by chitosan-dextran sulfate nanoparticles for intravaginal application in rabbit artificial insemination. Theriogenology 2018, 116, 49–52. [Google Scholar] [CrossRef]
- Viudes-De-Castro, M.P.; Vicente, J.S. Effect of sperm count on the fertility and prolificity rates of meat rabbits. Anim. Reprod. Sci. 1997, 46, 313–319. [Google Scholar] [CrossRef]
- Estany, J.; Camacho, J.; Baselga, M.; Blasco, A. Selection response of growth rate in rabbits for meat production. Genet. Sel. Evol. 1992, 24, 527–537. [Google Scholar] [CrossRef]
- Roca, J.; Martínez, S.; Vázquez, J.M.; Lucas, X.; Parrilla, I.; Martínez, E.A. Viability and fertility of rabbit spermatozoa diluted in Tris-buffer extenders and stored at 15 °C. Anim. Reprod. Sci. 2000, 64, 103–112. [Google Scholar] [CrossRef]
- Duracka, M.; Lukac, N.; Kacaniova, M.; Kantor, A.; Hleba, L.; Ondruska, L.; Tvrda, E. Antibiotics versus natural biomolecules: The case of in vitro induced bacteriospermia by enterococcus faecalis in rabbit semen. Molecules 2019, 24, 4329. [Google Scholar] [CrossRef] [PubMed]
- Bennemann, P.E.; Machado, S.A.; Girardini, L.K.; Sonálio, K.; Tonin, A.A. Bacterial contaminants and antimicrobial susceptibility profile of boar semen in Southern Brazil Studs. Rev. MVZ Córdoba 2018, 23, 6637–6648. [Google Scholar] [CrossRef]
- Machen, G.L.; Bird, E.T.; Brown, M.L.; Ingalsbe, D.A.; East, M.M.; Reyes, M.; Kuehl, T.J. Time trends for bacterial species and resistance patterns in semen in patients undergoing evaluation for male infertility. Baylor Univ. Med. Cent. Proc. 2018, 31, 165–167. [Google Scholar] [CrossRef] [PubMed]
- Jayarao, B.M.; Oliver, S.P. Aminoglycoside-Resistant Streptococcus and Enterococcus Species Isolated from Bovine Mammary Secretions. J. Dairy Sci. 1992, 75, 991–997. [Google Scholar] [CrossRef]
- Raad, I.; Hanna, H.; Dvorak, T.; Chaiban, G.; Hachem, R. Optimal antimicrobial catheter lock solution, using different combinations of minocycline, EDTA, and 25-percent ethanol, rapidly eradicates organisms embedded in biofilm. Antimicrob. Agents Chemother. 2007, 51, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Kite, P.; Eastwood, K.; Sugden, S.; Percival, S.L. Use of in vivo-generated biofilms from hemodialysis catheters to test the efficacy of a novel antimicrobial catheter lock for biofilm eradication in vitro. J. Clin. Microbiol. 2004, 42, 3073–3076. [Google Scholar] [CrossRef] [PubMed]
- Banin, E.; Brady, K.M.; Greenberg, E.P. Chelator-induced dispersal and killing of Pseudomonas aeruginosa cells in a biofilm. Appl. Environ. Microbiol. 2006, 72, 2064–2069. [Google Scholar] [CrossRef]
- Sherertz, R.J.; Boger, M.S.; Collins, C.A.; Mason, L.; Raad, I.I. Comparative in vitro efficacies of various catheter lock solutions. Antimicrob. Agents Chemother. 2006, 50, 1865–1868. [Google Scholar] [CrossRef]
- Al-Bakri, A.G.; Othman, G.; Bustanji, Y. The assessment of the antibacterial and antifungal activities of aspirin, EDTA and aspirin-EDTA combination and their effectiveness as antibiofilm agents. J. Appl. Microbiol. 2009, 107, 280–286. [Google Scholar] [CrossRef]
- Culp, E.; Wright, G.D. Bacterial proteases, untapped antimicrobial drug targets. J. Antibiot. 2017, 70, 366–377. [Google Scholar] [CrossRef]
- Goy, R.C.; Morais, S.T.B.; Assis, O.B.G. Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. Coli and S. aureus growth. Rev. Bras. Farmacogn. 2016, 26, 122–127. [Google Scholar] [CrossRef]
- Erdem, B.; Kariptaş, E.; Kaya, T.; Tulumoğlu, Ş.; Görgülü, Ö. Factors ınfluencing antibacterial activity of chitosan against Aeromonas hydrophila and Staphylococcus aureus. Int. Curr. Pharm. J. 2016, 5, 45–48. [Google Scholar] [CrossRef]
- Li, J.; Zhuang, S. Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: Current state and perspectives. Eur. Polym. J. 2020, 138, 109984. [Google Scholar] [CrossRef]
- Holappa, J.; Hjálmarsdóttir, M.; Másson, M.; Rúnarsson, Ö.; Asplund, T.; Soininen, P.; Nevalainen, T.; Järvinen, T. Antimicrobial activity of chitosan N-betainates. Carbohydr. Polym. 2006, 65, 114–118. [Google Scholar] [CrossRef]
- Levin-Reisman, I.; Brauner, A.; Ronin, I.; Balaban, N.Q. Epistasis between antibiotic tolerance, persistence, and resistance mutations. Proc. Natl. Acad. Sci. USA 2019, 116, 14734–14739. [Google Scholar] [CrossRef] [PubMed]
- Windels, E.M.; Michiels, J.E.; van den Bergh, B.; Fauvart, M.; Michiels, J. Antibiotics: Combatting tolerance to stop resistance. MBio 2019, 10, e02095-19. [Google Scholar] [CrossRef] [PubMed]
- Jäkel, H.; Scheinpflug, K.; Mühldorfer, K.; Gianluppi, R.; Lucca, M.S.; Mellagi, A.P.G.; Bortolozzo, F.P.; Waberski, D. In vitro performance and in vivo fertility of antibiotic-free preserved boar semen stored at 5 °C. J. Anim. Sci. Biotechnol. 2021, 12, 1–12. [Google Scholar] [CrossRef]
- El-Gaafary, M.N. Quality and fertility of cooled rabbit semen supplemented with cyclic-AMP stimulators. Anim. Reprod. Sci. 1994, 34, 307–313. [Google Scholar] [CrossRef]
- El-Kelawy, H.M.; Tawfeek, M.I.; El-Gaafary, M.N.; Ibrahim, H. Viability and Fertilizing Ability of Extended Rabbit Semen Stored at 5 °C. In Proceedings of the 10th World Rabbit Congress, Sharm EL-Sheikh, Egypt, 3–6 September 2012; pp. 285–289. [Google Scholar]
- Rosato, M.P.; Iaffaldano, N. Effect of Chilling Temperature on the Long-Term Survival of Rabbit Spermatozoa held Either in a Tris-Based or a Jellified Extender. Reprod. Domest. Anim. 2011, 46, 301–308. [Google Scholar] [CrossRef]
- López-Gatius, F.; Sances, G.; Sancho, M.; Yániz, J.; Santolaria, P.; Gutiérrez, R.; Núñez, M.; Núñez, J.; Soler, C. Effect of solid storage at 15 °C on the subsequent motility and fertility of rabbit semen. Theriogenology 2005, 64, 252–260. [Google Scholar] [CrossRef]
Group | Composition |
---|---|
TCG+AB | TCG extender supplemented with 100 IU/mL penicillin + 100 µg/mL streptomycin |
EB | TCG supplemented with EDTA (20 mM) and bestatin (10 mM) |
QEB | TCG supplemented with EDTA (20 mM), bestatin (10 mM) and nanoparticles of chitosan-alginate (0.05%) |
TCG-AB | TCG extender without antibiotics |
Extender Group | N | Total Mot (%) | HOST (%) | NAR (%) | Viability (%) |
---|---|---|---|---|---|
TCG+AB | 9 | 73.9 ± 9.98 | 73.0 ± 9.44 | 94.2 ± 6.18 | 75.0 ± 8.38 |
EB | 9 | 69.0 ± 12.42 | 73.4 ± 8.41 | 94.1 ± 5.48 | 72.0 ± 7.00 |
QEB | 9 | 71.1 ± 9.48 | 72.6 ± 6.38 | 93.7 ± 5.89 | 72.7 ± 7.43 |
TCG-AB | 9 | 68.8 ± 11.19 | 71.7 ± 8.47 | 94.6 ± 5.79 | 73.2 ± 6.09 |
Time | |||||
24 h | 12 | 73.8 ± 11.95 | 75.1 ± 7.41 | 96.1 ± 4.96 | 74.8 ± 6.82 |
48 h | 12 | 72.0 ± 12.58 | 71.6 ± 8.78 | 94.5 ± 6.78 | 72.6 ± 8.61 |
72 h | 12 | 66.3 ± 4.43 | 71.3 ± 7.59 | 91.8 ± 5.01 | 72.3 ± 5.76 |
Extender Group | N | Pregnancy Rate (%) | Total Number of Kits Born |
---|---|---|---|
TCG+AB | 228 | 90 | 10.1 ± 3.20 |
EB | 225 | 88 | 10.0 ± 3.50 |
QEB | 219 | 88 | 10.3 ± 3.17 |
TCG-AB | 225 | 87 | 10.2 ± 3.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viudes-de-Castro, M.P.; Marco-Jimenez, F.; Vicente, J.S.; Marin, C. Antibacterial Activity of Some Molecules Added to Rabbit Semen Extender as Alternative to Antibiotics. Animals 2021, 11, 1178. https://doi.org/10.3390/ani11041178
Viudes-de-Castro MP, Marco-Jimenez F, Vicente JS, Marin C. Antibacterial Activity of Some Molecules Added to Rabbit Semen Extender as Alternative to Antibiotics. Animals. 2021; 11(4):1178. https://doi.org/10.3390/ani11041178
Chicago/Turabian StyleViudes-de-Castro, María Pilar, Francisco Marco-Jimenez, José S. Vicente, and Clara Marin. 2021. "Antibacterial Activity of Some Molecules Added to Rabbit Semen Extender as Alternative to Antibiotics" Animals 11, no. 4: 1178. https://doi.org/10.3390/ani11041178
APA StyleViudes-de-Castro, M. P., Marco-Jimenez, F., Vicente, J. S., & Marin, C. (2021). Antibacterial Activity of Some Molecules Added to Rabbit Semen Extender as Alternative to Antibiotics. Animals, 11(4), 1178. https://doi.org/10.3390/ani11041178