Animal Harms and Food Production: Informing Ethical Choices
Abstract
:Simple Summary
Abstract
1. Introduction
2. Animal Harms
2.1. Types of Animal Harms
- Type 1 harms: keeping of domestic or captive animals for companionship, livestock, entertainment, laboratory use, racing, security, etc.;
- Type 2 harms: causing deliberate harm to animals through activities such as slaughter, pest control, fishing, hunting, and toxicology testing;
- Type 3 harms: causing direct but unintended harm to animals through land clearing, window-strike, vehicle collisions, etc.; and
- Type 4 harms: negatively affecting the welfare of animals indirectly by disturbing ecological systems through processes like climate change, pollution, introducing invasive species, etc.
2.2. Examples of Indirect and Unintentional Harms
3. Harms Relevant to Food Production
3.1. Type 1 Harms
3.1.1. On-Farm Husbandry
3.1.2. Livestock Transport
3.1.3. Working Animals Used in Farming and Hunting
3.2. Type 2 Harms
3.2.1. Livestock Slaughter
3.2.2. Wildlife Harvesting
3.2.3. Wildlife Damage Management
Wild Herbivore and Omnivore Control
Wild Predator Control
Rodent Control
Parasite and Infectious Disease Control
3.2.4. Food Safety Testing
3.3. Type 3 Harms
3.3.1. Land Clearing
3.3.2. Tilling, Ploughing and Harvesting of Cropping Land
3.3.3. Entanglement
Fencing
Netting
Marine Debris and Plastic Waste
3.3.4. Damming of Water Bodies for Irrigation
3.3.5. Transport Effects
3.4. Type 4 Harms
3.4.1. Pollution
Eutrophication
Insecticides and Pesticides
Secondary Poisoning
Pharmaceutical Compounds
Noise Pollution
Light Pollution
Miscellaneous
3.4.2. Greenhouse Gasses and Climate Change
3.4.3. Introduction of Invasive Species
3.4.4. Predation of Domestic Animals
3.4.5. Exposure to Infectious Diseases
3.4.6. Salinity
3.4.7. Soil Erosion
3.4.8. Disposal of Food Waste
3.4.9. Depletion of Natural Resources
4. Summaries of Food Production Systems
4.1. Harvesting of Wild Mushrooms, Plants and Seaweeds
4.2. Apiary
4.3. Terrestrial Wildlife Harvesting
4.4. Marine and Aquatic Wildlife Harvesting
4.5. Extensive (Free-Range) Egg Production
4.6. Rangeland Pastoralism
4.7. Dryland Cropping
4.8. Horticulture
4.9. Irrigated Cropping
4.10. Edible Insects
4.11. Cellular Agriculture
4.12. Aquaculture and Mariculture
4.13. Intensive Egg Production
4.14. Extensive Livestock Grazing
4.15. Intensive Livestock Production
4.16. Dairy
5. Comparing and Ranking Harms
5.1. Conflicting Harms
5.2. Once-Off and Ongoing Harms
5.3. Quantity of Food Produced
5.4. Numbers of Animals Harmed
5.5. Animal Sentience and Hierarchies of Intelligence
5.6. Area Affected
5.7. Which Animals and Which Harms to Prioritize
6. Decision Making for Consumers
7. Where to from Here?
8. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Vanhonacker, F.; Verbeke, W. Public and consumer policies for higher welfare food products: Challenges and opportunities. J. Agric. Environ. Ethics 2014, 27, 153–171. [Google Scholar] [CrossRef]
- la Lama, G.C.; Estévez-Moreno, L.X.; Sepúlveda, W.S.; Estrada-Chavero, M.C.; Rayas-Amor, A.A.; Villarroel, M.; María, G.A. Mexican consumers’ perceptions and attitudes towards farm animal welfare and willingness to pay for welfare friendly meat products. Meat Sci. 2017, 125, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Tarazona, A.M.; Ceballos, M.C.; Broom, D.M. Human relationships with domestic and other animals: One health, one welfare, one biology. Animals 2020, 10, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berners-Lee, M.; Hoolohan, C.; Cammack, H.; Hewitt, C.N. The relative greenhouse gas impacts of realistic dietary choices. Energy Policy 2012, 43, 184–190. [Google Scholar] [CrossRef]
- Sim, S.; Barry, M.; Clift, R.; Cowell, S.J. The relative importance of transport in determining an appropriate sustainability strategy for food sourcing. Int. J. Life Cycle Assess. 2007, 12, 422. [Google Scholar]
- McCluskey, J.J.; Durham, C.A.; Horn, B.P. Consumer preferences for socially responsible production attributes across food products. Agric. Resour. Econ. Rev. 2009, 38, 345–356. [Google Scholar] [CrossRef]
- Sommerville, M.; Essex, J.; Le Billon, P. The ‘global food crisis’ and the geopolitics of food security. Geopolitics 2014, 19, 239–265. [Google Scholar] [CrossRef]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraser, D. A “practical” ethic for animals. J. Agric. Environ. Ethics 2012, 25, 721–746. [Google Scholar] [CrossRef]
- Cornish, A.; Jamieson, J.; Raubenheimer, D.; McGreevy, P. Applying the behavioural change wheel to encourage higher welfare food choices. Animals 2019, 9, 524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirkwood, J.K.; Sainsbury, A.W.; Bennett, P.M. The welfare of free-living wild animals: Methods of assessment. Anim. Welf. 1994, 3, 257–273. [Google Scholar]
- García Pinillos, R.; Appleby, M.C.; Manteca, X.; Scott-Park, F.; Smith, C.; Velarde, A. One Welfare—A platform for improving human and animal welfare. Vet. Rec. 2016, 179, 412–413. [Google Scholar] [CrossRef] [Green Version]
- Allen, B.L.; Hampton, J.O. Minimizing animal welfare harms associated with predation management in agro-ecosystems. Biol. Rev. 2020, 95, 1097–1108. [Google Scholar] [CrossRef]
- Fraser, D.; MacRae, A.M. Four types of activities that affect animals: Implications for animal welfare science and animal ethics philosophy. Anim. Welf. 2011, 20, 581–590. [Google Scholar]
- Dubois, S.; Fraser, D. Rating harms to wildlife: A survey showing convergence between conservation and animal welfare views. Anim. Welf. 2013, 22, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Hampton, J.O.; Warburton, B.; Sandøe, P. Compassionate versus consequentialist conservation. Conserv. Biol. 2019, 33, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Nantha, H.S.; Tisdell, C. The orangutan–oil palm conflict: Economic constraints and opportunities for conservation. Biodivers. Conserv. 2009, 18, 487–502. [Google Scholar] [CrossRef]
- Voigt, M.; Wich, S.A.; Ancrenaz, M.; Meijaard, E.; Abram, N.; Banes, G.L.; Campbell-Smith, G.; D’Arcy, L.J.; Delgado, R.A.; Erman, A. Global demand for natural resources eliminated more than 100,000 Bornean orangutans. Curr. Biol. 2018, 28, 761–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parsons, S.; Raikova, S.; Chuck, C.J. The viability and desirability of replacing palm oil. Nat. Sustain. 2020, 3, 412–418. [Google Scholar] [CrossRef]
- Fawcett, A.; Mullan, S.; McGreevy, P. Application of Fraser’s “practical” ethic in veterinary practice, and its compatibility with a “one welfare” framework. Animals 2018, 8, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finn, H.C.; Stephens, N.S. The invisible harm: Land clearing is an issue of animal welfare. Wildl. Res. 2017, 44, 377–391. [Google Scholar] [CrossRef] [Green Version]
- Loss, S.R.; Will, T.; Marra, P.P. Direct mortality of birds from anthropogenic causes. Annu. Rev. Ecol. Evol. Syst. 2015, 46, 99–120. [Google Scholar] [CrossRef] [Green Version]
- Narayan, E. Physiological stress levels in wild koala sub-populations facing anthropogenic induced environmental trauma and disease. Sci. Rep. 2019, 9, 6031. [Google Scholar] [CrossRef] [Green Version]
- Stephen, C.; Wittrock, J.; Wade, J. Using a harm reduction approach in an environmental case study of fish and wildlife health. Ecohealth 2018, 15, 4–7. [Google Scholar] [CrossRef] [PubMed]
- Coleman, G. Public animal welfare discussions and outlooks in Australia. Anim. Front. 2018, 8, 14–19. [Google Scholar] [CrossRef] [Green Version]
- Bergstrom, D.M.; Wienecke, B.C.; van den Hoff, J.; Hughes, L.; Lindenmayer, D.B.; Ainsworth, T.D.; Baker, C.M.; Bland, L.; Bowman, D.M.J.S.; Brooks, S.T. Combating ecosystem collapse from the tropics to the Antarctic. Glob. Chang. Biol. 2021, 27, 1692–1703. [Google Scholar] [CrossRef]
- Wintle, B.A.; Legge, S.; Woinarski, J.C.Z. After the megafires: What next for Australian wildlife? Trends Ecol. Evol. 2020, 35, 753–757. [Google Scholar] [CrossRef]
- Hemsworth, P.H.; Barnett, J.L.; Coleman, G.J.; Hansen, C. A study of the relationships between the attitudinal and behavioural profiles of stockpersons and the level of fear of humans and reproductive performance of commercial pigs. Appl. Anim. Behav. Sci. 1989, 23, 301–314. [Google Scholar] [CrossRef]
- Guémené, D.; Guy, G. The past, present and future of force-feeding and “foie gras” production. Worlds Poult. Sci. J. 2004, 60, 210–222. [Google Scholar] [CrossRef]
- Karlen, G.A.M.; Hemsworth, P.H.; Gonyou, H.W.; Fabrega, E.; Strom, A.D.; Smits, R.J. The welfare of gestating sows in conventional stalls and large groups on deep litter. Appl. Anim. Behav. Sci. 2007, 105, 87–101. [Google Scholar] [CrossRef]
- Weeks, C.A.; Nicol, C.J. Behavioural needs, priorities and preferences of laying hens. Worlds Poult. Sci. J. 2006, 62, 296–307. [Google Scholar] [CrossRef]
- Flower, F.C.; Weary, D.M. Effects of early separation on the dairy cow and calf: 2. Separation at 1 day and 2 weeks after birth. Appl. Anim. Behav. Sci. 2001, 70, 275–284. [Google Scholar] [CrossRef]
- Lee, C.; Fisher, A.D. Welfare consequences of mulesing of sheep. Aust. Vet. J. 2007, 85, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Stafford, K.J.; Mellor, D.J. Addressing the pain associated with disbudding and dehorning in cattle. Appl. Anim. Behav. Sci. 2011, 135, 226–231. [Google Scholar] [CrossRef]
- Bergqvist, J.; Gunnarsson, S. Finfish aquaculture: Animal welfare, the environment, and ethical implications. J. Agric. Environ. Ethics 2013, 26, 75–99. [Google Scholar] [CrossRef]
- Petherick, J.C. Animal welfare issues associated with extensive livestock production: The northern Australian beef cattle industry. Appl. Anim. Behav. Sci. 2005, 92, 211–234. [Google Scholar] [CrossRef]
- Fisher, A.D.; Colditz, I.G.; Lee, C.; Ferguson, D.M. The influence of land transport on animal welfare in extensive farming systems. J. Vet. Behav. 2009, 4, 157–162. [Google Scholar] [CrossRef]
- Phillips, C.J.C.; Santurtun, E. The welfare of livestock transported by ship. Vet. J. 2013, 196, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Collins, T.; Stockman, C.; Hampton, J.O.; Barnes, A. Identifying animal welfare impacts of livestock air transport. Aust. Vet. J. 2020, 98, 197–199. [Google Scholar] [CrossRef]
- Carnovale, F.; Phillips, C.J. The effects of heat stress on sheep welfare during live export voyages from Australia to the Middle East. Animals 2020, 10, 694. [Google Scholar] [CrossRef]
- Collins, T.; Hampton, J.O.; Barnes, A.L. A systematic review of heat load in Australian livestock transported by sea. Animals 2018, 8, 164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broom, D.M. Causes of poor welfare in large animals during transport. Vet. Res. Commun. 2003, 27, 515–518. [Google Scholar] [CrossRef] [PubMed]
- Santurtun, E.; Phillips, C.J.C. The impact of vehicle motion during transport on animal welfare. Res. Vet. Sci. 2015, 100, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.J.; Stojkov, J.; Renaud, D.L.; Fraser, D. Condition of male dairy calves at auction markets. J. Dairy Sci. 2020, 103, 8530–8534. [Google Scholar] [CrossRef]
- Haverbeke, A.; Diederich, C.; Depiereux, E.; Giffroy, J.M. Cortisol and behavioral responses of working dogs to environmental challenges. Physiol. Behav. 2008, 93, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Allen, B.L.; Allen, L.R.; Ballard, G.; Drouilly, M.; Fleming, P.J.S.; Hampton, J.O.; Hayward, M.W.; Kerley, G.I.H.; Meek, P.D.; Minnie, L.; et al. Animal welfare considerations for using large carnivores and guardian dogs as vertebrate biocontrol tools against other animals. Biol. Conserv. 2019, 232, 258–270. [Google Scholar] [CrossRef]
- Swann, W.J. Improving the welfare of working equine animals in developing countries. Appl. Anim. Behav. Sci. 2006, 100, 148–151. [Google Scholar] [CrossRef]
- Navarro-Gonzalez, N.; Jay-Russell, M.T. Use of falconry to deter nuisance birds in leafy greens fields in Northern California. In Proceedings of the 27th Vertebrate Pest Conference, Newport Beach, CA, USA, 7–20 March 2016; Timm, R.M., Baldwin, R.A., Eds.; University of California: Davis, CA, USA, 2016; pp. 209–216. [Google Scholar]
- Orr, B.; Malik, R.; Norris, J.; Westman, M. The welfare of pig-hunting dogs in Australia. Animals 2019, 9, 853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olson, E.R.; Treves, A.; Wydeven, A.P.; Ventura, S.J. Landscape predictors of wolf attacks on bear-hunting dogs in Wisconsin, USA. Wildl. Res. 2015, 41, 584–597. [Google Scholar] [CrossRef]
- Koler-Matznick, J.; Yates, B.C.; Bulmer, S.; Brisbin, I.L.J. The New Guinea singing dog: Its status and scientific importance. Aust. Mammal. 2007, 29, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Buhmann, G.; Paul, F.; Herbst, W.; Melzer, F.; Wolf, G.; Hartmann, K.; Fischer, A. Canine brucellosis: Insights into the epidemiologic situation in Europe. Front. Vet. Sci. 2019, 6, 151. [Google Scholar] [CrossRef]
- Bartels, K.E.; Stair, E.L.; Cohen, R.E. Corrosion potential of steel bird shot in dogs. J. Am. Vet. Med. Assoc. 1991, 199, 856–863. [Google Scholar] [PubMed]
- Aksu, H.; Matur, E.; Mckinstry, J.L. Comparison of Halal slaughter with captive bolt stunning and neck cutting in cattle: Exsanguination and quality parameters. Anim. Welf. 2006, 15, 325–330. [Google Scholar]
- Grandin, T. Return-to-sensibility problems after penetrating captive bolt stunning of cattle in commercial beef slaughter plants. J. Am. Vet. Med. Assoc. 2002, 221, 1258–1261. [Google Scholar] [CrossRef]
- Hoffman, L.C.; Cawthorn, D.-M. What is the role and contribution of meat from wildlife in providing high quality protein for consumption? Anim. Front. 2012, 2, 40–53. [Google Scholar] [CrossRef] [Green Version]
- Brown, C.; Dorey, C. Pain and Emotion in Fishes—Fish welfare implications for fisheries and aquaculture. Anim. Stud. J. 2019, 8, 175–201. [Google Scholar] [CrossRef] [Green Version]
- Metcalfe, J.D. Welfare in wild-capture marine fisheries. J. Fish Biol. 2009, 75, 2855–2861. [Google Scholar] [CrossRef] [PubMed]
- Cooke, S.J.; Sneddon, L.U. Animal welfare perspectives on recreational angling. Appl. Anim. Behav. Sci. 2007, 104, 176–198. [Google Scholar] [CrossRef] [Green Version]
- Kestin, S.C. Welfare aspects of the commercial slaughter of whales. Anim. Welf. 1995, 4, 11–27. [Google Scholar]
- Vail, C.S.; Reiss, D.; Brakes, P.; Butterworth, A. Potential welfare impacts of chase and capture of small cetaceans during drive hunts in Japan. J. Appl. Anim. Welf. Sci. 2020, 23, 193–208. [Google Scholar] [CrossRef] [Green Version]
- Daoust, P.-Y.; Caraguel, C. The Canadian harp seal hunt: Observations on the effectiveness of procedures to avoid poor animal welfare outcomes. Anim. Welf. 2012, 21, 445–455. [Google Scholar] [CrossRef] [Green Version]
- Lewis, A.R.; Pinchin, A.M.; Kestin, S.C. Welfare implications of the night shooting of wild impala (Aepyceros melampus). Anim. Welf. 1997, 6, 123–131. [Google Scholar]
- Wilson, G.R.; Edwards, M. Professional kangaroo population control leads to better animal welfare, conservation outcomes and avoids waste. Aust. Zool. 2019, 40, 181–202. [Google Scholar] [CrossRef] [Green Version]
- Wright, J.H.; Priston, N.E.C. Hunting and trapping in Lebialem Division, Cameroon: Bushmeat harvesting practices and human reliance. Endanger. Species Res. 2010, 11, 1–12. [Google Scholar] [CrossRef]
- Aebischer, N.J.; Wheatley, C.J.; Rose, H.R. Factors associated with shooting accuracy and wounding rate of four managed wild deer species in the UK, based on anonymous field records from deer stalkers. PLoS ONE 2014, 9, e109698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben-Ami, D.; Boom, K.; Boronyak, L.; Townend, C.; Ramp, D.; Croft, D.; Bekoff, M. The welfare ethics of the commercial killing of free-ranging kangaroos: An evaluation of the benefits and costs of the industry. Anim. Welf. 2014, 23, 1–10. [Google Scholar] [CrossRef]
- Sharp, T.M.; McLeod, S.R. Kangaroo harvesters and the euthanasia of orphaned young-at-foot: Applying the theory of planned behaviour to an animal welfare issue. Anim. Welf. 2016, 25, 39–54. [Google Scholar] [CrossRef]
- Marsh, H.; Lawler, I.R.; Kwan, D.; Delean, S.; Pollock, K.; Alldredge, M. Aerial surveys and the potential biological removal technique indicate that the Torres Strait dugong fishery is unsustainable. Anim. Conserv. 2004, 7, 435–443. [Google Scholar] [CrossRef]
- Baker, S.E.; Cain, R.; Van Kesteren, F.; Zommers, Z.A.; D’cruze, N.; Macdonald, D.W. Rough trade: Animal welfare in the global wildlife trade. Bioscience 2013, 63, 928–938. [Google Scholar]
- Hampton, J.O.; Hyndman, T.H. Underaddressed animal-welfare issues in conservation. Conserv. Biol. 2019, 33, 803–811. [Google Scholar] [CrossRef] [PubMed]
- Gordon, I.J. What is the future for wild, large herbivores in human-modified agricultural landscapes? Wildlife Biol. 2009, 15, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Geisser, H.; Reyer, H.-U. Efficacy of hunting, feeding, and fencing to reduce crop damage by wild boars. J. Wildl. Manag. 2004, 68, 939–946. [Google Scholar] [CrossRef]
- Jackson, T.P.; Mosojane, S.; Ferreira, S.M.; Van Aarde, R.J. Solutions for elephant Loxodonta africana crop raiding in northern Botswana: Moving away from symptomatic approaches. Oryx 2008, 42, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Naughton-Treves, L.; Treves, A.; Chapman, C.; Wrangham, R. Temporal patterns of crop-raiding by primates: Linking food availability in croplands and adjacent forest. J. Appl. Ecol. 1998, 35, 596–606. [Google Scholar] [CrossRef]
- Coleman, J.; Spurr, E.B. Farmer perceptions of bird damage and control in arable crops. N. Z. Plant Prot. 2001, 54, 184–187. [Google Scholar] [CrossRef] [Green Version]
- Radtke, T.M.; Dieter, C.D. Canada goose crop damage abatement in South Dakota. Hum. Wildl. Interact. 2011, 5, 315–320. [Google Scholar]
- Wiggins, N.L.; Williamson, G.J.; McCallum, H.I.; McMahon, C.R.; Bowman, D.M.J.S. Shifts in macropod home ranges in response to wildlife management interventions. Wildl. Res. 2010, 37, 379–391. [Google Scholar] [CrossRef]
- Zufiaurre, E.; Abba, A.; Bilenca, D. Damage to silo bags by mammals in agroecosystems: A contribution for mitigating human-wildlife conflicts. Wildl. Res. 2020, 48, 86–96. [Google Scholar] [CrossRef]
- Digby, D.; Bird, L.; Severin, L.; O’Leary, P.; Jensen, M.; Mills, R.; Edwards, G. Engaging the pastoral industry in the Australian Feral Camel Management Project (AFCMP). Rangel. J. 2016, 38, 135–142. [Google Scholar] [CrossRef]
- Florens, F.B.V. Biodiversity law: Mauritius culls threatened fruit bats. Nature 2016, 530, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, L. Is the fruit you eat flying-fox friendly? The effects of orchard electrocution grids on Australian flying-foxes (Pteropus spp. Megachiroptera). In The Biology and Conservation of Australasian Bats; Law, B., Eby, P., Lunney, D., Lumsden, L., Eds.; Royal Zoological Society of New South Wales: Sydney, Australia, 2011; pp. 380–390. ISBN 9780980327243. [Google Scholar]
- Bowen, W.D.; Lidgard, D. Marine mammal culling programs: Review of effects on predator and prey populations. Mamm. Rev. 2013, 43, 207–220. [Google Scholar] [CrossRef]
- Archer, M. Slaughter of the singing sentients: Measuring the morality of eating red meat. Aust. Zool. 2011, 35, 979–982. [Google Scholar] [CrossRef] [Green Version]
- Fischer, B.; Lamey, A. Field deaths in plant agriculture. J. Agric. Environ. Ethics 2018, 31, 409–428. [Google Scholar] [CrossRef]
- Watt, B.E.; Proudfoot, A.T.; Bradberry, S.M.; Vale, J.A. Anticoagulant rodenticides. Toxicol. Rev. 2005, 24, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Singleton, G.R.; Belmain, S.; Brown, P.R.; Aplin, K.; Htwe, N.M. Impacts of rodent outbreaks on food security in Asia. Wildl. Res. 2010, 37, 355–359. [Google Scholar] [CrossRef]
- Ramsey, D.S.L.; Efford, M.G. Management of bovine tuberculosis in brushtail possums in New Zealand: Predictions from a spatially explicit, individual-based model. J. Appl. Ecol. 2010, 47, 911–919. [Google Scholar] [CrossRef]
- Donnelly, C.A.; Woodroffe, R.; Cox, D.R.; Bourne, F.J.; Cheeseman, C.L.; Clifton-Hadley, R.S.; Wei, G.; Gettinby, G.; Gilks, P.; Jenkins, H. Positive and negative effects of widespread badger culling on tuberculosis in cattle. Nature 2006, 439, 843. [Google Scholar] [CrossRef] [PubMed]
- White, P.J.; Wallen, R.L.; Geremia, C.; Treanor, J.J.; Blanton, D.W. Management of Yellowstone bison and brucellosis transmission risk–Implications for conservation and restoration. Biol. Conserv. 2011, 144, 1322–1334. [Google Scholar] [CrossRef]
- Thompson, R.D.; Mitchell, G.C.; Burns, R.J. Vampire bat control by systemic treatment of livestock with an anticoagulant. Science 1972, 177, 806–808. [Google Scholar] [CrossRef] [PubMed]
- Hartung, T.; Koëter, H. Food for thought... on food safety testing. ALTEX 2008, 25, 259–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumans, V. Science-based assessment of animal welfare: Laboratory animals. OIE Rev. Sci. Tech. 2005, 24, 503–513. [Google Scholar] [CrossRef]
- Taylor, M.; Dickman, C. Native Animals Lost to Tree-Clearing in NSW 1998–2015; World Wildlife Fund-Australia: Sydney, Australia, 2018. [Google Scholar]
- Ketterings, Q.M.; Tri Wibowo, T.; Van Noordwijk, M.; Penot, E. Farmers’ perspectives on slash-and-burn as a land clearing method for small-scale rubber producers in Sepunggur, Jambi Province, Sumatra, Indonesia. For. Ecol. Manag. 1999, 120, 157–169. [Google Scholar] [CrossRef]
- McAlpine, C.A.; Etter, A.; Fearnside, P.M.; Seabrook, L.; Laurance, W.F. Increasing world consumption of beef as a driver of regional and global change: A call for policy action based on evidence from Queensland (Australia), Colombia and Brazil. Glob. Environ. Chang. 2009, 19, 21–33. [Google Scholar] [CrossRef]
- Gibbs, H.K.; Rausch, L.; Munger, J.; Schelly, I.; Morton, D.C.; Noojipady, P.; Soares-Filho, B.; Barreto, P.; Micol, L.; Walker, N.F. Brazil’s Soy Moratorium. Science 2015, 347, 377–378. [Google Scholar] [CrossRef] [PubMed]
- Jędrzejewski, W.; Jędrzejewska, B. Rodent cycles in relation to biomass and productivity of ground vegetation and predation in the Palearctic. Acta Theriol. 1996, 41, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Jacob, J. Short-term effects of farming practices on populations of common voles. Agric. Ecosyst. Environ. 2003, 95, 321–325. [Google Scholar] [CrossRef]
- Castrale, J.S. Responses of wildlife to various tillage conditions. Trans. N. Am. Wildl. Nat. Resour. Conf. 1985, 50, 142–156. [Google Scholar]
- Albers, P.H.; Linder, G.; Nichols, J.D. Effects of tillage practices and carbofuran exposure on small mammals. J. Wildl. Manag. 1990, 54, 135–142. [Google Scholar] [CrossRef]
- Nass, R.D.; Hood, G.A.; Lindsey, G.D. Fate of Polynesian rats in Hawaiian sugarcane fields during harvest. J. Wildl. Manag. 1971, 353–356. [Google Scholar] [CrossRef]
- Tew, T.E.; Macdonald, D.W. The effects of harvest on arable wood mice Apodemus sylvaticus. Biol. Conserv. 1993, 65, 279–283. [Google Scholar] [CrossRef]
- Pacini, M.I.; Bonelli, F.; Briganti, A.; Citi, S.; Papini, R.A.; Sgorbini, M. Wildlife ungulate rescue and emergency services in the Pisa area (Tuscany, Italy): Evaluation of a 9-years period (2010–2018). Front. Vet. Sci. 2020, 7, 626. [Google Scholar] [CrossRef] [PubMed]
- Bollinger, E.K.; Bollinger, P.B.; Gavin, T.A. Effects of hay-cropping on eastern populations of the Bobolink. Wildl. Soc. Bull. 1990, 18, 142–150. [Google Scholar]
- Warner, R.E.; Etter, S.L. Hay cutting and the survival of pheasants: A long-term perspective. J. Wildl. Manag. 1989, 455–461. [Google Scholar] [CrossRef]
- Hart, A.G. The fence–the welfare implications of the loss of the true wild. In Animal Welfare in a Changing World; Butterworth, A., Ed.; CABI: Bristol, UK, 2018; pp. 35–45. ISBN 1786392453. [Google Scholar]
- McInturff, A.; Xu, W.; Wilkinson, C.E.; Dejid, N.; Brashares, J.S. Fence ecology: Frameworks for understanding the ecological effects of fences. Bioscience 2020, 70, 971–985. [Google Scholar]
- Connolly, T.A.; Day, T.D.; King, C.M. Estimating the potential for reinvasion by mammalian pests through pest-exclusion fencing. Wildl. Res. 2009, 36, 410–421. [Google Scholar] [CrossRef]
- Vanak, A.T.; Thaker, M.; Slotow, R. Do fences create an edge-effect on the movement patterns of a highly mobile mega-herbivore? Biol. Conserv. 2010, 143, 2631–2637. [Google Scholar] [CrossRef]
- Harrington, J.L.; Conover, M.R. Characteristics of ungulate behavior and mortality associated with wire fences. Wildl. Soc. Bull. 2006, 34, 1295–1305. [Google Scholar] [CrossRef]
- McKillop, I.G.; Sibly, R.M. Animal behaviour at electric fences and the implications for management. Mamm. Rev. 1988, 18, 91–103. [Google Scholar] [CrossRef]
- Mbaiwa, J.E.; Mbaiwa, O.I. The effects of veterinary fences on wildlife populations in Okavango Delta, Botswana. Int. J. Wilderness 2006, 12, 17–41. [Google Scholar]
- Boone, R.B.; Hobbs, N.T. Lines around fragments: Effects of fencing on large herbivores. Afr. J. Range Forage Sci. 2004, 21, 147–158. [Google Scholar] [CrossRef]
- Gadd, M.E. Barriers, the beef industry and unnatural selection: A review of the impact of veterinary fencing on mammals in Southern Africa. In Fencing for Conservation-Restriction of Evolutionary Potential or a Riposte to Threatening Processes? Springer: Cham, Switzerland, 2012; pp. 153–186. ISBN 9781461409021. [Google Scholar]
- Smith, D.; King, R.; Allen, B.L. Impacts of exclusion fencing on target and non-target fauna: A global review. Biol. Rev. 2020, 95, 1590–1606. [Google Scholar] [CrossRef] [PubMed]
- Brown, O.J.F.; Field, J.; Letnic, M. Variation in the taphonomic effect of scavengers in semi-arid Australia linked to rainfall and the El Niño Southern Oscillation. Int. J. Osteoarchaeol. 2006, 16, 165–176. [Google Scholar] [CrossRef]
- Arnot, L.; Molteno, S. How to reduce tortoise electrocution mortalities. Farmers Wkly. 2017, 2017, 36–38. [Google Scholar]
- Beck, A. Electric fence induced mortality in South Africa. Master’s Thesis, University of the Witwatersrand, Johannesburg, South Africa, 2010. Available online: http://wiredspace.wits.ac.za/jspui/handle/10539/7980 (accessed on 3 January 2019).
- Umstatter, C. The evolution of virtual fences: A review. Comput. Electron. Agric. 2011, 75, 10–22. [Google Scholar] [CrossRef]
- Taylor-Brown, A.; Booth, R.; Gillett, A.; Mealy, E.; Ogbourne, S.M.; Polkinghorne, A.; Conroy, G.C. The impact of human activities on Australian wildlife. PLoS ONE 2019, 14, e0206958. [Google Scholar] [CrossRef] [Green Version]
- Twedt, D.J. Control netting as a hazard to birds. Environ. Conserv. 1980, 7, 217–218. [Google Scholar] [CrossRef]
- Stuart, J.N.; Watson, M.L.; Brown, T.L.; Eustice, C. Plastic netting: An entanglement hazard to snakes and other wildlife. Herpetol. Rev. 2001, 32, 162. [Google Scholar]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [Green Version]
- Eriksen, M.; Lebreton, L.C.M.; Carson, H.S.; Thiel, M.; Moore, C.J.; Borerro, J.C.; Galgani, F.; Ryan, P.G.; Reisser, J. Plastic pollution in the world’s oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE 2014, 9, e111913. [Google Scholar] [CrossRef] [Green Version]
- Lebreton, L.; Slat, B.; Ferrari, F.; Sainte-Rose, B.; Aitken, J.; Marthouse, R.; Hajbane, S.; Cunsolo, S.; Schwarz, A.; Levivier, A. Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Sci. Rep. 2018, 8, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Worm, B.; Lotze, H.K.; Jubinville, I.; Wilcox, C.; Jambeck, J. Plastic as a persistent marine pollutant. Ann. Rev. Environ. Resour. 2017, 42, 1–26. [Google Scholar] [CrossRef]
- O’Hanlon, N.J.; James, N.A.; Masden, E.A.; Bond, A.L. Seabirds and marine plastic debris in the northeastern Atlantic: A synthesis and recommendations for monitoring and research. Environ. Pollut. 2017, 231, 1291–1301. [Google Scholar] [CrossRef]
- Nicastro, K.R.; Savio, R.L.; McQuaid, C.D.; Madeira, P.; Valbusa, U.; Azevedo, F.; Casero, M.; Lourenço, C.; Zardi, G.I. Plastic ingestion in aquatic-associated bird species in southern Portugal. Mar. Pollut. Bull. 2018, 126, 413–418. [Google Scholar] [CrossRef]
- Moore, E.; Lyday, S.; Roletto, J.; Litle, K.; Parrish, J.K.; Nevins, H.; Harvey, J.; Mortenson, J.; Greig, D.; Piazza, M.; et al. Entanglements of marine mammals and seabirds in central California and the north-west coast of the United States 2001-2005. Mar. Pollut. Bull. 2009, 58, 1045–1051. [Google Scholar] [CrossRef] [PubMed]
- Ryan, P.G. Entanglement of birds in plastics and other synthetic materials. Mar. Pollut. Bull. 2018, 135, 159–164. [Google Scholar] [CrossRef]
- Moore, M.J. Welfare of whales by-caught in fishing gear or struck by vessels. Anim. Welf. 2013, 22, 117–121. [Google Scholar] [CrossRef] [Green Version]
- Roman, L.; Hardesty, B.D.; Hindell, M.A.; Wilcox, C. A quantitative analysis linking seabird mortality and marine debris ingestion. Sci. Rep. 2019, 9, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fulton, J.; Norton, M.; Shilling, F. Water-indexed benefits and impacts of California almonds. Ecol. Indic. 2019, 96, 711–717. [Google Scholar] [CrossRef]
- Zektser, S.; Loáiciga, H.A.; Wolf, J.T. Environmental impacts of groundwater overdraft: Selected case studies in the southwestern United States. Environ. Geol. 2005, 47, 396–404. [Google Scholar] [CrossRef]
- Lemly, A.D.; Kingsford, R.T.; Thompson, J.R. Irrigated agriculture and wildlife conservation: Conflict on a global scale. Environ. Manage. 2000, 25, 485–512. [Google Scholar] [CrossRef]
- Micklin, P.P. Desiccation of the Aral Aea: A water management disaster in the Soviet Union. Science 1988, 241, 1170–1176. [Google Scholar] [CrossRef] [Green Version]
- Kingsford, R.T.; Thomas, R.F. Destruction of wetlands and waterbird populations by dams and irrigation on the Murrumbidgee River in Arid Australia. Environ. Manag. 2004, 34, 383–396. [Google Scholar] [CrossRef]
- Taylor, B.D.; Goldingay, R.L. Roads and wildlife: Impacts, mitigation and implications for wildlife management in Australia. Wildl. Res. 2010, 37, 320–331. [Google Scholar] [CrossRef]
- Litvaitis, J.A.; Tash, J.P. An approach toward understanding wildlife-vehicle collisions. Environ. Manag. 2008, 42, 688–697. [Google Scholar] [CrossRef]
- Moore, M.J. How we all kill whales. ICES J. Mar. Sci. 2014, 71, 760–763. [Google Scholar] [CrossRef] [Green Version]
- Blackwell, B.F.; Wright, S.E. Collisions of red-tailed hawks (Buteo jamaicensis), turkey vultures (Cathartes aura), and black vultures (Coragyps atratus) with aircraft: implications for bird strike reduction. J. Raptor Res. 2006, 40, 76–80. [Google Scholar] [CrossRef] [Green Version]
- Gangadharan, A.; Pollock, S.; Gilhooly, P.; Friesen, A.; Dorsey, B.; St. Clair, C.C. Grain spilled from moving trains create a substantial wildlife attractant in protected areas. Anim. Conserv. 2017, 20, 391–400. [Google Scholar] [CrossRef] [Green Version]
- Grosman, P.D.; Jaeger, J.A.G.; Biron, P.M.; Dussault, C.; Ouellet, J.-P. Trade-off between road avoidance and attraction by roadside salt pools in moose: An agent-based model to assess measures for reducing moose-vehicle collisions. Ecol. Modell. 2011, 222, 1423–1435. [Google Scholar] [CrossRef]
- Dean, W.R.J.; Milton, S.J. The importance of roads and road verges for raptors and crows in the Succulent and Nama-Karoo, South Africa. Ostrich J. Afr. Ornithol. 2003, 74, 181–186. [Google Scholar] [CrossRef]
- Doherty, T.S.; Hays, G.C.; Driscoll, D.A. Human disturbance causes widespread disruption of animal movement. Nat. Ecol. Evol. 2021, 5, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Novotny, V. Diffuse pollution from agriculture—A worldwide outlook. Water Sci. Technol. 1999, 39, 1–13. [Google Scholar] [CrossRef]
- Morgan, I.J.; Macdonald, D.G.; Wood, C.M. The cost of living for freshwater fish in a warmer, more polluted world. Glob. Chang. Biol. 2001, 7, 345–355. [Google Scholar] [CrossRef]
- Huang, J.; Xu, C.C.; Ridoutt, B.G.; Wang, X.C.; Ren, P.A. Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China. J. Clean. Prod. 2017, 159, 171–179. [Google Scholar] [CrossRef]
- Rabalais, N.N.; Turner, R.E.; Díaz, R.J.; Justić, D. Global change and eutrophication of coastal waters. ICES J. Mar. Sci. 2009, 66, 1528–1537. [Google Scholar] [CrossRef]
- Diaz, R.J.; Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 2008, 321, 926–929. [Google Scholar] [CrossRef]
- San Diego-McGlone, M.L.; Azanza, R.V.; Villanoy, C.L.; Jacinto, G.S. Eutrophic waters, algal bloom and fish kill in fish farming areas in Bolinao, Pangasinan, Philippines. Mar. Pollut. Bull. 2008, 57, 295–301. [Google Scholar] [CrossRef]
- Castillo, A.R.; Kebreab, E.; Beever, D.E.; France, J. A review of efficiency of nitrogen utilisation in lactating dairy cows and its relationship with environmental pollution. J. Anim. Feed Sci. 2000, 9, 1–32. [Google Scholar] [CrossRef]
- Houlbrooke, D.J.; Horne, D.J.; Hedley, M.J.; Hanly, J.A.; Snow, V.O. A review of literature on the land treatment of farm-dairy effluent in New Zealand and its impact on water quality. N. Z. J. Agric. Res. 2004, 47, 499–511. [Google Scholar] [CrossRef]
- Mineau, P.; Whiteside, M. Pesticide acute toxicity is a better correlate of US grassland bird declines than agricultural intensification. PLoS ONE 2013, 8, e57457. [Google Scholar] [CrossRef] [Green Version]
- Nambirajan, K.; Muralidharan, S.; Manonmani, S.; Kirubhanandhini, V.; Ganesan, K. Incidences of mortality of Indian peafowl Pavo cristatus due to pesticide poisoning in India and accumulation pattern of chlorinated pesticides in tissues of the same species collected from Ahmedabad and Coimbatore. Environ. Sci. Pollut. Res. 2018, 25, 15568–15576. [Google Scholar] [CrossRef]
- Kim, S.; Park, M.-Y.; Kim, H.-J.; Shin, J.Y.; Ko, K.Y.; Kim, D.-G.; Kim, M.; Kang, H.-G.; So, B.; Park, S.-W. Analysis of insecticides in dead wild birds in Korea from 2010 to 2013. Bull. Environ. Contam. Toxicol. 2016, 96, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Carson, R. Silent Spring; Houghton Mifflin Harcourt: Boston, MA, USA, 1962; ISBN 0547527624. [Google Scholar]
- Vincent, K.; Davidson, C. The toxicity of glyphosate alone and glyphosate–surfactant mixtures to western toad (Anaxyrus boreas) tadpoles. Environ. Toxicol. Chem. 2015, 34, 2791–2795. [Google Scholar] [CrossRef] [PubMed]
- Plaza, P.I.; Martínez-López, E.; Lambertucci, S.A. The perfect threat: Pesticides and vultures. Sci. Total Environ. 2019, 687, 1207–1218. [Google Scholar] [CrossRef] [PubMed]
- Le Souëf, A.; Vitali, S.; Dawson, R.; Vaughan-Higgins, R.; Warren, K. Hindlimb paralysis syndrome in wild Carnaby’s cockatoos (Calyptorhynchus latirostris): A new threat for an endangered species. J. Wildl. Dis. 2020, 56, 609–619. [Google Scholar] [CrossRef]
- Lohr, M.T.; Davis, R.A. Anticoagulant rodenticide use, non-target impacts and regulation: A case study from Australia. Sci. Total Environ. 2018, 634, 1372–1384. [Google Scholar] [CrossRef]
- Shore, R.F.; Taggart, M.A.; Smits, J.; Mateo, R.; Richards, N.L.; Fryday, S. Detection and drivers of exposure and effects of pharmaceuticals in higher vertebrates. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oaks, J.L.; Gilbert, M.; Virani, M.Z.; Watson, R.T.; Meteyer, C.U.; Rideout, B.A.; Shivaprasad, H.L.; Ahmed, S.; Chaudhry, M.J.I.; Arshad, M.; et al. Diclofenac residues as the cause of vulture population decline in Pakistan. Nature 2004, 427, 630–633. [Google Scholar] [CrossRef]
- Kight, C.R.; Swaddle, J.P. How and why environmental noise impacts animals: An integrative, mechanistic review. Ecol. Lett. 2011, 14, 1052–1061. [Google Scholar] [CrossRef] [PubMed]
- Shannon, G.; McKenna, M.F.; Angeloni, L.M.; Crooks, K.R.; Fristrup, K.M.; Brown, E.; Warner, K.A.; Nelson, M.D.; White, C.; Briggs, J. A synthesis of two decades of research documenting the effects of noise on wildlife. Biol. Rev. 2016, 91, 982–1005. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, J.L.; Busnel, R.G. Effects of Noise on Wildlife; Academic Press: New York, NY, USA, 1978; ISBN 0122605500. [Google Scholar]
- Nowacek, D.P.; Thorne, L.H.; Johnston, D.W.; Tyack, P.L. Responses of cetaceans to anthropogenic noise. Mamm. Rev. 2007, 37, 81–115. [Google Scholar] [CrossRef]
- Popper, A.N.; Hastings, M.C. The effects of anthropogenic sources of sound on fishes. J. Fish Biol. 2009, 75, 455–489. [Google Scholar] [CrossRef]
- Shannon, G.; Angeloni, L.M.; Wittemyer, G.; Fristrup, K.M.; Crooks, K.R. Road traffic noise modifies behaviour of a keystone species. Anim. Behav. 2014, 94, 135–141. [Google Scholar] [CrossRef]
- Francis, C.D.; Ortega, C.P.; Cruz, A. Noise pollution changes avian communities and species interactions. Curr. Biol. 2009, 19, 1415–1419. [Google Scholar] [CrossRef] [Green Version]
- Jakob-Hoff, R.; Kingan, M.; Fenemore, C.; Schmid, G.; Cockrem, J.F.; Crackle, A.; Van Bemmel, E.; Connor, R.; Descovich, K. Potential impact of construction noise on selected zoo animals. Animals 2019, 9, 504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapman, T.F. An endangered species that is also a pest: A case study of Baudin’s Cockatoo Calyptorhynchus baudinii and the pome fruit industry in south-west Western Australia. J. R. Soc. West. Aust. 2007, 90, 33–40. [Google Scholar]
- Brinkman, T.J.; Deperno, C.S.; Jenks, J.A.; Haroldson, B.S.; Osborn, R.G. Movement of female white-tailed deer: Effects of climate and intensive row-crop agriculture. J. Wildl. Manag. 2005, 69, 1099–1111. [Google Scholar] [CrossRef]
- Williams, W.; McSorley, A.; Hunt, R.; Eccles, G. Minimising noise disturbance during ground shooting of pest animals through the use of a muzzle blast suppressor/silencer. Ecol. Manag. Restor. 2018, 19, 172–175. [Google Scholar] [CrossRef]
- Gaston, K.J.; Visser, M.E.; Hölker, F. The biological impacts of artificial light at night: The research challenge. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140133. [Google Scholar] [CrossRef] [Green Version]
- Lewanzik, D.; Voigt, C.C. Artificial light puts ecosystem services of frugivorous bats at risk. J. Appl. Ecol. 2014, 51, 388–394. [Google Scholar] [CrossRef]
- Mohammed, H.H.; Grashorn, M.A.; Bessei, W. The effects of lighting conditions on the behaviour of laying hens. Arch. Geflügelkd. 2010, 74, 197–202. [Google Scholar]
- Johnson, C.K.; Kelly, T.R.; Rideout, B.A. Lead in ammunition: A persistent threat to health and conservation. Ecohealth 2013, 10, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Hivert, L.G.; Clarke, J.R.; Peck, S.J.; Lawrence, C.; Brown, W.E.; Huxtable, S.J.; Schaap, D.; Pemberton, D.; Grueber, C.E. High blood lead concentrations in captive Tasmanian devils (Sarcophilus harrisii): A threat to the conservation of the species? Aust. Vet. J. 2018, 96, 442–449. [Google Scholar] [CrossRef]
- Stokke, S.; Brainerd, S.; Arnemo, J.M. Metal deposition of copper and lead bullets in moose harvested in Fennoscandia. Wildl. Soc. Bull. 2017, 41, 98–106. [Google Scholar] [CrossRef]
- Lacetera, N. Impact of climate change on animal health and welfare. Anim. Front. 2019, 9, 26–31. [Google Scholar] [CrossRef] [Green Version]
- Fuller, A.; Mitchell, D.; Maloney, S.K.; Hetem, R.S.; Fonsêca, V.F.C.; Meyer, L.C.R.; van de Ven, T.M.F.N.; Snelling, E.P. How dryland mammals will respond to climate change: The effects of body size, heat load and a lack of food and water. J. Exp. Biol. 2021, 224, jeb238113. [Google Scholar] [CrossRef] [PubMed]
- Ward, M.; Tulloch, A.I.T.; Radford, J.Q.; Williams, B.A.; Reside, A.E.; Macdonald, S.L.; Mayfield, H.J.; Maron, M.; Possingham, H.P.; Vine, S.J. Impact of 2019–2020 mega-fires on Australian fauna habitat. Nat. Ecol. Evol. 2020, 4, 1321–1326. [Google Scholar] [CrossRef]
- Ratnayake, H.U.; Kearney, M.R.; Govekar, P.; Karoly, D.; Welbergen, J.A. Forecasting wildlife die-offs from extreme heat events. Anim. Conserv. 2019, 22, 386–395. [Google Scholar] [CrossRef]
- Bush, E.R.; Whytock, R.C.; Bahaa-el-din, L.; Bourgeois, S.; Bunnefeld, N.; Cardoso, A.W.; Thoussaint Dikangadissi, J.; Dimbonda, P.; Dimoto, E.; Edzang Ndong, J.; et al. Long-term collapse in fruit availability threatens Central African forest megafauna. Science 2020, 370, 1219–1222. [Google Scholar] [CrossRef] [PubMed]
- Pant, G.; Maraseni, T.; Apan, A.; Allen, B.L. Climate change vulnerability of Asia’s most iconic megaherbivore: Greater one-horned rhinoceros (Rhinoceros unicornis). Glob. Ecol. Conserv. 2020, 23, e01180. [Google Scholar] [CrossRef]
- Fiala, M.; Marveggio, D.; Viganò, R.; Demartini, E.; Nonini, L.; Gaviglio, A. LCA and wild animals: Results from wild deer culled in a northern Italy hunting district. J. Clean. Prod. 2020, 244, 118667. [Google Scholar] [CrossRef]
- Gvakharia, A.; Kort, E.A.; Smith, M.L.; Conley, S. Evaluating Cropland N2O Emissions and fertilizer plant greenhouse gas emissions with airborne observations. J. Geophys. Res. Atmos. 2020, 125, e2020JD032815. [Google Scholar] [CrossRef]
- Gilbert, N. One-third of our greenhouse gas emissions come from agriculture. Nature 2012, 31, 10–12. [Google Scholar] [CrossRef]
- Gonzalez-Sanchez, E.J.; Veroz-Gonzalez, O.; Conway, G.; Moreno-Garcia, M.; Kassam, A.; Mkomwa, S.; Ordoñez-Fernandez, R.; Triviño-Tarradas, P.; Carbonell-Bojollo, R. Meta-analysis on carbon sequestration through Conservation Agriculture in Africa. Soil Tillage Res. 2019, 190, 22–30. [Google Scholar] [CrossRef]
- Capper, J.L. Is the grass always greener? Comparing the environmental impact of conventional, natural and grass-fed beef production systems. Animals 2012, 2, 127–143. [Google Scholar] [CrossRef]
- Ledgard, S.F.; Lieffering, M.; Coup, D.; O’Brien, B. Carbon footprinting of New Zealand lamb from the perspective of an exporting nation. Anim. Front. 2011, 1, 40–45. [Google Scholar] [CrossRef]
- Wilson, G.R.; Edwards, M.J. Native wildlife on rangelands to minimize methane and produce lower-emission meat: Kangaroos versus livestock. Conserv. Lett. 2008, 1, 119–128. [Google Scholar] [CrossRef]
- Jain, N.; Bhatia, A.; Pathak, H. Emission of air pollutants from crop residue burning in India. Aerosol Air Qual. Res. 2014, 14, 422–430. [Google Scholar] [CrossRef] [Green Version]
- Aschwanden, J.; Stark, H.; Peter, D.; Steuri, T.; Schmid, B.; Liechti, F. Bird collisions at wind turbines in a mountainous area related to bird movement intensities measured by radar. Biol. Conserv. 2018, 220, 228–236. [Google Scholar] [CrossRef]
- Walston Jr, L.J.; Rollins, K.E.; LaGory, K.E.; Smith, K.P.; Meyers, S.A. A preliminary assessment of avian mortality at utility-scale solar energy facilities in the United States. Renew. Energy 2016, 92, 405–414. [Google Scholar] [CrossRef] [Green Version]
- Wolf, J.; Walkington, I.A.; Holt, J.; Burrows, R. Environmental impacts of tidal power schemes. Inst. Civ. Eng. Marit. Eng. 2009, 162, 165–177. [Google Scholar] [CrossRef] [Green Version]
- Long, J.L. Introduced Mammals of the World: Their History, Distribution and Influence; CSIRO Publishing: Melbourne, Australia, 2003; ISBN 0643099166. [Google Scholar]
- Paini, D.R.; Roberts, J.D. Commercial honey bees (Apis mellifera) reduce the fecundity of an Australian native bee (Hylaeus alcyoneus). Biol. Conserv. 2005, 123, 103–112. [Google Scholar] [CrossRef]
- Pacífico, E.C.; Efstathion, C.A.; Filadelfo, T.; Horsburgh, R.; Cunha, R.A.; Paschotto, F.R.; Denes, F.V.; Gilardi, J.; Tella, J.L. Experimental removal of invasive Africanized honey bees increased breeding population size of the endangered Lear’s macaw. Pest Manag. Sci. 2020, 76, 4141–4149. [Google Scholar] [CrossRef]
- Shine, R. The ecological impact of invasive cane toads (Bufo marinus) in Australia. Q. Rev. Biol. 2010, 85, 253–291. [Google Scholar] [CrossRef]
- Read, J.L.; Firn, J.; Grice, A.C.; Murphy, R.; Ryan-Colton, E.; Schlesinger, C.A. Ranking buffel: Comparative risk and mitigation costs of key environmental and socio-cultural threats in central Australia. Ecol. Evol. 2020, 10, 12745–12763. [Google Scholar] [CrossRef] [PubMed]
- Bailey, S.A. An overview of thirty years of research on ballast water as a vector for aquatic invasive species to freshwater and marine environments. Aquat. Ecosyst. Health Manag. 2015, 18, 261–268. [Google Scholar] [CrossRef]
- Eklund, A.; López-Bao, J.V.; Tourani, M.; Chapron, G.; Frank, J. Limited evidence on the effectiveness of interventions to reduce livestock predation by large carnivores. Sci. Rep. 2017, 7, 2097. [Google Scholar] [CrossRef] [Green Version]
- Oakleaf, J.K.; Mack, C.; Murray, D.L. Effects of wolves on livestock calf survival and movements in central Idaho. J. Wildl. Manag. 2003, 67, 299–306. [Google Scholar] [CrossRef]
- Constant, N.L.; Bell, S.; Hill, R.A. The impacts, characterisation and management of human-leopard conflict in a multi-use land system in South Africa. Biodivers. Conserv. 2015, 24, 2967–2989. [Google Scholar] [CrossRef] [Green Version]
- Bagchi, S.; Mishra, C. Living with large carnivores: Predation on livestock by the snow leopard (Uncia uncia). J. Zool. 2006, 268, 217–224. [Google Scholar] [CrossRef]
- Pemberton, D.; Shaughnessy, P.D. Interaction between seals and marine fish-farms in Tasmania, and management of the problem. Aquat. Conserv. Mar. Freshw. Ecosyst. 1993, 3, 149–158. [Google Scholar] [CrossRef]
- Franco, N.H.; Correia-Neves, M.; Olsson, I.A.S. Animal welfare in studies on murine tuberculosis: Assessing progress over a 12-year period and the need for further improvement. PLoS ONE 2012, 7, e47723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkinson, D.A.; Marshall, J.C.; French, N.P.; Hayman, D.T.S. Habitat fragmentation, biodiversity loss and the risk of novel infectious disease emergence. J. R. Soc. Interface 2018, 15, 20180403. [Google Scholar] [CrossRef] [Green Version]
- Davies, G. The foot and mouth disease (FMD) epidemic in the United Kingdom 2001. Comp. Immunol. Microbiol. Infect. Dis. 2002, 25, 331–343. [Google Scholar] [CrossRef]
- Onselen, C. Van Reactions to rinderpest in Southern Africa 1896–97. J. Afr. Hist. 1972, 13, 473–488. [Google Scholar] [CrossRef] [Green Version]
- Carlson, C.J.; Kracalik, I.T.; Ross, N.; Alexander, K.A.; Hugh-Jones, M.E.; Fegan, M.; Elkin, B.T.; Epp, T.; Shury, T.K.; Zhang, W. The global distribution of Bacillus anthracis and associated anthrax risk to humans, livestock and wildlife. Nat. Microbiol. 2019, 4, 1337–1343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whittington, R.J.; Jones, J.B.; Hine, P.M.; Hyatt, A.D. Epizootic mortality in the pilchard Sardinops sagax neopilchardus in Australia and New Zealand in 1995. I. Pathology and epizootiology. Dis. Aquat. Org. 1997, 28, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Murray, A.G.; O’Callaghan, M.; Jones, B. A model of spatially evolving herpesvirus epidemics causing mass mortality in Australian pilchard Sardinops sagax. Dis. Aquat. Organ. 2003, 54, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Dann, P.; Normar, F.I.; Cullen, J.M.; Neira, F.J.; Chiaradia, A. Mortality and breeding failure of little penguins, Eudyptula minor, in Victoria, 1995–96, following a widespread mortality of pilchard, Sardinops sagax. Mar. Freshw. Res. 2000, 51, 355–362. [Google Scholar] [CrossRef]
- Halse, S.A.; Ruprecht, J.K.; Pinder, A.M. Salinisation and prospects for biodiversity in rivers and wetlands of south-west Western Australia. Aust. J. Bot. 2003, 51, 673–688. [Google Scholar] [CrossRef]
- Danfeng, S.; Dawson, R.; Baoguo, L. Agricultural causes of desertification risk in Minqin, China. J. Environ. Manag. 2006, 79, 348–356. [Google Scholar] [CrossRef]
- Mortimore, M. Adapting to Drought: Farmers, Famines and Desertification in West Africa; Cambridge University Press: Cambridge, UK, 1989; ISBN 0521323126. [Google Scholar]
- Portnov, B.A.; Safriel, U.N. Combating desertification in the Negev: Dryland agriculture vs. dryland urbanization. J. Arid Environ. 2004, 56, 659–680. [Google Scholar] [CrossRef]
- Hannam, K.M.; Oring, L.W.; Herzog, M.P. Impacts of salinity on growth and behavior of American avocet chicks. Waterbirds 2003, 26, 119–125. [Google Scholar] [CrossRef]
- Allen, B.L. A comment on the distribution of historical and contemporary livestock grazing across Australia: Implications for using dingoes for biodiversity conservation. Ecol. Manag. Restor. 2011, 12, 26–30. [Google Scholar] [CrossRef]
- Pimentel, D.; Harvey, C.; Resosudarmo, P.; Sinclair, K.; Kurz, D.; McNair, M.; Crist, S.; Shpritz, L.; Fitton, L.; Saffouri, R. Environmental and economic costs of soil erosion and conservation benefits. Science 1995, 267, 1117–1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nearing, M.A.; Xie, Y.; Liu, B.; Ye, Y. Natural and anthropogenic rates of soil erosion. Int. Soil Water Conserv. Res. 2017, 5, 77–84. [Google Scholar] [CrossRef]
- Mekuria, W.; Veldkamp, E.; Haile, M.; Nyssen, J.; Muys, B.; Gebrehiwot, K. Effectiveness of exclosures to restore degraded soils as a result of overgrazing in Tigray, Ethiopia. J. Arid Environ. 2007, 69, 270–284. [Google Scholar] [CrossRef]
- Newsome, T.M.; van Eeden, L.M. The effects of food waste on wildlife and humans. Sustainability 2017, 9, 1269. [Google Scholar] [CrossRef] [Green Version]
- Olea, P.P.; Baglione, V. Population trends of Rooks Corvus frugilegus in Spain and the importance of refuse tips. Ibis 2008, 150, 98–109. [Google Scholar] [CrossRef]
- Sherley, R.B.; Ladd-Jones, H.; Garthe, S.; Stevenson, O.; Votier, S.C. Scavenger communities and fisheries waste: North Sea discards support 3 million seabirds, 2 million fewer than in 1990. Fish Fish. 2020, 21, 132–145. [Google Scholar] [CrossRef]
- Maxwell, S.L.; Fuller, R.A.; Brooks, T.M.; Watson, J.E.M. Biodiversity: The ravages of guns, nets and bulldozers. Nature 2016, 536, 143–145. [Google Scholar] [CrossRef]
- Wolf, C.; Ripple, W.J. Prey depletion as a threat to the world’s large carnivores. R. Soc. Open Sci. 2016, 3, 160252. [Google Scholar] [CrossRef] [Green Version]
- Grémillet, D.; Ponchon, A.; Paleczny, M.; Palomares, M.-L.D.; Karpouzi, V.; Pauly, D. Persisting worldwide seabird-fishery competition despite seabird community decline. Curr. Biol. 2018, 28, 4009–4013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henschel, P.; Hunter, L.T.B.; Coad, L.; Abernethy, K.A.; Mühlenberg, M. Leopard prey choice in the Congo Basin rainforest suggests exploitative competition with human bushmeat hunters. J. Zool. 2011, 285, 11–20. [Google Scholar] [CrossRef]
- Liu, H.; Gale, S.W.; Cheuk, M.L.; Fischer, G.A. Conservation impacts of commercial cultivation of endangered and overharvested plants. Conserv. Biol. 2019, 33, 288–299. [Google Scholar] [CrossRef] [PubMed]
- Strik, B.C.; Yarborough, D. Blueberry production trends in North America, 1992 to 2003, and predictions for growth. Horttechnology 2005, 15, 391–398. [Google Scholar] [CrossRef]
- Vercauteren, K.C.; Hygnstrom, S.E. Effects of agricultural activities and hunting on home ranges of female white-tailed deer. J. Wildl. Manag. 1998, 62, 280–285. [Google Scholar] [CrossRef]
- Dorr, E.; Koegler, M.; Gabrielle, B.; Aubry, C. Life cycle assessment of a circular, urban mushroom farm. J. Clean. Prod. 2021, 288, 125668. [Google Scholar] [CrossRef]
- Sievanen, L.; Crawford, B.; Pollnac, R.; Lowe, C. Weeding through assumptions of livelihood approaches in ICM: Seaweed farming in the Philippines and Indonesia. Ocean Coast. Manag. 2005, 48, 297–313. [Google Scholar] [CrossRef]
- O’Brien, J.M.; Marsh, R.E. Vertebrate pests of beekeeping. Proc. Vertebr. Pest Conf. 1990, 14, 228–232. [Google Scholar]
- Otto, T.E.; Roloff, G.J. Black bear exclusion fences to protect mobile apiaries. Hum. Wildl. Interact. 2015, 9, 8. [Google Scholar]
- Smith, K.M.; Loh, E.H.; Rostal, M.K.; Zambrana-Torrelio, C.M.; Mendiola, L.; Daszak, P. Pathogens, pests, and economics: Drivers of honey bee colony declines and losses. Ecohealth 2013, 10, 434–445. [Google Scholar] [CrossRef] [PubMed]
- Coomes, D.A.; Allen, R.B.; Forsyth, D.M.; Lee, W.G. Factors preventing the recovery of New Zealand forests following control of invasive deer. Conserv. Biol. 2003, 17, 450–459. [Google Scholar] [CrossRef]
- Noss, A.J. The impacts of cable snare hunting on wildlife populations in the forests of the Central African Republic. Conserv. Biol. 1998, 12, 390–398. [Google Scholar] [CrossRef]
- Becker, D.J.; Washburne, A.D.; Faust, C.L.; Pulliam, J.R.C.; Mordecai, E.A.; Lloyd-Smith, J.O.; Plowright, R.K. Dynamic and integrative approaches to understanding pathogen spillover. Philos. Trans. R. Soc. B 2019, 374, 20190014. [Google Scholar] [CrossRef]
- Foster-Turley, P. Fishing with otters–a fading tradition. Oryx 1998, 32, 2. [Google Scholar] [CrossRef] [Green Version]
- Proctor, H.S.; Carder, G.; Cornish, A.R. Searching for animal sentience: A systematic review of the scientific literature. Animals 2013, 3, 882–906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thrush, S.F.; Hewitt, J.E.; Cummings, V.J.; Dayton, P.K. The impact of habitat disturbance by scallop dredging on marine benthic communities: What can be predicted from the results of experiments? Mar. Ecol. Prog. Ser. 1995, 129, 141–150. [Google Scholar] [CrossRef]
- Jackson, J.B.C.; Kirby, M.X.; Berger, W.H.; Bjorndal, K.A.; Botsford, L.W.; Bourque, B.J.; Bradbury, R.H.; Cooke, R.; Erlandson, J.; Estes, J.A.; et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 2001, 293, 629–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moberly, R.L.; White, P.C.L.; Harris, S. Mortality due to fox predation in free-range poultry flocks in Britain. Vet. Rec. 2004, 155, 48–52. [Google Scholar] [CrossRef]
- Gottdenker, N.L.; Walsh, T.; Vargas, H.; Merkel, J.; Jiménez, G.U.; Miller, R.E.; Dailey, M.; Parker, P.G. Assessing the risks of introduced chickens and their pathogens to native birds in the Galápagos Archipelago. Biol. Conserv. 2005, 126, 429–439. [Google Scholar] [CrossRef] [PubMed]
- Rizzolo, J.B. Wildlife farms, stigma and harm. Animals 2020, 10, 1783. [Google Scholar] [CrossRef]
- Jubb, T.F.; Fordyce, G.; Bolam, M.J.; Hadden, D.J.; Cooper, N.J.; Whyte, T.R.; Fitzpatrick, L.A.; Hill, F.; D’Occhio, M.J. Trial introduction of the Willis dropped ovary technique for spaying cattle in northern Australia. Aust. Vet. J. 2003, 81, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.F. Scarred for life: The other side of the fence debate. Hum. Wildl. Interact. 2014, 8, 150–154. [Google Scholar]
- Forsyth, D.M.; Parkes, J.P.; Woolnough, A.P.; Pickles, G.; Collins, M.; Gordon, I. Environmental and economic factors determine the number of feral goats commercially harvested in Western Australia. J. Appl. Ecol. 2009, 46, 101–109. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Cannon, G.; Levy, R.B.; Moubarac, J.-C.; Louzada, M.L.C.; Rauber, F.; Khandpur, N.; Cediel, G.; Neri, D.; Martinez-Steele, E. Ultra-processed foods: What they are and how to identify them. Public Health Nutr. 2019, 22, 936–941. [Google Scholar] [CrossRef]
- López-Sánchez, A.; Perea, R.; Roig, S.; Isselstein, J.; Schmitz, A. Challenges on the conservation of traditional orchards: Tree damage as an indicator of sustainable grazing. J. Environ. Manag. 2020, 257, 110010. [Google Scholar] [CrossRef]
- Curtis, P.D.; Rieckenberg, R. Use of confined dogs for reducing deer damage to apple orchards. In Proceedings of the 11th Wildlife Damage Management Conference, Traverse City, MI, USA, 16–19 May 2005; pp. 149–158. [Google Scholar]
- Bell, C.E.; Wilen, C.A.; Stanton, A.E. Invasive plants of horticultural origin. Hortscience 2003, 38, 14–16. [Google Scholar] [CrossRef] [Green Version]
- Drew, J.; Anderson, N.; Andow, D. Conundrums of a complex vector for invasive species control: A detailed examination of the horticultural industry. Biol. Invasions 2010, 12, 2837–2851. [Google Scholar] [CrossRef]
- Bhagwat, S.A.; Willis, K.J.; Birks, H.J.B.; Whittaker, R.J. Agroforestry: A refuge for tropical biodiversity? Trends Ecol. Evol. 2008, 23, 261–267. [Google Scholar] [CrossRef]
- Frith, H. Wild ducks and the rice industry in New South Wales. Wildl. Res. 1957, 2, 32–50. [Google Scholar] [CrossRef]
- Van Huis, A.; Van Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible Insects: Future Prospects for Food and Feed Security; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013; ISBN 9251075964. [Google Scholar]
- Dossey, A.T.; Tatum, J.T.; McGill, W.L. Modern insect-based food industry: Current status, insect processing technology, and recommendations moving forward. In Insects as Sustainable Food Ingredients; Dossey, A.T., Morales-Ramos, J.A., Rojas, M.G., Eds.; Academic Press: San Diego, USA, 2016; pp. 113–152. ISBN 9780128028568. [Google Scholar]
- Bang, A.; Courchamp, F. Industrial rearing of edible insects could be a major source of new biological invasions. Ecol. Lett. 2020, 24, 393–397. [Google Scholar] [CrossRef] [PubMed]
- Stephens, N.; Di Silvio, L.; Dunsford, I.; Ellis, M.; Glencross, A.; Sexton, A. Bringing cultured meat to market: Technical, socio-political, and regulatory challenges in cellular agriculture. Trends Food Sci. Technol. 2018, 78, 155–166. [Google Scholar] [CrossRef]
- Heidemann, M.S.; Molento, C.F.M.; Reis, G.G.; Phillips, C.J.C. Uncoupling meat from animal slaughter and its impacts on human-animal relationships. Front. Psychol. 2020, 11, 1824. [Google Scholar] [CrossRef]
- Wickins, J.F.; Lee, D.O. Crustacean Farming: Ranching and Culture; John Wiley & Sons: Hoboken, NJ, USA, 2008; ISBN 0470995076. [Google Scholar]
- Naylor, R.L.; Goldburg, R.J.; Primavera, J.H.; Kautsky, N.; Beveridge, M.C.M.; Clay, J.; Folke, C.; Lubchenco, J.; Mooney, H.; Troell, M. Effect of aquaculture on world fish supplies. Nature 2000, 405, 1017–1024. [Google Scholar] [CrossRef] [Green Version]
- Naylor, R.L.; Williams, S.L.; Strong, D.R. Aquaculture-A gateway for exotic species. Science 2001, 294, 1655–1656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stuart, I.G.; Fanson, B.G.; Lyon, J.P.; Stocks, J.; Brooks, S.; Norris, A.; Thwaites, L.; Beitzel, M.; Hutchison, M.; Ye, Q. Continental threat: How many common carp (Cyprinus carpio) are there in Australia? Biol. Conserv. 2021, 254, 108942. [Google Scholar] [CrossRef]
- Moore, S.J.; Madin, B.; Norman, G.; Perkins, N.R. Risk factors for mortality in cattle during live export from Australia by sea. Aust. Vet. J. 2015, 93, 339–348. [Google Scholar] [CrossRef]
- Potts, J.M.; Beeton, N.J.; Bowman, D.M.J.S.; Williamson, G.J.; Lefroy, E.C.; Johnson, C.N. Predicting the future range and abundance of fallow deer in Tasmania, Australia. Wildl. Res. 2014, 41, 633–640. [Google Scholar] [CrossRef]
- Gade, P.B. Welfare of animal production in intensive and organic systems with special reference to Danish organic pig production. Meat Sci. 2002, 62, 353–358. [Google Scholar] [CrossRef]
- Montes de Oca, D.P.; Neyen Lammel, M.; Cavia, R. Small-mammal assemblages in piggeries in a developing country: Relationships with management practices and habitat complexity. Wildl. Res. 2020, 47, 485–498. [Google Scholar] [CrossRef]
- Pratiwi, N.M.W.; Murray, P.J.; Taylor, D.G. Feral goats in Australia: A study on the quality and nutritive value of their meat. Meat Sci. 2007, 75, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Budolfson, M.B. Consumer ethics, harm footprints, and the empirical dimensions of food choices. In Philosophy Comes to Dinner: Arguments About the Ethics of Eating; Chignell, A., Cuneo, T., Halteman, C.M., Eds.; Routledge: New York, NY, USA, 2015; pp. 163–181. ISBN 9781136578076. [Google Scholar]
- Bulte, E.H.; Horan, R.D. Habitat conservation, wildlife extraction and agricultural expansion. J. Environ. Econ. Manag. 2003, 45, 109–127. [Google Scholar] [CrossRef] [Green Version]
- White, A.; Lockyer, S. Removing plastic packaging from fresh produce–what’s the impact? Nutr. Bull. 2020, 45, 35–50. [Google Scholar] [CrossRef]
- Heroldová, M.; Michalko, R.; Suchomel, J.; Zejda, J. Influence of no-tillage versus tillage system on common vole (Microtus arvalis) population density. Pest Manag. Sci. 2018, 74, 1346–1350. [Google Scholar] [CrossRef]
- Phalan, B.; Balmford, A.; Green, R.E.; Scharlemann, J.P.W. Minimising the harm to biodiversity of producing more food globally. Food Policy 2011, 36, S62–S71. [Google Scholar] [CrossRef]
- Smith, A.B.; Kinahan, J. The invisible whale. World Archaeol. 1984, 16, 89–97. [Google Scholar] [CrossRef]
- Williams, J.E.; Price, R.J. Impacts of red meat production on biodiversity in Australia: A review and comparison with alternative protein production industries. Anim. Prod. Sci. 2010, 50, 723–747. [Google Scholar] [CrossRef]
- Belk, R.; Devinney, T.; Eckhardt, G. Consumer ethics across cultures. Consum. Mark. Cult. 2005, 8, 275–289. [Google Scholar] [CrossRef]
- Harper, G.C.; Makatouni, A. Consumer perception of organic food production and farm animal welfare. Br. Food J. 2002, 104, 287–299. [Google Scholar] [CrossRef]
- Van Amstel, M.; Driessen, P.; Glasbergen, P. Eco-labeling and information asymmetry: A comparison of five eco-labels in the Netherlands. J. Clean. Prod. 2008, 16, 263–276. [Google Scholar] [CrossRef]
- Lindeman, M.; Keskivaara, P.; Roschier, M. Assessment of magical beliefs about food and health. J. Health Psychol. 2000, 5, 195–209. [Google Scholar] [CrossRef]
- Sisti, C.P.J.; dos Santos, H.P.; Kohhann, R.; Alves, B.J.R.; Urquiaga, S.; Boddey, R.M. Change in carbon and nitrogen stocks in soil under 13 years of conventional or zero tillage in southern Brazil. Soil Tillage Res. 2004, 76, 39–58. [Google Scholar] [CrossRef]
- Wallach, A.D.; Bekoff, M.; Batavia, C.; Nelson, M.P.; Ramp, D. Summoning compassion to address the challenges of conservation. Conserv. Biol. 2018, 32, 1255–1265. [Google Scholar] [CrossRef]
- Griffin, A.S.; Callen, A.; Klop-Toker, K.; Scanlon, R.J.; Hayward, M.W. Compassionate conservation clashes with conservation biology: Should empathy, compassion, and deontological moral principles drive conservation practice? Front. Psychol. 2020, 11, 1139. [Google Scholar] [CrossRef] [PubMed]
- Fraser, D. Why we need a new ethic for animals. J. Appl. Anim. Ethics Res. 2019, 1, 7–21. [Google Scholar] [CrossRef]
- McKenzie, F.C.; Williams, J. Sustainable food production: Constraints, challenges and choices by 2050. Food Secur. 2015, 7, 221–233. [Google Scholar] [CrossRef]
Food Production System | Secondary System Required * | Harms | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Type 1 | Type 2 | Type 3 | Type 4 | |||||||||||||||||||
H | LT | WA | LS | WH | WDM | FST | LC | TH | E | I | TE | P | GG | IS | PD | ID | S | SE | FW | DNR | ||
Plant, mushroom, seaweed harvest | NA | |||||||||||||||||||||
Apiary | NA | |||||||||||||||||||||
Terrestrial wildlife harvest | NA | |||||||||||||||||||||
Marine wildlife harvest | NA | |||||||||||||||||||||
Extensive egg production | NA | |||||||||||||||||||||
Rangeland pastoralism | NA | |||||||||||||||||||||
Dryland cropping | NA | |||||||||||||||||||||
Horticulture | NA | |||||||||||||||||||||
Irrigated cropping | NA | |||||||||||||||||||||
Edible insects | Cropping, fishing, aquaculture | |||||||||||||||||||||
Cellular agriculture | Cropping, livestock | |||||||||||||||||||||
Aquaculture/ mariculture | Fishing | |||||||||||||||||||||
Intensive egg production | Cropping, edible insects | |||||||||||||||||||||
Extensive livestock | NA | |||||||||||||||||||||
Intensive livestock | Cropping | |||||||||||||||||||||
Dairy | Cropping |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hampton, J.O.; Hyndman, T.H.; Allen, B.L.; Fischer, B. Animal Harms and Food Production: Informing Ethical Choices. Animals 2021, 11, 1225. https://doi.org/10.3390/ani11051225
Hampton JO, Hyndman TH, Allen BL, Fischer B. Animal Harms and Food Production: Informing Ethical Choices. Animals. 2021; 11(5):1225. https://doi.org/10.3390/ani11051225
Chicago/Turabian StyleHampton, Jordan O., Timothy H. Hyndman, Benjamin L. Allen, and Bob Fischer. 2021. "Animal Harms and Food Production: Informing Ethical Choices" Animals 11, no. 5: 1225. https://doi.org/10.3390/ani11051225
APA StyleHampton, J. O., Hyndman, T. H., Allen, B. L., & Fischer, B. (2021). Animal Harms and Food Production: Informing Ethical Choices. Animals, 11(5), 1225. https://doi.org/10.3390/ani11051225