Fermented Rapeseed Meal as a Component of the Mink Diet (Neovison vison) Modulating the Gastrointestinal Tract Microbiota
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Fermented Rapeseed Meal (FRSM)
2.2. Experimental Animals and Diet
2.3. Sampling for Analysis
2.4. Microbiological Procedures
- The total number of mesophilic aerobic bacteria, on enriched agar medium for 48 h at 37 °C (BTL Ltd., Łódź, Poland);
- The total number of fungi, on Sabouraud agar, for 5–7 d at 25 °C (BTL Ltd., Łódź, Poland);
- The total number of coliform bacteria on Endo LES agar, for 24 h at 37 °C (BTL Ltd., Łódź, Poland);
- The total number of E. coli, on mFC agar for 18–24 h at 44 °C (BTL Ltd., Łódź, Poland);
- The total number of C. perfringens–sulphate-reducing bacteria growing in anaerobic conditions, on iron sulphite agar (TSC) for 48 h at 37 °C (BioMerieux, Marcy l’Etoile, France);
- The total number of lactic acid bacteria of the genus Lactobacillus, on MRS agar for 3–5 d at 30 °C (BTL Ltd., Łódź, Poland);
- The presence of Salmonella, on SS agar (Salmonella-Shigella and XLD) after prior multiplication of samples in buffered peptone water and Rappaport-Vassiliadis broth (BTL Ltd., Łódź, Poland) for 24 h at 37 °C. Final identification was carried out using API tests (BioMerieux, Marcy l’Etoile, France) and polyvalent sera (Biomed Inc., Kraków, Poland).
2.5. Statistical Analysis
3. Results
3.1. Effect of Fermentation on the Chemical Composition and Microbiological Quality of Rapeseed Meal (RSM)
3.2. Populations of Intestinal Microorganisms in the Experimental Animals
3.3. Numbers of Microorganisms in the Faeces of the Experimental Animals
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Schöne, F.; Leiterer, M.; Hartung, H.; Jahreis, G.; Tischendorf, F. Rapeseed glucosinolates and iodine in sows affect the milk iodine concentration and the iodine status of piglets. Br. J. Nutr. 2001, 85, 659–670. [Google Scholar] [CrossRef] [Green Version]
- Konkol, D.; Szmigiel, I.; Domżał-Kędzia, M.; Kułażyński, M.; Krasowska, A.; Opaliński, S.; Korczyński, M.; Łukaszewicz, M. Biotransformation of rapeseed meal leading to production of polymers, biosurfactants, and fodder. Bioorg. Chem. 2019, 93, 102865. [Google Scholar] [CrossRef]
- Wlazło, Ł.; Kowalska, D.; Bielański, P.; Chmielowiec-Korzeniowska, A.; Ossowski, M.; Łukaszewicz, M.; Czech, A.; Nowakowicz-Dębek, B. Effect of fermented rapeseed meal on the gastrointestinal microbiota and immune status of rabbit (Oryctolagus cuniculus). Animals 2021, 11, 716. [Google Scholar] [CrossRef]
- Canibe, N.; Jensen, B.B. Fermented liquid feed—Microbial and nutritional aspects and impact on enteric diseases in pigs. Anim. Feed Sci. Technol. 2012, 173, 17–40. [Google Scholar] [CrossRef]
- Grela, E.R.; Czech, A.; Kiesz, M.; Wlazło, Ł.; Nowakowicz-Dębek, B. A fermented rapeseed meal additive: Effects on production performance, nutrient digestibility, colostrum immunoglobulin content and microbial flora in sows. Anim. Nutr. 2019, 5, 373–379. [Google Scholar] [CrossRef]
- Chaucheyras-Durand, F.; Durand, H. Probiotics in animal nutrition and health. Benef. Microbes 2010, 1, 3–9. [Google Scholar] [CrossRef]
- Rajani, J.; Dastar, B.; Samadi, F.; Torshizi, M.A.; Abdulkhani, A.; Esfandyarpour, S. Effect of extracted galactoglucomannan oligosaccharides from Pine wood (Pinus brutia) on Salmonella typhimurium colonisation, growth performance and intestinal morphology in broiler chicks. Br. Poult. Sci. 2016, 57, 682–692. [Google Scholar]
- Xu, F.Z.; Zeng, X.G.; Ding, X.L. Effects of replacing soybean meal with fermented rapeseed meal on performance, serum biochemical variables and intestinal morphology of broilers. Asian Aust. J. Anim. Sci. 2012, 25, 1734–1741. [Google Scholar] [CrossRef]
- Russo, P.; Arena, M.P.; Fiocco, D.; Capozzi, V.; Drider, D.; Spano, G. Lactobacillus plantarum with broad antifungal activity: A promising approach to increase safety and shelf-life of cereal-based products. Int. J. Food Microbiol. 2017, 247, 48–54. [Google Scholar] [CrossRef]
- Sadiq, F.A.; Yan, B.; Tian, F.; Zhao, J.; Zhang, H.; Chen, W. Lactic Acid Bacteria as Antifungal and Anti-Mycotoxigenic Agents: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1403–1436. [Google Scholar] [CrossRef] [Green Version]
- Bai, K.; Huang, Q.; Zhang, J.; He, J.; Zhang, L.; Wang, T. Supplemental effects of probiotic Bacillus subtilis fmbJ on growth performance, antioxidant capacity, and meat quality of broiler chickens. Poult. Sci. 2017, 96, 74–82. [Google Scholar] [CrossRef]
- Dossou, S.; Koshio, S.; Ishikawa, M.; Yokoyama, S.; Dawood, M.A.; El Basuini, M.F.; Olivier, A.; Zaineldin, A.I. Growth performance, blood health, antioxidant status and immune response in red sea bream (Pagrus major) fed Aspergillus oryzae fermented rapeseed meal (RM-Koji). Fish Shellfish Immunol. 2018, 75, 253–262. [Google Scholar] [CrossRef]
- Sun, H.; Tang, J.W.; Yao, X.H.; Wu, Y.F.; Wang, X.; Feng, J. Effects of dietary inclusion of fermented cottonseed meal on growth, cecal microbial population, small intestinal morphology, and digestive enzyme activity of broilers. Trop. Anim. Health Product. 2013, 45, 987–993. [Google Scholar] [CrossRef]
- Chiang, G.; Lu, W.Q.; Piao, X.S.; Hu, J.K.; Gong, L.M.; Thacker, P.A. Effects of feeding solid-state fermented rapeseed meal on performance, nutrient digestibility, intestinal ecology and intestinal morphology of broiler chickens. Asian Aust. J. Anim. Sci. 2010, 23, 263–271. [Google Scholar] [CrossRef]
- Skrede, A.; Sahlstrøm, S.; Ahlstrøm, Ø.; Connor, K.H.; Skrede, G. Effects of lactic acid fermentation and gamma irradiation of barley on antinutrient contents and nutrient digestibility in mink (Mustela vison) with and without dietary enzyme supplement. Arch. Anim. Nutr. 2007, 61, 211–221. [Google Scholar] [CrossRef]
- Urlings, H.A.P.; De Jonge, G.; Bijker, P.G.H.; Van Logtestijn, J.G. The feeding of raw, fermented poultry byproducts: Using mink as a model. J. Anim. Sci. 1993, 71, 2427–2431. [Google Scholar] [CrossRef] [PubMed]
- Ley, R.E.; Hamady, M.; Lozupone, C.; Turnbaugh, P.J.; Ramey, R.R.; Bircher, J.S.; Schlegel, M.L.; Tucker, T.A.; Schrenzel, M.D.; Knight, R.; et al. Evolution of mammals and their gut microbes. Science 2008, 320, 1647–1651. [Google Scholar] [CrossRef] [Green Version]
- Gugołek, A.; Juśkiewicz, J.; Strychalski, J.; Konstantynowicz, M.; Zwoliński, C. Nutrient digestibility and colonic fermentation processes in species of the families Mustelidae and Canidae fed the same diet. J. Exp. Zool. Part A Ecol. Genet. Physiol. 2015, 323, 637–644. [Google Scholar] [CrossRef]
- Williams, C.; Elnif, J.; Buddington, R.K. The gastrointestinal bacteria of mink (Mustela vison L): Influence of age and diet. Acta Vet. Scand. 1998, 39, 473–482. [Google Scholar] [CrossRef]
- Nizza, S.; Rando, F.; Fiorito, F.; Pagnini, U.; Iovane, G.; De Martino, L. Fecal microbiota and antibiotic resistance in ferrets (Mustela putorius furo) from two captive breeding facilities in Italy. Res. Vet. Sci. 2014, 96, 426–428. [Google Scholar] [CrossRef]
- Bahl, M.I.; Hammer, A.S.; Clausen, T.; Jakobsen, A.; Skov, S.; Andresen, L. The gastrointestinal tract of farmed mink (Neovison vison) maintains a diverse mucosa-associated microbiota following a 3-day fasting period. Microbiol. Open 2017, 6, e00434. [Google Scholar] [CrossRef] [Green Version]
- Ashayerizadeh, A.; Dastar, B.; Shargh, M.S.; Mahoonak, A.S.; Zerehdaran, S. Fermented rapeseed meal is effective in controlling Salmonella enterica serovar Typhimurium infection and improving growth performance in broiler chicks. Vet. Microbiol. 2017, 201, 93–102. [Google Scholar] [CrossRef]
- Szmigiel, I.; Suchodolski, J.; Łukaszewicz, M.; Krasowska, A. The influence of Bacillus subtilis 87Y isolated from Eisenia fetida on the growth of pathogenic and probiotic microorganisms. Biomass Convers. Bior. 2019, 11, 601–608. [Google Scholar] [CrossRef] [Green Version]
- Latimer, G.W. Official Methods of Analysis of AOAC International, 19th ed.; AOAC International: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Taylor, K.A.C.C. A simple colorimetric assay for muramic acid and lactic acid. Appl. Biochem. Biotechnol. 1996, 56, 49–58. [Google Scholar] [CrossRef]
- Gugołek, A. Zalecenia żywieniowe i wartość pokarmowa pasz. Zwierzęta futerkowe. In Nutritional recommendations and nutritional value of feed. Fur animals; Instytut Fizjologii i Żywienia Zwierząt PAN: Jabłonna, Poland, 2011. (In Polish) [Google Scholar]
- Szczypa, K. Clostridium difficile: Diagnostyka mikrobiologiczna. Lab. Prz. Ogólnopol. 2013, 3–4, 41–44. (In Polish) [Google Scholar]
- Weese, J.S.; Staempfli, H.R.; Prescott, J.F.; Kruth, S.A.; Greenwood, S.J.; Weese, H.E. The roles of Clostridium difficile and enterotoxigenic Clostridium perfringens in diarrhea in dogs. J. Vet. Intern. Med. 2001, 15, 374–378. [Google Scholar] [CrossRef]
- ECDC. Technical Report. Laboratory Procedures for Diagnosis and Typing of Human Clostridium difficile Infection; ECDC: Stockholm, Sweden, 2018. [Google Scholar]
- Bielanski, P.; Kowalska, D.; Zon, A.; Grzegorzek, I.; Barabasz, W.; Galus-Barchan, A.; Fijal, J.; Wrzecionowska, M. Plant oil (Bell Premium and Farm Nor) supplements in young mink nutrition. Wiad. Zootech. 2013, 1, 19–30. [Google Scholar]
- ISO 4832:2006. Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Coliforms—Colony-Count Technique. Available online: https://www.iso.org/standard/38282.html (accessed on 12 January 2020).
- ISO 7218:2007. Microbiology of Food and Animal Feeding Stuffs—General Requirements and Guidance for Microbiological Examinations. Available online: https://www.iso.org/standard/36534.html (accessed on 12 January 2020).
- Ashayerizadeh, A.; Dastar, B.; Shargh, M.S.; Mahoonak, A.S.; Zerehdaran, S. Effects of feeding fermented rapeseed meal on growth performance, gastrointestinal microflora population, blood metabolites, meat quality, and lipid metabolism in broiler chickens. Livest. Sci. 2018, 216, 183–190. [Google Scholar] [CrossRef]
- Grela, E.R.; Czech, A.; Kusior, G.; Szczotka-Bochniarz, A.; Klebaniuk, R. The effect of feeding system and sex on the performance and selected gastrointestinal features of fattening pigs. Pol. J. Vet. Sci. 2018, 21, 157–165. [Google Scholar]
- Rajilić-Stojanović, M.; de Vos, W.M. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol. Rev. 2014, 38, 996–1047. [Google Scholar] [CrossRef]
- Niba, A.T.; Beal, J.D.; Kudi, A.C.; Brooks, P.H. Potential of bacterial fermentation as a biosafe method of improving feeds for pigs and poultry. Afric. J. Biotechnol. 2009, 8, 1758–1767. [Google Scholar]
- Ilavenil, S.; Park, H.S.; Vijayakumar, M.; Valan Arasu, M.; Kim, D.H.; Ravikumar, S.; Choi, K.C. Probiotic potential of Lactobacillus strains with antifungal activity isolated from animal manure. Sci. World J. 2015, 2015, 802570. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Wang, J.P.; Yan, L.; Huang, Y.Q. Evaluation of probiotics in diets with different nutrient densities on growth performance, blood characteristics, relative organ weight and breast meat characteristics in broilers. Br. Poult. Sci. 2013, 54, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Engberg, M.; Hammershoj, M.; Johansen, N.F.; Abousekken, M.S.; Steenfeldt, S.; Jensen, B.B. Fermented feed for laying hens: Effects on egg production, egg quality, plumage condition and composition and activity of the intestinal microflora. Br. Poult. Sci. 2009, 50, 228–239. [Google Scholar] [CrossRef]
- Heres, L.; Engel, B.; Van Knapen, F.; De Jong, M.C.; Wagenaar, J.A.; Urlings, H.A. Fermented liquid feed reduces susceptibility of broilers for Salmonella enteritidis. Poult. Sci. 2003, 82, 603–611. [Google Scholar] [CrossRef]
- Junior, P.C.M.; Beirão, B.C.B.; Filho, T.F.; Lourenço, M.C.; Joineau, M.L.; Santin, E.; Caron, L.F. Use of blends of organic acids and oregano extracts in feed and water of broiler chickens to control Salmonella enteritidis persistence in the crop and ceca of experimentally infected birds. J. Appl. Poult. Res. 2014, 23, 671–682. [Google Scholar]
- Rypuła, K.; Płoneczka-Janeczko, K.; Kita, J.; Kumala, A. Zakażenia zwierząt przez Clostridium perfringens [Infections with Clostridium perfringens in animals]. Życie Wet. 2012, 87, 192–197. (In Polish) [Google Scholar]
- Rood, I.J. Virulence genes of Clostridium perfringens. Annu Rev. Microbiol. 1998, 50, 333–360. [Google Scholar] [CrossRef]
- Todorov, S.D.; Kang, H.J.; Ivanova, I.V.; Holzapfel, W.H. Bacteriocins from LAB and other alternative approaches for the control of Clostridium and Clostridiodes related gastrointestinal colitis. Front. Bioeng. Biotechnol. 2020, 8, 1088. [Google Scholar] [CrossRef]
- Handl, S.; Dowd, S.E.; Garcia-Mazcorro, J.F.; Steiner, J.M.; Suchodolski, J.S. Massive parallel 16S rRNA gene pyrosequencing reveals highly diverse fecal bacterial and fungal communities in healthy dogs and cats. FEMS Microbiol. Ecol. 2011, 76, 301–310. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.H.; Iqbal, J. Recent advances in the role of organic acids in poultry nutrition. J. Appl. Anim. Res. 2015, 44, 359–369. [Google Scholar] [CrossRef]
Parameter | RSM | FRSM |
---|---|---|
Dry matter | 883.5 | 868.7 |
Crude ash | 70.7 | 73.15 |
Crude protein | 337.50 | 345.95 |
Crude fibre | 143.75 | 141.55 |
Ether extract | 24.05 | 16.3 |
Lactic acid, g kg−1 | 0.62 | 3.83 |
Nitrogen-free extract | 307.5 | 291.75 |
Ingredient | % Share of Feed | |||
---|---|---|---|---|
Group 0 | Group I | Group II | Group III | |
Turkey bones | 28 | 28 | 28 | 28 |
Poultry intestines | 55 | 55 | 55 | 55 |
Soybean oil | 1 | 1 | 1 | 1 |
Extruded wheat | 13 | 11 | 9 | 7 |
Haemoglobin powder | 1 | 1 | 1 | 1 |
Meat and bone meal | 1 | 1 | 1 | 1 |
Sugar beet pulp | 1 | 1 | 1 | 1 |
FRSM | 0 | 2 | 4 | 6 |
Ingredient | Group 0 | Group I | Group II | Group III |
---|---|---|---|---|
Dry matter | 438.8 | 432.7 | 418.7 | 414.1 |
Crude ash | 48.9 | 46.6 | 46.,7 | 45.2 |
Crude protein | 157.6 | 164.7 | 153.8 | 151.5 |
Crude fibre | 19.8 | 22.7 | 27.1 | 23.9 |
Ether extract | 134.7 | 130.9 | 106.0 | 144.9 |
Dry matter | 438.8 | 432.7 | 418.7 | 414.1 |
Parameter | Experimental Group (n6) | SEM | p-Value | |||
---|---|---|---|---|---|---|
0 | I | II | III | |||
Total number of mesophilic bacteria | 1.8 × 106 | 1.4 × 106 | 9.0 × 105 | 7.6 × 105 | 1.1 × 105 | 0.548 |
Total number of fungi | 7.7 × 102 a | 9.1 × 102 a | 2.0 × 102 b | 1.1 × 102 c | 4.2 × 101 | 0.005 |
Total number of coliforms | 7.0 × 105 a | 1.0 × 106 a | 2.9 × 105 b | 5.7 × 105 | 4.1 × 104 | 0.050 |
Total number of E. coli | 4.8 × 105 | 2.7 × 105 | 3.8 × 105 | 1.3 × 105 | 4.9 × 104 | 0.121 |
Total number of lactic acid bacteria of the genus Lactobacillus | 9.3 × 105 | 7.0 × 105 | 5.7 × 105 | 4.3 × 105 | 3.7 × 104 | 0.187 |
Total number of C. perfringens | 3.1 × 104 a | 3.9 × 104 a | 1.2 × 104 b | 1.1 × 104 c | 1.5 × 103 | 0.006 |
Parameter | Experimental Group (n6) | SEM | p-Value | |||
---|---|---|---|---|---|---|
0 | I | II | III | |||
Total number of mesophilic bacteria | 6.0 × 106 | 1.6 × 107 | 1.9 × 107 | 1.1 × 107 | 1.4 × 106 | 0.075 |
Total number of fungi | 1.2 × 103 | 4.2 × 103 | 1.8 × 103 | 8.2 × 102 | 8.6 × 102 | 0.192 |
Total number of coliforms | 3.5 × 106 | 9.3 × 106 | 4.3 × 106 | 4.5 × 106 | 7.8 × 105 | 0.475 |
Total number of E. coli | 2.7 × 106 | 6.1 × 106 | 2.8 × 106 | 3.8 × 106 | 2.6 × 105 | 0.434 |
Total number of lactic acid bacteria of the genus Lactobacillus | 2.4 × 106 | 2.1 × 106 | 2.1 × 107 | 2.0 × 106 | 3.1 × 105 | 0.979 |
Total number of C. perfringens | 1.2 × 104 | 4.7 × 102 | 5.8 × 102 | 1.1 × 102 | 1.2 × 103 | 0.125 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wlazło, Ł.; Nowakowicz-Dębek, B.; Czech, A.; Chmielowiec-Korzeniowska, A.; Ossowski, M.; Kułażyński, M.; Łukaszewicz, M.; Krasowska, A. Fermented Rapeseed Meal as a Component of the Mink Diet (Neovison vison) Modulating the Gastrointestinal Tract Microbiota. Animals 2021, 11, 1337. https://doi.org/10.3390/ani11051337
Wlazło Ł, Nowakowicz-Dębek B, Czech A, Chmielowiec-Korzeniowska A, Ossowski M, Kułażyński M, Łukaszewicz M, Krasowska A. Fermented Rapeseed Meal as a Component of the Mink Diet (Neovison vison) Modulating the Gastrointestinal Tract Microbiota. Animals. 2021; 11(5):1337. https://doi.org/10.3390/ani11051337
Chicago/Turabian StyleWlazło, Łukasz, Bożena Nowakowicz-Dębek, Anna Czech, Anna Chmielowiec-Korzeniowska, Mateusz Ossowski, Marek Kułażyński, Marcin Łukaszewicz, and Anna Krasowska. 2021. "Fermented Rapeseed Meal as a Component of the Mink Diet (Neovison vison) Modulating the Gastrointestinal Tract Microbiota" Animals 11, no. 5: 1337. https://doi.org/10.3390/ani11051337
APA StyleWlazło, Ł., Nowakowicz-Dębek, B., Czech, A., Chmielowiec-Korzeniowska, A., Ossowski, M., Kułażyński, M., Łukaszewicz, M., & Krasowska, A. (2021). Fermented Rapeseed Meal as a Component of the Mink Diet (Neovison vison) Modulating the Gastrointestinal Tract Microbiota. Animals, 11(5), 1337. https://doi.org/10.3390/ani11051337