1. Introduction
The dry period in dairy cows is a pivotal phase for the development of resistance to diseases such as mastitis, for improving productivity postpartum, strengthening the body tissues for parturition, and promoting calves’ health postpartum [
1], especially because of the rapid growth of the fetus and uterus during the last trimester of the pregnancy. The digestive tract is also pressurized and this results in reduced feed intake (FI) due to endocrine changes that are necessary for parturition and lactation, which may cause hormonal imbalances in the body [
2]; a natural genetic change in the hormonal cycle that appears only during the dry period [
3]. In terms of epigenetic control, dairy cows are inappropriately monitored during the dry period for milk production and reproductive performance, which appears to negatively affect their lactation postpartum. The lack of dairy cow monitoring during the dry period can also affect fetal and postnatal calf growth. In this respect, supplementation with necessary nutrients during the dry period is an important consideration for improving offspring growth and milking after calving.
L-tryptophan is an essential amino acid (EAA) in ruminants and a necessary component of protein synthesis, and also acts as a precursor of many neurotransmitters, including serotonin, melatonin, and niacin [
4,
5]. The lack of L-tryptophan adversely affected FI and growth performance in beef cattle [
6,
7] and thus needed to be validated in dairy cows. Furthermore, the need for L-tryptophan for protein synthesis by the fetus suddenly increases while at the same time FI decreases during the dry period [
8]. Given this phenomenon, the feed of dry cows should be supplemented with L-tryptophan, and its effect on dry cows as well as the carry-over effects on milk production postpartum, and a possible compensatory effect on offspring performance and health status, need to be evaluated. L-tryptophan is a nutritionally important substance and has been reported to enhance the secretion and activity of pancreatic alpha-amylase to boost starch digestibility by enhancing the secretion of the gastric mucosa and stimulation of the glandular hormone cholecystokinin (CCK) in the small intestine [
4].
When L-tryptophan is supplemented to ruminants, it is used by rumen microorganisms to increase microbial protein synthesis [
9]. Thus, not only large amounts of un-utilizable ammonia are produced, but also the utilization rate of the feed protein is decreased. Therefore, it is necessary to feed bypass L-tryptophan to avoid microbial degradation in the rumen and enhance absorption in the small intestine. In this regard, to protect the feed protein from ruminal microorganisms, heat treatment [
10] and coating methods with fatty acid/pH-sensitive polymer mixtures or coating with unsaturated fatty acids and mineral mixtures have been used. Moreover, with the increasing economic value of milk protein, dairy producers and industries have had an increasing interest in nutritional modifications, such as supplementation with rumen-protected AA, which increases the milk protein yield, and other components related to milk quality [
11]. Tryptophan bound to acetyl (N-acetyl-L-tryptophan, ACT) is absorbed in the small intestine by a 95% bypass of the rumen [
6]. Feeding dietary ACT has been shown to increase the growth performance of lambs [
12] and the average daily gain (ADG) and N in cashmere goats [
5].
Therefore, the objectives of this study were to investigate the effect of supplementing ACT to dry cows during late pregnancy on the FI and milk characteristics of lactating dairy cows postpartum, as well as evaluating its nutritional compensatory effects on the weight and health status of newborn calves, by examining their production performance and blood characteristics.
4. Discussion
Improving the energy balance postpartum can lower the incidence of disease, decrease the risk of lowered milk production [
14], and maintain general health. Therefore, increasing the FI during the dry period is very important for the productivity of postpartum dairy cows [
15], which was supported by feeding ACT in this study. A higher FI of ACT-supplemented feed was observed compared to the control group. One reason for the increased FI in the ACT-treated group could be attributed to the high rate of nutrient absorption in the small intestine. In a previous study in our laboratory [
4], feeding 191.1 mg/kg of ACT to beef cattle decreased the fecal flow of starch intake and increased the disappearance (57.8 mg/kg BW, 72%) of starch in the total tract. In addition, Vazquez-Anon et al. [
16] demonstrated that the accumulation of TG caused a negative energy balance and reduced feed intake in dairy cows. Consistent with the aforementioned study, the reduced FI of the control group in the present study was also triggered by higher serum TG levels in prepartum cows (
Table 8). Given the above discussion, higher FI due to ACT treatment positively affected FI, with an average of 0.46 kg in the treatment group (7.36 kg) compared to the control (6.90 kg). Additionally, and supporting our results, ACT was shown to be an optimized product that combined acetate and L-tryptophan to minimize digestion by microorganisms in the rumen, by bypassing it, facilitating digestion and absorption in the small intestine [
5]. Therefore, this suggests that the supply of rumen-protected tryptophan may have increased FI because ACT promoted intestinal digestion and intracellular metabolism.
The cumulative effects of the treatment after eight weeks and at weaning were observed in the BW of calves whose dams received ACT treatment. L-tryptophan metabolites affect the growth, development, reproduction, and health of animals [
17]. Generally, AAs are insufficient for performing specific physiological functions, and feeding rumen-protected AA forms was shown to have beneficial effects on the growth of lambs [
12]. The higher birth weight of calves in the ACT-treated group of the respective dry cows could be attributed to higher FI due to ACT supplementation. Unbalanced nutrition during the gestation period of dry cows could reduce the birth weight of the calves and limit growth in the womb, through the carryover effect of absorption and utilization of nutrients [
18]. This can be considered a positive effect of ACT in dry cows and compensatory effects on their offspring. Accordingly, we observed an approximately 5.5 kg higher BW of offspring from dams who received ACT treatment throughout the 8-week observation period. Further larger scale investigation on growing calves for more than eight weeks is warranted to evaluate the compensatory effects of ACT supplementation in dry cows through the performance of their offspring.
At the end of dry period and after parturition, the intake of L-tryptophan decreases due to lower feed intake. Moreover, L-tryptophan is an essential amino acid that is not sufficiently synthesized through microorganisms to achieve high production performance and animal growth. Thus, L-tryptophan should be supplemented to the diet to increase absorption from the diet and via microbial synthesis to meet the daily requirements for high production performance [
6,
7]. L-tryptophan together with other EAAs was reported to affect productivity, such as growth and milk production, in dairy cows [
19]. We expected an increase in milk protein in cows postpartum from ACT supplementation. However, we could not find any difference in milk yield, nor in its composition, between the two groups. Milk protein synthesis is carried out through the mTOR pathway by L-tryptophan [
20], but the percentage of milk protein in this study was not different between the two groups. In addition, lactose, SNF, lactose, acetone, monounsaturated FA, polyunsaturated FA, SFA, and MUN were not significantly affected by ACT supplementation (
Table 4). The reason for the non-significant differences in milk yield and milk composition between the two groups could be attributed to the amount of ACT supplementation, which was limited to 15 g/day for each individual. Accordingly, Kollmann [
21] stated that 125 g of rumen-protected tryptophan should be fed to cows to improve milk yield and composition. Another reason for not finding differences in milk yield and composition could be the lower sample size in this study. A further study with a larger sample size may confirm the hypothesis of this study, that ACT would increase milk yield and quality. Given the above reviews and our study, milk production was also quantitatively increased by ACT supplementation of dry cows for eight weeks postpartum, where the difference in FI was significantly higher in the ACT-treated group during the dry period.
In the offspring, since IgG is not transmitted to the calves through the placenta, the postpartum component in the colostrum is pivotal for calves’ health [
22]. Colostrum containing IgG must be fed to calves within 24 h postpartum to improve immunity, which will have a positive impact on calves’ growth, health, and eventually, productivity [
23]. Thus, one aim of feeding ACT to dry cows was to potentially increase colostrum protein and immunity, to positively affect the health of offspring. In this study, the percentage of milk fat in the colostrum tended to decrease and the milk protein yield tended to increase in the ACT-treated group (
Table 5). Energy is needed to produce proteins and fats in milk. Thus, more energy was used to produce milk protein than milk fat in the ACT-treated group. As the amount of colostrum increased, the milk protein increased. Therefore, the increase in total milk protein and yield through the increase of colostrum yield may be attributed to the supply of more ACT by higher FI during the dry period, which could also influence the development of the mammary glands and eventually increase the amount of colostrum. The decomposed acetate produces energy through milk fat synthesis and the TCA cycle to provide the energy needed for milk production, and increased milk fat increases the FCM [
24]. L-tryptophan addition to incubation medium for phospholipid biosynthesis in vitro caused decreases in the SFA content of phospholipids. Therefore, in our study, we assumed that the form of rumen-protected AA may have reduced the FAs in milk. The authors suggested that milk protein synthesis in dairy cows relied on the transfer of a sufficient supply of each essential AA, such as L-tryptophan, to the mammary gland. The lack of change in other milk components, including lactose, solid-not-fat, acetone, and milk urea nitrogen, implies that ACT did not improve those parameters in milk. This non-significant influence of ACT might have been due to the low supplementation (only 15 g/day) or sample size. Further studies with higher amounts of ACT supplementation and larger sample sizes might increase the differences.
Generally, the degree of occurrence of health problems during the dry period is attributed to changes in the DMI, and the response to treatment changes [
25] can be observed through blood parameters. Nutritional deficiencies of L-tryptophan led to a decrease in the immune response [
26]. This phenomenon may stimulate the immune response, leading to an increase in RDWc, as observed in the present study (
Table 6). RDWc has been used to diagnose anemia for a long time [
27]. Consistent with our study, which showed a tendency toward increased RDWc in dry cows prepartum, increased RDWc has been used as an indicator of anisocytosis, nutrient deficiency, and a large number of disorders [
27] (
Table 6). No statistical differences in the RDWc of offspring were seen, probably because ACT supplementation (only 15 g/day) to the respective dams or the sample size (
n = 4) was not sufficient to see a carry-over effect of ACT. The FI also increased when CHO levels were increased in animals [
28]. However, in this study, we did not find any significant differences in CHO levels in the ACT-treated group compared to the control group (
Table 8). With respect to MG, when MG-deficient diets were fed to ruminants, FI was reduced [
29]. In agreement with this event, in the present study, the ACT-treated group had a tendency toward higher MG levels than the control group (
Table 8). It has been reported that the relatively low GLC and high NEFA levels in dry period cows were related to the increased incidence of fetal growth membrane retention [
30]. However, no differences were observed in serum GLC, albumin, CHO, and NEFA, either prepartum or postpartum, in either group. This may be because the quantity of ACT added was insufficient (15 g/day/cow). Subsequent studies with higher amounts of ACT supplementation might yield different results. During the prepartum experiment (
Table 8), there was a significant difference in the GOT content, which was higher in the ACT-treated group. The metabolic function of GOT is essentially related to the main energy supply pathway of mitochondrial enzyme activity [
31]. Increased GOT activity in a porcine muscle also increased the muscle pigment content. Induction of the rapamycin (mTOR) pathway is important for the role of AAs in the synthesis of muscle proteins in the skeletal muscles of humans and rodents. The mTOR pathway is a key factor regulating muscle protein synthesis and AAs [
32]. In support of this result, L-tryptophan is suggested to be transformed into acetyl-CoA and pyruvate in the TCA cycle, which occurs in the liver [
33]. As discussed earlier, higher FI could have resulted in lower TG levels, as observed in the ACT treatment group. TG is an ester bond of glycerol and fatty acid. It also plays an important role as an energy source for ruminants. TG is stored in the liver and subcutaneous tissues. When sugar is lacking as an energy source, TG is hydrolyzed to mono glycerol, glycerol, and free fatty acid from fat decomposition, and released into the blood and used as an energy source [
34]. TG testing in animals is mainly used to identify problems with lipid metabolism. Dietary tryptophan reduces the concentration of TG. The reduction in TG cannot be attributed to an impaired lipoprotein output from the liver, although other research noted an effect at a much higher dose of tryptophan [
35]. The results of this study also showed a statistical difference in TG in the prepartum cows (
Table 8). The results indicated lower lipid metabolism in the ACT-treated group compared to the control group. The most important role of LDL is to deliver CHO to the peripheral tissues. A previous study showed that LDL levels increased by feeding rabbits an essential AA compound mixture [
36]. Our experiment similarly showed a tendency toward higher LDL levels in postpartum cows that received ACT supplementation (
Table 9). The early lactation period is associated with changes in the IP metabolic process [
37]. In pigs, the blood phosphorus levels decreased by feeding a diet containing 18% protein compared to 12% protein [
38]. Consistent with those findings, the results of this study suggest that the addition of ACT may have increased dietary protein, resulting in a decrease in postpartum serum phosphorus (
Table 9).
The in vivo ACT treatment experiment showed changes in the blood characteristics of calves, which included differences in monocytes (
Table 10) and effects on the MCHC. Monocytes are part of the mononuclear phagocytic system that affects the growth, inflammation, and immune systems. This indicates that ACT supplementation had a positive effect on calf growth because it regulated the inflammatory response mechanism and suppressed the growth of pathogens [
39]. The relative MCHC amounts tended to be higher in the ACT-treated group than in the control group. Less hemoglobin means less oxygen transportation. Oxygen transport has a positive effect on nutrition and metabolism [
40]. Our results suggest that the immune response affected hemoglobin levels in the erythrocytes of calves whose dams were fed ACT during the experimental period. Given the blood biochemical results, cellulose is digested in the rumen to products similar to those of starch digestion, including a volatile fatty acid called propionate, which eventually can be partially used for GLC production in the liver. GLC is transported to each tissue and used as an energy source or stored as glycogen and used when necessary [
26]. Tryptophan contributes to acetyl-CoA and acetoacetyl-CoA, which affect the citric acid cycle, resulting in energy metabolism control. The serum GLC levels in the ACT-treated group of calves (
Table 11) were lower than those in the control group. The lower levels of serum GLC in ACT-treated calves may have been due to the increased starch digestibility. This means that GLC was absorbed in the small intestine and affected the growth performance of the calves. In contrast, tryptophan supplementation had no significant effects on blood GLC levels in poultry [
41]. It was thought that the unchanged blood biochemical components in the calves could have been due to the low amount of ACT supplementation to their dams and the subsequent low transfer through the placenta. Therefore, further study is needed to investigate the effect of feeding L-tryptophan to dry cows and to observe its effect on newborn calves fed supplemental AA compared to non-supplemented calves.