Alternative and Unconventional Feeds in Dairy Diets and Their Effect on Fatty Acid Profile and Health Properties of Milk Fat
Abstract
:Simple Summary
Abstract
1. Introduction
2. Milk Fatty Acids and Indices Used for the Evaluation of Milk Fat Quality
3. Alternative and Unconventional Feeds Used in Dairy Diets
3.1. Macroalgae and Microalgae
3.1.1. Macroalgae
3.1.2. Microalgae
3.2. By-Products of the Food Industry
3.2.1. Okara Meal
3.2.2. Camelina sativa Seeds or Expellers
3.3. Tanniferous Plants
3.4. Herbs and Spices
3.4.1. Oregano
3.4.2. Hop Plants
3.5. Other Plants
3.5.1. Cactus Cladodes
3.5.2. Blue Lupine
3.5.3. Olive Leaves and by-Products
4. Effect of Alternative and Unconventional Feeds on Selected Fatty Acids and Health Properties of Milk Fat
Feed Supplement | Basal Diets | Inclusion Rate | Concentration of Main Nutrients of Interest | Source |
---|---|---|---|---|
Macroalgae | ||||
Ascophyllum nodosum | TMR based on a mixed diet—mostly grass and legume baleages, soybean meal, maize, barley, wheat middlings, roasted soybean | 170 g/d (as-fed) | NDF–539 g/kg DM Iodine–820 mg/kg DM C16:0–2.73 g/kg DM C18:1c9–5.59 g/kg DM C18:2n6–1.48 g/kg DM | [188] |
Microalgae | ||||
Aurantiochytrium limacinum | TMR based on maize silage, ryegrass, and lucerne hay and concentrate containing soy protein, wheat bran, dehulled sunflower meal, maize meal and germs, molasses, cotton seed, barley flakes, sorghum meal | 150 g/d (as-fed) | C22:6n3–160 g/kg | [193] |
Aurantiochytrium limacinum | TMR based on maize silage, soybean meal, sunflower dehulled seed meal, maize gluten meal, flaked soybean, hydrogenated palm oil, maize and barley flakes, maize and sorghum meals, rye grass hay, and dehydrated lucerne hay | 100 g/d (as-fed) | C22:6n3–160 g/kg | [186] |
Schizochytrium limacinum | TMR based on ryegrass and sorghum silages, cheese whey and concentrate containing maize, soybean meal, and dry distillers grains | 144 g/d (as-fed) | C22:6n3–140 g/kg | [77] |
Schizochytrium spp. | TMR based on maize silage, lucerne hay, cotton seed, molasses and concentrate containing maize, steam-flaked maize, soybean meal, cotton meal, soy hulls, DDGS, and maize gluten meal | 255 g/d (as-fed) | C22:6n3–176.4 g/kg DM | [85] |
Schizochytrium spp. | TMR based on grass and maize silage, standard concentrate and soybean meal | 43 g/kg DM intake | C22:6n3–198 g/kg DM (378 g/kg FA) | [187] |
Schizochytrium spp. | diet based on grass hay and concentrate containing cracked corn, soybean meal, and pelleted dehydrated lucerne | 310 g/d (as-fed) | C22:6n3–370 g/kg FA | [194] |
Schizochytrium spp. | diet based on lucerne hay and concentrate containing wheat, cold-pressed canola meal, and dry molasses | 250 g/d (as-fed) | C22:6n3–200 g/kg DM | [86] |
Spirulina platensis | diet based on grass silage and concentrate containing sugar beet pulps and molasses | 1.12 kg DM/d | CP–693 g/kg DM C16:0–45.6 g/100 g FA C18:2n6–23.4 g/100 g FA C18:3n6–19.9 g/100 g FA | [67] |
Spirulina platensis | diet based on lucerne hay, corn silage, and grain mix containing wheat, maize, extracted sunflower, and soybean meal and wheat bran | 150 g/d (as-fed) | C16:0–36.2 g/100 g FA C18:2n6–26.2 g/100 g FA C18:3n6–22.7 g/100 g FA | [8] |
Chlorella vulgaris | diet based on grass silage and concentrate containing sugar beet pulps and molasses | 1.35 kg DM/d | CP–586 g/kg DM C16:0–15.8 g/100 g FA C18:2n6–48.5 g/100 g FA | [67] |
Chlorella vulgaris + Nannochloropsis gaditana | diet based on grass silage and concentrate containing sugar beet pulps and molasses | 0.81 and 0.82 kg DM/d, respectively | CP–485 g/kg * C16:0–20 g/100 g FA * C18:2n6–24.9 g/100 g FA * C20:5n3–9.6 g/100 g FA * | [67] |
Rumen-protected macroalgae (Algamac-3050; Aquafauna Bio-Marine Inc., Hawthorne, CA, USA) | TMR based on maize and grass silage, hay, barley, maize distillers grain, maize, and soybean meal or pasture | calculated to provide 200 g/d of total lipids and cca. 65 g/d LC-PUFA | C16:0–25.02 g/100 g FA ** C18:0–32.48 g/100 g FA ** C22:6n3 –24.23 g/100 g FA | [185] |
Rumen-protected microalgae DHA-rich microalgae protected with the inert fat (not specified) | TMR based on mixed haylage, maize silage, grass hay, barley, maize, soybean meal, and distillers grains | 100 g/d (as-fed) | C22:6n3 –22.28 g/100 g FA | [79] |
By-products | ||||
Okara meal | TMR based on grass baleage, molasses, maize, soyhulls | 150 g/kg DM | CP–32.9 g/kg DM EE–10.5 g/kg DM C18:1c9–19.0 g/kg DM C18:2n6–58.0 g/kg DM C18:3n3–10.6 g/kg DM | [99] |
Camelina expeller | TMR based on grass and maize silages, grass hay, barley, maize gluten meal, soybean meal, maize DDGS | 95 g/kg DM | C18:1c9–131.4 mg/g FA C18:2n6–223.4 mg/g FA C18:3n3–319.8 mg/g FA | [117] |
Camelina expeller | diet based on red clover silage and concentrate containing barley, wheat, sugar beet pulp, molasses, cereal bran, and rapeseed and sunflower oil | 2.4 kg/d (as-fed) | NA | [119] |
Camelina seeds whole | TMR based on grass and maize silages, grass hay, barley, maize gluten meal, soybean meal, maize DDGS | 42 g/kg DM | C18:1c9–121.4 mg/g FA C18:2n6–185.9 mg/g FA C18:3n3–367.7 mg/g FA | [117] |
Tanniferous plants | ||||
Oak tannin extract | TMR based on maize and grass silages, dehydrated lucerne, rapeseed meal, rolled barley, sugar beet pulp, and extruded linseed | 169 g/kg DM | NA | [139] |
Hazel | for all: mixed diet based on grass and maize silages, soybean meal, sugar beet pulps, and pellets (lucerne + leaves of one of the given plants) | calculated to reach a total extractable phenol content of 60 g/kg DM | C16:0–27 g/100 g FA C18:1c9–16.1 g/100 g FA C18:2n6–21.6 g/100 g FA C18:3n3–19.2 g/100 g FA | [183] |
Silver birch | C16:0–47 g/100 g FA C18:1c9–9.1 g/100 g FA | |||
Black current | C16:0–28.5 g/100 g FA C18:2n6–14.2 g/100 g FA C18:3n3–35.9 g/100 g FA | |||
Grape wine | C16:0–30.0 g/100 g FA C18:1c9–9.3 g/100 g FA C18:2n6–17.9 g/100 g FA C18:3n3–24.8 g/100 g FA | |||
Wood avens | C16:0–19.7 g/100 g FA C18:1c9–19.2 g/100 g FA C18:2n6–24.9 g/100 g FA C18:3n3–22.5 g/100 g FA | |||
Rosebay willow | C16:0–26.8 g/100 g FA C18:1n9–11.6 g/100 g FA C18:2n6–21.3 g/100 g FA C18:3n3–24.0 g/100 g FA | |||
Herbs and spices | ||||
Hops | TMR based on maize and grass silages, dehydrated lucerne, rapeseed meal, rolled barley, sugar beet pulp, and extruded linseed | 56 g/kg DM | NA | [139] |
Oregano low in EO (0.12%) (Origanum vulgare ssp. vulgare) | TMR based on clover-grass and maize silages and concentrates | 53 g/kg DM | Carvacrol–31.1 % of total EO Thymol–22.7 % of total EO | [148] |
Oregano high in EO (4.21%) (Origanum vulgare ssp. hirtum) | TMR based on clover-grass and maize silages and concentrates | 21 g/kg DM | Carvacrol–35 % of total EO Thymol–41 % of total EO | [148] |
Others | ||||
Cactus cladode silage | TMR based on sorghum silage, maize, and soybean meal and oil | 340 g/kg DM | C16:0–27.8 g/100 g FA C18:2n6–31.7 g/100 g FA C18:3n3–16.5 g/100 g FA | [160] |
Blue lupin | TMR based on grass and maize silage, beet pulp, brewers grains, wheat, extracted rapeseed, and soybean meal | 94 g/kg DM | CP–345 g/kg DM C16:0–11.2 g/100 g FA C18:1c9–26.5 g/100 g FA C18:2n6–31.8 g/100 g FA C18:3n3–6.58 g/100 g FA | [168] |
Fatty Acids (g/100 g FA) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Feed Supplement | C12:0 | C14:0 | C16:0 | C18:1c9 | C18:2c9t11 (RA) | C18:2n6 (LA) | C18:3n3 (ALA) | C20:5n3 (EPA) | C22:6n3 (DHA) | Source |
Macroalgae | ||||||||||
Ascophyllum nodosum | 3.98 | 12.49 | 35.19 | 13.37 | 0.48 | NA | 0.47 | 0.07 | NA | [188] |
Microalgae | ||||||||||
Aurantiochytrium limacinum | 3.31 | 11.53 | 30.11 | 17.60 | 0.86 | 2.42 | 0.32 | 0.05 | 0.37 | [193] |
Aurantiochytrium limacinum | 3.92 | 12.56 | 34.07 | 17.92 | 0.60 | 1.83 | 0.25 | 0.03 | 0.10 | [186] |
Schizochytrium limacinum | 2.29 | 8.61 | 23.84 | 23.65 | 1.41 | 3.50 | 0.36 | 0.02 | 0.14 | [77] |
Schizochytrium spp. | 3.78 | 13.66 | 24.85 | 14.87 | NA | 4.21 | 0.19 | 0.04 | 0.53 | [85] |
Schizochytrium spp. | 2.07 | 8.01 | 27.70 | 17.60 | 1.00 | 1.37 | 0.42 | NA | 1.10 | [187] |
Schizochytrium spp. | 4.92 | 13.98 | 27.58 | 7.02 | 1.38 | NA | 0.53 | 0.36 | 1.15 | [194] |
Schizochytrium spp. | 3.54 | 12.80 | 34.60 | NA | 1.78 | 3.65 | 0.69 | 0.11 | 0.60 | [86] |
Spirulina platensis | 3.53 | 11.50 | 29.70 | 19.10 | 0.44 | 1.92 | 0.46 | 0.04 | NA | [67] |
Spirulina platensis | 4.37 | 14.99 | 37.84 | 15.60 | 0.85 | 1.62 | 0.26 | 0.03 | 0.02 | [8] |
Chlorella vulgaris | 3.32 | 10.70 | 27.90 | 19.00 | 0.39 | 3.41 | 0.57 | 0.07 | NA | [67] |
Chlorella vulgaris + Nannochloropsis gaditana | 3.43 | 11.10 | 28.70 | 18.60 | 0.45 | 2.41 | 0.53 | 0.21 | NA | [67] |
Rumen-protected macroalgae (Algamac-3050; Aquafauna Bio-Marine Inc., Hawthorne, CA, USA) | 2.85 | 8.93 | 26.04 | 18.64 | 0.87 | 2.11 | 0.51 | 0.07 | 0.20 | [185] |
Rumen-protected microalgae DHA-rich microalgae protected with inert fat (not specified) | NA | NA | NA | NA | 3.59 | 2.43 | 0.35 | 0.05 | 0.22 | [79] |
By-products | ||||||||||
Okara meal | 3.78 | 11.70 | 30.60 | 14.70 | 0.53 | 1.92 | 0.53 | 0.04 | NA | [99] |
Camelina expeller | 3.09 | 11.91 | 25.22 | 12.63 | 1.39 | 1.72 | 0.44 | 0.03 | 0.01 | [117] |
Camelina expeller | 3.08 | 11.90 | 26.80 | NA | 1.33 | NA | 1.06 | 0.10 | 0.00 | [119] |
Camelina seeds whole | 3.71 | 12.12 | 27.86 | 13.05 | 0.66 | 1.95 | 0.48 | 0.04 | 0.00 | [117] |
Tanniferous plants | ||||||||||
Oak tannin extract | 3.25 | 12.05 | 26.19 | 23.09 | 1.22 | 2.25 | 1.46 | NA | NA | [139] |
Hazel | 4.59 | 15.30 | 38.10 | NA | 0.51 | 1.32 | 0.83 | NA | NA | [183] |
Silver birch | 4.96 | 15.20 | 36.80 | NA | 0.46 | 1.35 | 0.75 | NA | NA | |
Black current | 4.05 | 14.50 | 34.60 | NA | 0.56 | 1.46 | 1.00 | NA | NA | |
Grape wine | 4.37 | 15.20 | 36.10 | NA | 0.53 | 1.43 | 0.89 | NA | NA | |
Wood avens | 4.64 | 15.40 | 35.10 | NA | 0.54 | 11.48 | 0.95 | NA | NA | |
Rosebay willow | 4.61 | 15.40 | 35.00 | NA | 0.49 | 1.52 | 0.98 | NA | NA | |
Herbs and spices | ||||||||||
Hops | 3.24 | 12.06 | 26.77 | 23.02 | 1.30 | 2.18 | 1.33 | NA | NA | [139] |
Oregano low in EO (0.12%) (Origanum vulgare ssp. vulgare) | NA | NA | 38.72 | 14.35 | 0.35 | NA | 0.72 | NA | NA | [148] |
Oregano high in EO (4.21%) (Origanum vulgare ssp. hirtum) | NA | NA | 36.87 | 15.12 | 0.52 | NA | 0.83 | NA | NA | [148] |
Others | ||||||||||
Cactus cladode silage | 1.96 | 8.03 | 21.50 | 20.20 | 2.70 | 2.90 | 0.41 | 0.02 | NA | [160] |
Blue lupin | 3.24 | 11.40 | 36.10 | 22.30 | 0.41 | 2.39 | 0.29 | 0.05 | 0.04 | [168] |
Sums of FA (g/100g) | |||||||
---|---|---|---|---|---|---|---|
Feed Supplement | n6 | n3 | n6/n3 | SFA | MUFA | PUFA | Source |
Macroalgae | |||||||
Ascophyllum nodosum | 1.85 | 0.59 | 3.14 | 74.93 | 19.19 | 3.35 | [188] |
Microalgae | |||||||
Aurantiochytrium limacinum | 2.54 | 0.90 | 2.82 | 67.82 | 27.86 | 4.32 | [193] |
Aurantiochytrium limacinum | 1.96 | 0.50 | 3.92 | 72.62 | 24.20 | 3.04 | [186] |
Schizochytrium limacinum | NA | NA | 6.78 | 54.92 | 36.44 | 6.05 | [77] |
Schizochytrium spp. | 4.56 | 0.83 | 5.49 | 70.95 | 23.54 | 5.51 | [85] |
Schizochytrium spp. | 1.38 | 1.54 | 0.89 | 53.90 | 33.60 | 4.70 | [187] |
Schizochytrium spp. | NA | NA | NA | NA | NA | 4.61 | [194] |
Schizochytrium spp. | 5.92 | 1.69 | 3.50 | 70.60 | 19.60 | 9.82 | [86] |
Spirulina platensis | 2.20 | 0.56 | 4.06 | 70.30 | 25.50 | 3.30 | [67] |
Spirulina platensis | 1.85 | 0.56 | 3.36 | 74.34 | 18.61 | 3.25 | [8] |
Chlorella vulgaris | 3.68 | 0.71 | 5.43 | 68.20 | 25.50 | 4.85 | [67] |
Chlorella vulgaris + Nannochloropsis gaditana | 2.70 | 0.83 | 3.22 | 68.70 | 25.90 | 4.13 | [67] |
Rumen-protected macroalgae (Algamac-3050; Aquafauna Bio-Marine Inc., Hawthorne, CA, USA) | 3.67 | 0.94 | 3.99 | 55.63 | 29.31 | 4.61 | [185] |
Rumen-protected microalgae DHA-rich microalgae protected with the inert fat (not specified) | 4.56 | 0.83 | 5.49 | 61.90 | 31.21 | 5.45 | [79] |
By-products | |||||||
Okara meal | 2.07 | 0.63 | 3.26 | 72.69 | 22.11 | 5.19 | [99] |
Camelina expeller | 2.00 | 0.48 | 0.45 | 56.05 | 37.92 | 6.02 | [117] |
Camelina expeller | NA | 1.40 | NA | 62.60 | 29.70 | 7.27 | [119] |
Camelina seeds whole | 2.25 | 0.62 | 0.39 | 62.89 | 32.48 | 4.63 | [117] |
Tanniferous plants | |||||||
Oak tannin | NA | NA | NA | 64.23 | 30.46 | 5.31 | [139] |
Hazel | 1.62 | 0.99 | 1.64 | 71.80 | 23.10 | 3.76 | [183] |
Silver birch | 1.67 | 0.95 | 1.77 | 71.80 | 23.20 | 3.62 | |
Black current | 1.76 | 1.12 | 1.48 | 68.00 | 26.40 | 4.17 | |
Grape wine | 1.73 | 1.08 | 1.61 | 70.50 | 24.10 | 3.96 | |
Wood avens | 1.86 | 1.14 | 1.64 | 70.10 | 24.40 | 4.15 | |
Rosebay willow | 1.85 | 1.17 | 1.59 | 70.40 | 24.10 | 4.11 | |
Herbs and spices | |||||||
Hops | NA | NA | NA | 64.09 | 30.71 | 5.20 | [139] |
Oregano low in EO (0.12%) (Origanum vulgare ssp. vulgare) | NA | NA | NA | 78.60 | 18.34 | 3.06 | [148] |
Oregano high in EO (4.21%) (Origanum vulgare ssp. hirtum) | NA | NA | NA | 77.04 | 19.76 | 3.20 | [148] |
Others | |||||||
Cactus cladode silage | 3.14 | 0.46 | 6.83 | 53.40 | 36.40 | 6.70 | [160] |
Blue lupin | 5.22 | 0.47 | 11.20 | 67.90 | 28.50 | 3.56 | [168] |
Indices | |||||||
---|---|---|---|---|---|---|---|
Feed Supplement | AI | HPI | S/P | DI | SI | Main Effect | Source |
Macroalgae | |||||||
Ascophyllum nodosum | 4.12 | 0.25 | 2.53 | 57.38 (C18) | NA | minor changes in isoC14:0, C15:0, C14:1t4, C18:1c11, C20:1c11, C22:4c7c10c13c16 | [188] |
Microalgae | |||||||
Aurantiochytrium limacinum | 2.54 | 0.40 | 1.60 | 7.78 | 0.53 |
| [193] |
Aurantiochytrium limacinum | 3.31 | 0.31 | 2.03 | 7.39 | 0.58 | [186] | |
Schizochytrium limacinum | 1.50 | 0.70 | 1.03 | 67.44 (C18) | 0.99 |
| [77] |
Schizochytrium spp. | 2.88 | 0.35 | 1.67 | 8.51 | 0.60 | [85] | |
Schizochytrium spp. | 1.69 | 0.62 | 1.03 | 6.43 | 0.64 | [187] | |
Schizochytrium spp. | NA | NA | NA | 8.15 | 0.25 | [194] | |
Schizochytrium spp. | 3.28 | 0.33 | 1.68 | 8.44 | NA | [86] | |
Spirulina platensis | 2.80 | 0.36 | 1.81 | 7.30 | 0.64 |
| [67] |
Spirulina platensis | 4.67 | 0.21 | 2.78 | 7.47 | 0.41 | [8] | |
Chlorella vulgaris | 2.48 | 0.41 | 1.66 | 6.56 | 0.68 |
| [67] |
Chlorella vulgaris + Nannochloropsis gaditana | 2.60 | 0.39 | 1.69 | 7.28 | 0.65 |
| [67] |
Rumen-protected macroalgae (Algamac-3050; Aquafauna Bio-Marine Inc., Hawthorne, CA, USA) | 1.90 | 0.52 | 1.32 | 10.43 | 0.72 |
| [185] |
Rumen-protected microalgae-DHA-rich microalgae protected with the inert fat (not specified) | NA | NA | NA | NA | NA | [79] | |
By-products | |||||||
Okara meal | 3.27 | 0.34 | 2.02 | 6.25 | 0.48 |
| [99] |
Camelina expeller | 1.88 | 0.58 | 0.99 | 12.16 | 0.50 |
| [117] |
Camelina expeller | NA | 0.48 | 1.25 | 7.68 | NA | [119] | |
Camelina seeds whole | 2.26 | 0.46 | 1.29 | 9.00 | 0.47 |
| [117] |
Tanniferous plants | |||||||
Oak tannin extracts | 2.55 | 0.46 | 1.47 | 7.87 | 0.88 |
| [139] |
Hazel | 4.04 | 0.26 | 2.20 | 38.64 (RA) | NA |
| [183] |
Silver birch | 3.97 | 0.26 | 2.17 | 38.33 (RA) | NA |
| [183] |
Black current | 3.30 | 0.32 | 1.84 | 35.90 (RA) | NA |
| [183] |
Grape wine | 3.76 | 0.28 | 2.03 | 50.00 (RA) | NA |
| [183] |
Wood avens | 3.70 | 0.28 | 2.00 | 38.57 (RA) | NA |
| [183] |
Rosebay willow | 3.73 | 0.28 | 2.04 | 36.57 (RA) | NA |
| [183] |
Herbs and spices | |||||||
Hops | 2.55 | 0.46 | 1.47 | 8.08 | 0.86 |
| [139] |
Oregano low in EO (0.12%) (Origanum vulgare ssp. vulgare) | 2.11 | 0.55 | 2.09 | 70.35 (C18) | 0.37 |
| [148] |
Oregano high in EO (4.21%) (Origanum vulgare ssp. hirtum) | 1.87 | 0.62 | 1.90 | 69.16 (C18) | 0.41 |
| [148] |
Others | |||||||
Cactus cladode silage | 1.39 | 0.78 | 1.04 | 6.51 | 0.94 |
| [160] |
Blue lupin | 2.66 | 0.38 | 1.80 | 9.88 | 0.62 |
| [168] |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- OECD/FAO. OECD-FAO Agricultural Outlook 2020–2029; OECD Publishing: Paris, France; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- EC (2020), Short-Term Outlook for EU Agricultural Markets in 2020. European Commission, DG Agriculture and Rural Development, Brussels. Available online: https://ec.europa.eu/info/sites/info/files/food-farming-fisheries/farming/documents/short-term-outlook-summer-2020_en.pdf (accessed on 15 May 2021).
- Hanuš, O.; Samková, E.; Křížová, L.; Hasoňová, L.; Kala, R. Role of fatty acids in milk fat and the influence of selected factors on their variability—A review. Molecules 2018, 23, 1636. [Google Scholar] [CrossRef] [Green Version]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- Moallem, U. Invited review: Roles of dietary n-3 fatty acids in performance, milk fat composition, and reproductive and immune systems in dairy cattle. J. Dairy Sci. 2018, 101, 8641–8661. [Google Scholar] [CrossRef] [Green Version]
- Kumari, P.; Kumar, M.; Gupta, V.; Reddy, C.R.K.; Jha, B. Tropical marine macroalgae as potential sources of nutritionally important PUFAs. Food Chem. 2010, 120, 740–757. [Google Scholar] [CrossRef]
- Hadrová, S.; Veselý, A.; Křížová, L. Assesment of bovine milk fat quality from the view of human health. In New Traits and Adding Value to the Recording and ID Services in the Animal Production, Proceedings of the 43rd ICAR Conference, Prague, Czech Republic, 17–21 June 2019; Prague, J., Kucera, P., Bucek, D., Lipovsky, X., Bourrigan Burke, M., Eds.; ICAR: Rome, Italy, 2019; Volume 24, pp. 217–221. ISBN 92-95014-20-0. [Google Scholar]
- Póti, P.; Pajor, F.; Bodnár, Á.; Penksza, K.; Köles, P. Effect of micro-alga supplementation on goat and cow milk fatty acid composition. Chil. J. Agric. Res. 2015, 75, 259–263. [Google Scholar] [CrossRef]
- Bobe, G.; Zimmerman, S.; Hammond, E.G.; Freeman, A.E.; Porter, P.A.; Luhman, C.M.; Beitz, D.C. Butter composition and texture from cows with different milk fatty acid compositions fed fish oil or roasted soybeans. J. Dairy Sci. 2007, 90, 2596–2603. [Google Scholar] [CrossRef] [Green Version]
- EFSA panel on dietetic products, nutrition and allergies (NDA); Scientific opinion related to the tolerable upper intake level of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA). EFSA J. 2012, 10, 2815. Available online: www.efsa.europa.eu/efsajournal (accessed on 12 March 2021).
- Nguyen, Q.V.; Malau-Aduli, B.S.; Cavalieri, J.; Malau-Aduli, A.E.O.; Nichols, P.D. Enhancing omega-3 long-chain polyunsaturated fatty acid content of dairy-derived foods for human consumption. Nutrients 2019, 11, 743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bárcenas-Pérez, D.; Lukeš, M.; Hrouzek, P.; Kubáč, D.; Kopecký, J.; Kaštánek, P.; Cheel, J. A biorefinery approach to obtain docosahexaenoic acid and docosapentaenoic acid n-6 from Schizochytrium using high performance countercurrent chromatography. Algal Res. 2021, 55, 102241. [Google Scholar] [CrossRef]
- Rymer, C.; Givens, D.I.; Wahle, K.W.J. Dietary strategies for increasing docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) concentrations in bovine milk: A review. In Nutrition Abstracts and Reviews. Series B: Livestock Feeds and Feeding; CAB International: Wallingford, UK, 2003; Volume 73, ISSN 0309-135X. [Google Scholar]
- Simopoulos, A.P. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swanson, D.; Block, R.; Mousa, S.A. Omega-3 fatty acids EPA and DHA: Health benefits throughout life. Adv. Nutr. 2012, 3, 1–7. [Google Scholar] [CrossRef]
- Neff, L.M.; Culiner, J.; Cunningham-Rundles, S.; Seidman, C.; Meehan, D.; Maturi, J.; Wittkowski, K.M.; Levine, B.; Breslow, J.L. Algal docosahexaenoic acid affects plasma lipoprotein particle size distribution in overweight and obese adults. J. Nutr. 2011, 141, 207–213. [Google Scholar] [CrossRef] [Green Version]
- Lopes da Silva, T.; Moniz, P.; Silva, C.; Reis, A. The dark side of microalgae biotechnology: A heterotrophic biorefinery platform directed to ω-3 rich lipid production. Microorganisms 2019, 7, 670. [Google Scholar] [CrossRef] [Green Version]
- Peltomaa, E.; Johnson, M.D.; Taipale, S.J. Marine cryptophytes are great sources of EPA and DHA. Mar. Drugs 2017, 16, 3. [Google Scholar] [CrossRef] [Green Version]
- Markiewicz-Kęszycka, M.; Czyżak-Runowska, G.; Lipińska, P.; Wójtowski, J. Fatty acid profile of milk—A review. Bull. Vet. Inst. Pulawy 2013, 57, 135–139. [Google Scholar] [CrossRef] [Green Version]
- Calder, P.C. Very long-chain n-3 fatty acids and human health: Fact, fiction and the future. Proc. Nutr. Soc. 2018, 77, 52–72. [Google Scholar] [CrossRef] [Green Version]
- Shahidi, F.; Ambigaipalan, P. Omega-3 polyunsaturated fatty acids and their health benefits. Annu. Rev. Food Sci. Technol. 2018, 9, 345–381. [Google Scholar] [CrossRef]
- Calder, P.C. Very long chain omega-3 (n-3) fatty acids and human health. Eur. J. Lipid. Sci. Technol. 2014, 116, 1280–1300. [Google Scholar] [CrossRef]
- Lordan, S.; Ross, R.P.; Stanton, C. Marine bioactives as functional food ingredients: Potential to reduce the incidence of chronic diseases. Mar. Drugs 2011, 9, 1056–1100. [Google Scholar] [CrossRef] [Green Version]
- Szabó, Z.; Marosvölgyi, T.; Szabó, É.; Bai, P.; Figler, M.; Verzár, Z. The potential beneficial effect of EPA and DHA supplementation managing cytokine storm in coronavirus disease. Front. Physiol. 2020, 11, 752. [Google Scholar] [CrossRef]
- Nguyen, D.V.; Malau-Aduli, B.S.; Cavalieri, J.; Nichols, P.D.; Malau-Aduli, A.E.O. Supplementation with plant-derived oils rich in omega-3 polyunsaturated fatty acids for lamb production. Vet. Anim. Sci. 2018, 6, 29–40. [Google Scholar] [CrossRef]
- Lee, J.M.; Lee, H.; Kang, S.; Park, W.J. Fatty acid desaturases, polyunsaturated fatty acid regulation, and biotechnological advances. Nutrients 2016, 8, 23. [Google Scholar] [CrossRef] [Green Version]
- Sergeant, S.; Rahbar, E.; Chilton, F.H. Gamma-linolenic acid, dihommo-gamma linolenic, eicosanoids and inflammatory processes. Eur. J. Pharmacol. 2016, 785, 77–86. [Google Scholar] [CrossRef] [Green Version]
- Białek, M.; Czauderna, M.; Białek, A. Conjugated linolenic acid (CLnA) isomers as new bioactive lipid compounds in ruminant-derived food products. A review. J. Anim. Feed. Sci. 2017, 26, 354–358. [Google Scholar] [CrossRef]
- Belury, M.A. Inhibition of carcinogenesis by conjugated linoleic acid: Potential mechanisms of action. J. Nutr. 2002, 132, 2995–2998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vargas-Bello-Pérez, E.; Márquez-Hernández, R.I.; Hernández-Castellano, L.E. Bioactive peptides from milk: Animal determinants and their implications in human health. J. Dairy Res. 2019, 86, 136–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haug, A.; Hostmark, A.T.; Harstad, O.M. Bovine milk in human nutrition: A review. Lipids Health Dis. 2007, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Breslow, J.L. N-3 fatty acids and cardiovascular disease. Am. J. Clin. Nutr. 2006, 83, 1477S–1482S. [Google Scholar] [CrossRef] [Green Version]
- Simopoulos, A.P. Omega-6/Omega-3 essential fatty acid ratio and chronic diseases. Food Rev. Int. 2004, 20, 77–90. [Google Scholar] [CrossRef]
- Ulbricht, T.L.; Southgate, D.A. Coronary heart disease—7 dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Chen, S.; Bobe, G.; Zimmerman, S.; Hammond, E.G.; Luhman, C.M.; Boylston, T.D.; Freeman, A.E.; Beitz, D.C. Physical and sensory properties of dairy products from cows with various milk fatty acid compositions. J. Agric. Food Chem. 2004, 52, 3422–3428. [Google Scholar] [CrossRef]
- Santos-Silva, J.; Bessa, R.J.B.; Santos-Silva, F. Effect of genotype, feeding system and slaughter weight on the quality of light lambs—2. Fatty acid composition of meat. Livest. Prod. Sci. 2002, 77, 187–194. [Google Scholar] [CrossRef]
- Bobe, G.; Zimmerman, S.; Hammond, E.G.; Freeman, A.E.G.; Lindberg, G.L.; Beitz, D.C. Texture of butters made from milks differing in indices of atherogenicity. Iowa State Univ. Anim. Ind. Rep. 2004, 650, 1–3. Available online: http://lib.dr.iastate.edu/ans_air/vol650/iss1/61 (accessed on 1 March 2021). [CrossRef] [Green Version]
- Rafiee-Yarandi, H.; Ghorbani, G.R.; Alikhani, M.; Sadeghi-Sefidmazgi, A.; Drackley, J.K. A comparison of the effect of soybeans roasted at different temperatures versus calcium salts of fatty acids on performance and milk fatty acid composition of mid-lactation HolsteiCn cows. J. Dairy Sci. 2016, 99, 5422–5435. [Google Scholar] [CrossRef] [Green Version]
- Timmen, H. Characterization of milk fat hardness in farm milk via parameters of fatty-acid composition. Kieler Milchw. Forsch. 1990, 42, 129–138. [Google Scholar]
- Kelsey, J.A.; Corl, B.A.; Collier, R.J.; Bauman, D.E. The effect of breed, parity, and stage of lactation on conjugated linoleic acid (CLA) in milk fat from dairy cows. J. Dairy Sci. 2003, 86, 2588–2597. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.I.; Shin, J.H.; Kim, J.D. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact. 2018, 17, 36. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Karmakar, R.; Das, B.; Diba, F.; Razu, M.H. Heterotrophic growth of micro algae. In Recent Advances in Microalgal Biotechnology; Liu, J., Zheng, S., Henri, G., Eds.; OMICS Group eBooks: Hyderabad, India, 2016; pp. 1–18. [Google Scholar]
- Makkar, H.P.S.; Tran, G.; Heuzé, V.; Giger-Reverdin, S.; Lessire, M.; Lebas, F.; Ankers, P. Seaweeds for livestock diets: A review. Anim. Feed Sci. Technol. 2016, 212, 1–17. [Google Scholar] [CrossRef]
- Morais, T.; Inácio, A.; Coutinho, T.; Ministro, M.; Cotas, J.; Pereira, L.; Bahcevandziev, K. Seaweed potential in the animal feed: A review. J. Mar. Sci. Eng. 2020, 8, 559. [Google Scholar] [CrossRef]
- Wang, S.-H.; Huang, C.-Y.; Chen, C.-Y.; Chang, C.-C.; Huang, C.-Y.; Dong, C.-D.; Chang, J.-S. Structure and biological activity analysis of fucoidan isolated from Sargassum siliquosum. ACS Omega 2020, 5, 32447–32455. [Google Scholar] [CrossRef]
- Devillé, C.; Gharbi, M.; Dandrifosse, G.; Peulen, O. Study on the effects of laminarin, a polysaccharide from seaweed, on gut characteristics. J. Sci. Food Agric. 2007, 87, 1717–1725. [Google Scholar] [CrossRef]
- Alves, A.; Sousa, R.A.; Reis, R.L. A practical perspective on ulvan extracted from green algae. J. Appl. Phycol. 2013, 25, 407–424. [Google Scholar] [CrossRef] [Green Version]
- Dawczynski, C.; Schubert, R.; Jahreis, G. Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chem. 2007, 103, 891–899. [Google Scholar] [CrossRef]
- Neville, E.W.; Fahey, A.G.; Gath, V.P.; Molloy, B.P.; Taylor, S.J.; Mulligan, F.J. The effect of calcareous marine algae, with or without marine magnesium oxide, and sodium bicarbonate on rumen pH and milk production in mid-lactation dairy cows. J. Dairy Sci. 2019, 102, 8027–8039. [Google Scholar] [CrossRef]
- Cruywagen, C.W.; Taylor, S.; Beya, M.M.; Calitz, T. The effect of buffering dairy cow diets with limestone, calcareous marine algae, or sodium bicarbonate on ruminal pH profiles, production responses, and rumen fermentation. J. Dairy Sci. 2015, 98, 5506–5514. [Google Scholar] [CrossRef] [Green Version]
- Caroprese, M.; Ciliberti, M.G.; Marino, R.; Santillo, A.; Sevi, A.; Albenzio, M. Polyunsaturated fatty acid supplementation: Effects of seaweed Ascophyllum nodosum and flaxseed on milk production and fatty acid profile of lactating ewes during summer. J. Dairy Res. 2016, 83, 289–297. [Google Scholar] [CrossRef]
- Quigley, A.; Walsh, S.W.; Hayes, E.; Connolly, D.; Cummins, W. Effect of seaweed supplementation on tocopherol concentrations in bovine milk using dispersive liquid-liquid microextraction. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2018, 1092, 152–157. [Google Scholar] [CrossRef]
- Lee, J.-S.; Kang, S.; Kim, M.-J.; Han, S.-G.; Lee, H.-G. Dietary supplementation with combined extracts from garlic (Allium sativum), brown seaweed (Undaria pinnatifida), and pinecone (Pinus koraiensis) improves milk production in Holstein cows under heat stress conditions. Asian-Australas. J. Anim. Sci. 2020, 33, 111–119. [Google Scholar] [CrossRef]
- De Lima, R.N.; de Souza, J.B.F., Jr.; Batista, N.V.; de Andrade, A.K.S.; Soares, E.C.A.; dos Santos Filho, C.A.S.; Silva, L.A.; Coelho, W.A.C.; Costa, L.L.M.; Lima, P.O. Mitigating heat stress in dairy goats with inclusion of seaweed Gracilaria birdiae in diet. Small Rumin. Res. 2019, 171, 87–91. [Google Scholar] [CrossRef]
- Kinley, R.D.; de Nys, R.; Vucko, M.J.; Machado, L.; Tomkins, N.W. The red macroalgae Asparagopsis taxiformis is a potent natural antimethanogenic that reduces methane production during in vitro fermentation with rumen fluid. Anim. Prod. Sci. 2016, 56, 282. [Google Scholar] [CrossRef]
- Li, X.; Norman, H.C.; Kinley, R.D.; Laurence, M.; Wilmot, M.; Bender, H.; de Nys, R.; Tomkins, N. Asparagopsis taxiformis decreases enteric methane production from sheep. Anim. Prod. Sci. 2018, 58, 681. [Google Scholar] [CrossRef]
- Jacob-Lopez, E.; Maroneze, M.M.; Quieroz, M.I.; Zepka, L.Q. Handbook of Microalgae-Based Processes and Products: Fundamentals and Advances in Energy, Food, Feed, Fertilizer, and Bioactive Compounds; Academic Press: Cambridge, MA, USA, 2020; ISBN 978-012-818-5360. [Google Scholar]
- Altomonte, I.; Salari, F.; Licitra, R.; Martini, M. Use of microalgae in ruminant nutrition and implications on milk quality—A review. Livest. Sci. 2018, 214, 25–35. [Google Scholar] [CrossRef]
- Gouveia, L.; Batista, A.P.; Sousa, I.; Raymundo, A.; Bandarra, N.M. Microalgae in novel food products. In Food Chemistry Research Developments; Papadopoulos, K.N., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2008; pp. 75–111. ISBN 978-1-60456-262-0. [Google Scholar]
- Kovač, D.J.; Simeunović, J.B.; Babić, O.B.; Mišan, A.Č.; Milovanović, I.L. Algae in food and feed. Food Feed Res. 2013, 40, 21–31. [Google Scholar]
- Becker, E.W. Microalgae in human and animal nutrition. In Handbook of Microalgal Culture: Biotechnology and Applied Phycology; Richmond, A., Ed.; Blackwell: Oxford, UK, 2004; pp. 312–351. [Google Scholar] [CrossRef]
- Kotrbáček, V.; Doubek, J.; Doucha, J. The chlorococcalean alga Chlorella in animal nutrition: A review. J. Appl. Phycol. 2015, 27, 2173–2180. [Google Scholar] [CrossRef]
- Adarme-Vega, T.C.; Lim, D.K.Y.; Timmins, M.; Vernen, F.; Li, Y.; Schenk, P.M. Microalgal biofactories: A promising approach towards sustainable omega-3 fatty acid production. Microb. Cell Fact. 2012, 11, 96. [Google Scholar] [CrossRef] [Green Version]
- Xin, Y.; Shen, C.; She, Y.; Chen, H.; Wang, C.; Wei, L.; Yoon, K.; Han, D.; Hu, Q.; Xu, J. Biosynthesis of triacylglycerol molecules with a tailored PUFA profile in industrial microalgae. Mol. Plant. 2019, 12, 474–488. [Google Scholar] [CrossRef]
- Patelou, M.; Infante, C.; Dardelle, F.; Randewig, D.; Kouri, E.D.; Udvardi, M.K.; Tsiplakou, E.; Mantecón, L.; Flemetakis, E. Transcriptomic and metabolomic adaptation of Nannochloropsis gaditana grown under different light regimes. Algal Res. 2020, 45, 101735. [Google Scholar] [CrossRef]
- Molino, A.; Mehariya, S.; Karatza, D.; Chianese, S.; Iovine, A.; Casella, P.; Marino, T.; Musmarra, D. Bench-scale cultivation of microalgae Scenedesmus almeriensis for CO2 capture and lutein production. Energies 2019, 12, 2806. [Google Scholar] [CrossRef] [Green Version]
- Lamminen, M.; Halmemies-Beauchet-Filleau, A.; Kokkonen, T.; Jaakkola, S.; Vanhatalo, A. Different microalgae species as a substitutive protein feed for soya bean meal in grass silage based dairy cow diets. Anim. Feed Sci. Technol. 2019, 247, 112–126. [Google Scholar] [CrossRef]
- Kumar, B.R.; Deviram, G.; Mathimani, T.; Duc, P.A.; Pugazhendhi, A. Microalgae as rich source of polyunsaturated fatty acids. Biocatal. Agric. Biotechnol. 2019, 17, 583–588. [Google Scholar] [CrossRef]
- Lum, K.K.; Kim, J.; Lei, X.G. Dual potential of microalgae as a sustainable biofuel feedstock and animal feed. J. Anim. Sci. Biotechnol. 2013, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Becker, E.W. Micro-algae as a source of protein. Biotech. Adv. 2007, 25, 207–210. [Google Scholar] [CrossRef]
- Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isambert, A. Commercial applications of microalgae-review. J. Biosci. Bioeng. 2006, 101, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Plaza, M.; Herrero, M.; Cifuentes, A.; Ibáñez, E. Innovative natural functional ingredients from microalgae. J. Agric. Food Chem. 2009, 57, 7159–7170. [Google Scholar] [CrossRef] [PubMed]
- Holman, B.W.B.; Malau-Aduli, A.E.O. Spirulina as a livestock supplement and animal feed. J. Anim. Physiol. Anim. Nutr. 2013, 97, 615–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, P.; Li, J.; Zhong, H.; Xie, J.; Zhang, P.; Lu, Q.; Li, J.; Xu, P.; Chen, P.; Leng, L.; et al. Anti-oxidation properties and therapeutic potentials of spirulina. Algal Res. 2021, 55, 102240. [Google Scholar] [CrossRef]
- Higuera-Ciapara, I.; Félix-Valenzuela, L.; Goycoolea, F.M. Astaxanthin: A review of its chemistry and applications. Crit. Rev. Food Sci. Nutr. 2006, 46, 185–196. [Google Scholar] [CrossRef]
- Sui, Y.; Muys, M.; Van de Waal, D.B.; D’Adamo, S.; Vermeir, P.; Fernandes, T.V.; Vlaeminck, S.E. Enhancement of co-production of nutritional protein and carotenoids in Dunaliella salina using a two-phase cultivation assisted by nitrogen level and light intensity. Bioresour. Technol. 2019, 287. [Google Scholar] [CrossRef]
- Gagliostro, G.A.; Antonacci, L.E.; Pérez, C.D.; Rossetti, L.; Carabajal, A. Improving the quality of milk fatty acid in dairy cows supplemented with soybean oil and DHA-micro algae in a confined production system. Agric. Sci. 2018, 9, 1115–1130. [Google Scholar] [CrossRef] [Green Version]
- Lock, A.L.; Bauman, D.E. Modifying milk fat composition of dairy cows to enhance fatty acids beneficial to human health. Lipids 2004, 39, 1197–1206. [Google Scholar] [CrossRef] [Green Version]
- Glover, K.E.; Budge, S.; Rose, M.; Rupasinghe, H.P.V.; MacLaren, L.; Green-Johnson, J.; Fredeen, A.H. Effect of feeding fresh forage and marine algae on the fatty acid composition and oxidation of milk and butter. J. Dairy Sci. 2012, 95, 2797–2809. [Google Scholar] [CrossRef] [Green Version]
- Kouřimská, L.; Vondráčková, E.; Fantová, M.; Nový, P.; Nohejlová, L.; Michnová, K. Effect of feeding with algae on fatty acid profile of goat’s milk. Sci. Agric. Bohem. 2014, 45, 162–169. [Google Scholar] [CrossRef] [Green Version]
- Chilliard, Y.; Glasser, F.; Ferlay, A.; Bernard, L.; Rouel, J.; Doreau, M. Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. Eur. J. Lipid Sci. Technol. 2007, 109, 828–855. [Google Scholar] [CrossRef]
- Jenkins, T.J.; Bridges, W.C. Protection of fatty acids against ruminal biohydrogenation in cattle. Eur. J. Lipid Sci. 2007, 109, 778–779. [Google Scholar] [CrossRef]
- Kitessa, S.M.; Gulati, S.K.; Ashes, J.R.; Fleck, E.; Scott, T.W.; Nichols, P.D. Utilisation of fish oil in ruminants. II. Transfer of fish oil fatty acids into goat’s milk. Anim. Feed Sci. Technol. 2001, 89, 201–208. [Google Scholar] [CrossRef]
- Marques, J.A.; Del Valle, T.A.; Ghizzi, L.G.; Zilio, E.M.C.; Gheller, L.S.; Nunes, A.T.; Silva, T.B.P.; Dias, M.S.D.S.; Grigoletto, N.T.S.; Koontz, A.F.; et al. Increasing dietary levels of docosahexaenoic acid-rich microalgae: Ruminal fermentation, animal performance, and milk fatty acid profile of mid-lactating dairy cows. J. Dairy Sci. 2019, 102, 5054–5065. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Yu, X.; Li, S.; Shao, W.; Zhang, N. Effects of dietary microalgae (Schizochytrium spp.) supplement on milk performance, blood parameters, and milk fatty acid composition in dairy cows. Czech J. Anim. Sci. 2020, 65, 162–171. [Google Scholar] [CrossRef]
- Moate, P.J.; Williams, S.R.O.; Hannah, M.C.; Eckard, R.J.; Auldist, M.J.; Ribaux, B.E.; Jacobs, J.L.; Wales, W.J. Effects of feeding algal meal high in docosahexaenoic acid on feed intake, milk production, and methane emissions in dairy cows. J. Dairy Sci. 2013, 96, 3177–3188. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, C.K.; Cannon, V.L.; Loerch, S.C. Effects of forage source and supplementation with soybean and marine algal oil on milk fatty acid composition of ewes. Anim. Feed Sci. Technol. 2006, 131, 333–357. [Google Scholar] [CrossRef]
- Toral, P.G.; Hervás, G.; Gómez-Cortés, P.; Frutos, P.; Juárez, M.; de la Fuente, M.A. Milk fatty acid profile and dairy sheep performance in response to diet supplementation with sunflower oil plus incremental levels of marine algae. J. Dairy Sci. 2010, 93, 1655–1667. [Google Scholar] [CrossRef]
- Bichi, E.; Hervás, G.; Toral, P.G.; Loor, J.J.; Frutos, P. Milk fat depression induced by dietary marine algae in dairy ewes: Persistency of milk fatty acid composition and animal performance responses. J. Dairy Sci. 2013, 96, 524–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noike, T.; Ko, I.B.; Yokoyama, S.; Kohno, Y.; Li, Y.Y. Continuous hydrogen production from organic waste. Water Sci. Technol. 2005, 52, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhu, D.; Li, K.; Yang, Y.; Lei, Z.; Zhang, Z. Soybean curd residue: Utilization, and related limiting factors. IRSN Ind. Eng. 2013, 64, 968–973. [Google Scholar] [CrossRef]
- Redondo-Cuenca, A.; Villanueva-Suarez, M.J.; Mateos-Aparicio, I. Soybean seeds and its by-product okara as sources of dietary fibre. Measurement by AOAC and Englyst methods. Food Chem. 2008, 108, 1099–1105. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, V.E.A.; Ng, P.K.W.; Bennink, M.R. Effects of extrusion on dietary fiber and isoflavone contents of wheat extrudets enriched with wet okara. Cereal Chem. 2000, 77, 237–240. [Google Scholar] [CrossRef]
- Motawe, H.F.A.P.; El Shinnawy, A.M.; El Afifi, T.M.; Hashem, N.A.; Abu Zaid, A.A.M. Utilization of okara meal as a source of plant protein in broiler diets. J. Anim. Poult. Prod. Mansoura Univ. 2012, 3, 127–136. [Google Scholar] [CrossRef]
- Almaraz, J.J.; Zhou, X.M.; Mabood, F.; Mandramootoo, C.; Rochette, P.; Mao, B.-L.; Smith, D.L. Greenhouse gas fluxes associated with soybean production under two tillage systems in Southwestern Quebec. Soil Till. Res. 2009, 104, 134–139. [Google Scholar] [CrossRef]
- Cuadros, F.; López-Rodríguez, F.; Ruiz-Celma, A.; Rubiales, F.; González-González, A. Recycling, reuse and energetic valuation of meat industry wastes in Extremadura (Spain). Resour. Conserv. Recy. 2011, 55, 393–399. [Google Scholar] [CrossRef]
- Song, C.; Kitamura, Y.; Li, S.; Ogasawara, K. Design of a cryogenic CO2 capture system based on Stirling coolers. Int. J. Greenh. Gas Contr. 2012, 7, 107–114. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Shimizu, N.; Kimura, T. The viscoelastic properties of soybean curd (tofu) as affected by soymilk concentration and type of coagulant. Inter. J. Food Sci. Technol. 2005, 40, 385–390. [Google Scholar] [CrossRef]
- Zang, Y.; Santana, R.A.V.; Moura, D.C.; Galväo, J.G.B., Jr.; Brito, A.F. Replacing soybean meal with okara meal: Effects on production, milk fatty acid and plasma amino acid profile, and nutrient utilization in dairy cows. J. Dairy Sci. 2020, 104. [Google Scholar] [CrossRef]
- Quitain, A.T.; Oro, K.; Katoh, S.; Moriyoshi, T. Recovery of oil components of okara by ethanol-modified supercritical carbon dioxide extraction. Bioresour. Technol. 2006, 97, 1509–1514. [Google Scholar] [CrossRef] [PubMed]
- Vahvaselkä, M.; Laakso, S. Production of cis-9, trans11-conjugated linoleic acid in camelina meal and okara by an oat-assisted microbial process. J. Agric. Food Chem. 2010, 58, 2479–2482. [Google Scholar] [CrossRef] [PubMed]
- Brossillon, V.; Reis, S.F.; Moura, D.C.; Galvão, J.G.B., Jr.; Oliveira, A.S.; Côrtes, C.; Brito, A.F. Production, milk and plasma fatty acid profile, and nutrient utilization in Jersey cows fed flaxseed oil and corn grain with different particle size. J. Dairy Sci. 2018, 101, 2127–2143. [Google Scholar] [CrossRef]
- Kim, K.H.; Kim, S.J.; Jeon, B.T.; Kim, D.H.; Oh, M.R.; Park, P.J.; Kweon, H.J.; Oh, B.Y.; Hur, S.J.; Moon, S.H. Effects of dietary soybean curd residue on the growth performance and carcass characteristics in Hanwoo (Bos taurus coreanae) steer. Afr. J. Agric. Res. 2012, 7, 4331–4336. [Google Scholar] [CrossRef]
- Rahman, M.M.; Nakagawa, T.; Abdullah, R.B.; Embong, W.K.W.; Akashi, R. Feed intake and growth performance of goats supplemented with soy waste. Pesqui. Agropecu. Bras. 2014, 49, 554–558. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; Rahman, M.R.; Nakagawa, T.; Abdullah, R.B.; Khadijah, W.E.W.; Akashi, R. Effects of wet soya waste supplementation on the intake, growth and reproduction of goats fed Napier grass. Anim. Feed Sci. Technol. 2015, 199, 104–112. [Google Scholar] [CrossRef]
- Harthan, L.B.; Cherney, D.J.R. Okara as a protein supplement affects feed intake and milk composition of ewes and growth performance of lambs. Anim. Nutr. 2017, 3, 171–174. [Google Scholar] [CrossRef]
- Eliyahu, D.; Yosef, E.; Weinberg, Z.G.; Hen, Y.; Nikbachat, M.; Solomon, R.; Mabjeesh, S.J.; Miron, J. Composition, preservation and digestibility by sheep of wet by-products from the food industry. Anim. Feed Sci. Technol. 2015, 207, 1–9. [Google Scholar] [CrossRef]
- Woods, V.B.; Fearon, A.N. Dietary sources of unsaturated fatty acids for animals and their transfer into meat, milk and eggs: A review. Livest. Sci. 2009, 126, 1–20. [Google Scholar] [CrossRef]
- Hurtaud, C.; Peyraud, J.L. Effects of feeding camelina (seeds or meal) on milk fatty acids composition and butter spreadability. J. Dairy Sci. 2007, 90, 5134–5145. [Google Scholar] [CrossRef] [PubMed]
- Bernard, L.; Bonnet, M.; Delavaud, C.; Delosiere, M.; Ferlay, A.; Fougere, H.; Graulet, B. Milk fat globule in ruminant: Major and minor compounds, nutritional regulation and differences among species. Eur. J. Lipid Sci. Technol. 2018, 120, 1700039. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, M.F.; Sánchez-García, A.; Salas, J.J.; Garcés, R.; Martínez-Force, E. Characterization of the morphological changes and fatty acid profile of developing Camelina sativa seeds. Ind. Crop. Prod. 2013, 20, 673–679. [Google Scholar] [CrossRef]
- Moser, B. Camelina (Camelina sativa L.) oil as a biofuels feedstock: Golden opportunity or false hope? Lipid Technol. 2010, 22, 270–273. [Google Scholar] [CrossRef]
- Fröhlich, A.; Rice, B. Evaluation of Camelina sativa oil as a feedstock for biodiesel production. Ind. Crop. Prod. 2005, 21, 25–31. [Google Scholar] [CrossRef]
- Zubr, J. Qualitative variation of Camelina sativa seed from different locations. Ind. Crop. Prod. 2003, 17, 161–169. [Google Scholar] [CrossRef]
- Vollmann, J.; Moritz, T.; Kargl, C.; Baumgartner, S.; Wagentristl, H. Agronomic evaluation of Camelina genotypes selected for seed quality characteristics. Ind. Crop. Prod. 2007, 26, 270–277. [Google Scholar] [CrossRef]
- Bansal, S.; Durrett, T.P. Camelina sativa: An ideal platform for the metabolic engineering and field production of industrial lipids. Biochimie 2016, 120, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Sarramonne, J.P.; Gervais, R.; Benchaar, C.; Chouinard, P.Y. Lactation performance and milk fatty acid composition of lactating dairy cows fed Camelina sativa seeds or expeller. Anim. Feed Sci. Technol. 2020, 270, 114697. [Google Scholar] [CrossRef]
- Russo, R.; Reggiani, R. Glucosinolates and sinapine in camelina meal. Food Nutr. Sci. 2017, 8, 1063–1073. [Google Scholar] [CrossRef] [Green Version]
- Halmemies-Beauchet-Filleau, A.; Kokkonen, T.; Lampi, A.M.; Toivonen, V.; Shingfield, K.J.; Vanhatalo, A. Effect of plant oils and camelina expeller on milk fatty acid composition in lactating cows fed diets based on red clover silage. J. Dairy Sci. 2011, 94, 4413–4430. [Google Scholar] [CrossRef]
- Mihhejev, K.; Henno, M.; Ots, M.; Rihma, E.; Elias, P.; Kuusik, S.; Kärt, O. Effects of fat-rich oil cakes on cheese fatty acid composition, and on cheese quality. Vet. Zootec. 2007, 40, 55–61. [Google Scholar]
- Pikul, J.; Wojtowski, J.; Dankow, R.; Teichert, J.; Czyzak-Runowska, G.; Cais-Sokolinska, D.; Cieslak, A.; Szumacher-Strabel, M.; Bagnicka, E. The effect of false flax (Camelina sativa) cake dietary supplementation in dairy goats on fatty acid profile of kefir. Small Rumin. Res. 2014, 122, 44–49. [Google Scholar] [CrossRef]
- Szumacher-Strabel, M.; Cieślak, A.; Zmora, P.; Pers-Kamczyc, E.; Bielinska, S.; Stanisz, M.; Wojtowski, J. Camelina sativa cake improved unsaturated fatty acids in ewe’s milk. J. Sci. Food Agric. 2011, 91, 2031–2037. [Google Scholar] [CrossRef]
- Halmemies-Beauchet-Filleau, A.; Shingfield, K.J.; Simpura, I.; Kokkonen, T.; Jaakkola, S.; Toivonen, V.; Vanhatalo, A. Effect of incremental amounts of camelina oil on milk fatty acid composition in lactating cows fed diets based on a mixture of grass and red clover silage and concentrates containing camelina expeller. J. Dairy Sci. 2017, 100, 305–324. [Google Scholar] [CrossRef] [Green Version]
- Willcox, J.K.; Ash, S.L.; Catignani, G.L. Antioxidants and prevention of chronic disease. Crit. Rev. Food Sci. Nutr. 2004, 44, 275–295. [Google Scholar] [CrossRef]
- Alenisan, M.A.; Alqattan, H.H.; Tolbah, L.S.; Shori, A.B. Antioxidant properties of dairy products fortified with natural additives: A review. J. Assn. Arab. Univ. Basic Appl. Sci. 2017, 24, 101–106. [Google Scholar] [CrossRef]
- Vuazour, D.; Rodriguez-Mateous, A.; Corona, G.; Oruna-Concha, M.J.; Spencer, J.P.E. Polyphenols and human health: Prevention of disease and mechanisms of action. Nutrients 2010, 2, 1106–1131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chedea, V.S.; Pelmus, R.S.; Cismileanu, A.E.; Pistol, G.C.; Palade, L.M.; Taranu, I. Total polyphenols content, antioxidant activity and stability of a grape pomace incorporated in animal feed. Anim. Sci. Biotech. 2016, 49, 1–5. [Google Scholar]
- Khiaosa-ard, R.; Metzler-Zebeli, B.U.; Ahmed, S.; Muro-Reyes, A.; Deckardt, K.; Chizzola, R.; Böhm, J.; Zebeli, Q. Fortification of dried distillers grains plus solubles with grape seed meal in the diet modulates methane mitigation and rumen microbiota in Rusitec. J. Dairy Sci. 2015, 98, 2611–2626. [Google Scholar] [CrossRef] [Green Version]
- Ragni, M.; Vicenti, A.; Melodia, L.; Marsico, G. Use of grape seed flour in feed for lambs and effects on performance and meat quality. APCBEE Procedia 2014, 8, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Nudda, A.; Correddu, F.; Marzano, A.; Battacone, G.; Nicolussi, P.; Bonelli, P.; Pulina, G. Effects of diets containing grape seed, linseed, or both on milk production traits, liver and kidney activities, and immunity of lactating dairy ewes. J. Dairy Sci. 2015, 98, 1157–1166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Correddu, F.; Gaspa, G.; Pulina, G.; Nudda, A. Grape seed and linseed, alone and in combination, enhance unsaturated fatty acids in the milk of Sarda dairy sheep. J. Dairy Sci. 2016, 9, 1725–1735. [Google Scholar] [CrossRef]
- Correddu, F.; Nudda, A.; Manca, M.G.; Pulina, G.; Dalsgaard, T.K. Light-induced lipid oxidation in sheep milk: Effects of dietary grape seed and linseed, alone or in combination, on milk oxidative stability. J. Agric. Food Chem. 2015, 63, 3980–3986. [Google Scholar] [CrossRef] [PubMed]
- Palmquist, D.R.; Jenkins, T.C. A 100-year review: Fat feeding of dairy cows. J. Dairy Sci. 2017, 100, 10061–10077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majewska, P.; Kowalik, B. Growth performance, carcass characteristics, fatty acid composition, and blood biochemical parameters of lamb fed diet with the addition of lingonberry leaves and oak bark. Eur. J. Lipid Sci. Technol. 2020, 122, 1900273. [Google Scholar] [CrossRef]
- Vasta, V.; Daghio, M.; Cappucci, A.; Buccioni, A.; Serra, A.; Vitti, C.; Mele, M. Invited review: Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: Experimental evidence and methodological approaches. J. Dairy Sci. 2019, 102, 3781–3804. [Google Scholar] [CrossRef]
- Morales, R.; Ungerfeld, E.M. Use of tannins to improve fatty acids profile of meat and milk quality in ruminants: A review. Chil. J. Agric. Res. 2015, 75, 239–248. [Google Scholar] [CrossRef] [Green Version]
- Frutos, P.; Hervás, G.; Giráldez, F.J.; Mantecón, A.R. Tannins and ruminant nutrition. Span. J. Agric. Res. 2004, 2, 191–202. [Google Scholar] [CrossRef] [Green Version]
- Vasta, V.; Mele, M.; Serra, A.; Scerra, M.; Luciano, G.; Lanza, M.; Priolo, A. Metabolic fate of fatty acids involved in ruminal biohydrogenation in sheep fed concentrate or herbage with or without tannins. J. Anim. Sci. 2009, 87, 2674–2684. [Google Scholar] [CrossRef] [Green Version]
- Focant, M.; Froidmont, E.; Archambeau, Q.; Dang Van, Q.C.; Larondelle, Y. The effect of oak tannin (Quercus robur) and hops (Humulus lupulus) on dietary nitrogen efficiency, methane emission, and milk fatty acid composition of dairy cows fed a low-protein diet including linseed. J. Dairy Sci. 2019, 102, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Bhatta, R.; Uyeno, Y.; Tajima, K.; Takenaka, A.; Yabumoto, Y.; Nonaka, I.; Enishi, O.; Kurihara, M. Difference in the nature of tannins on in vitroC ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal populations. J. Dairy Sci. 2009, 92, 5512–5522. [Google Scholar] [CrossRef] [Green Version]
- Patra, A.K.; Saxena, J. Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. J. Sci. Food Agric. 2011, 91, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Jayanegara, A.; Leiber, F.; Kreuzer, M. Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. J. Anim. Physiol. Anim. Nutr. 2012, 96, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Benchaar, C.; Greathead, H. Essential oils and opportunities to mitigate enteric methane emissions from ruminants. Anim. Feed Sci. Technol. 2011, 166, 338–355. [Google Scholar] [CrossRef]
- Bosabalidis, A.M. Structural features of Origanum sp. In Medicinal and Aromatic Plants—Industrial Profiles, Oregano. The Genera Origanum and Lippia; Kintzios, S.E., Ed.; Taylor & Francis: London, UK; New York, NY, USA, 2002; pp. 11–64. [Google Scholar]
- Horky, P.; Skalickova, S.; Smerkova, K.; Skladanka, J. Essential oils as a feed additives: Pharmacokinetics and potential toxicity in monogastric animals. Animals 2019, 9, 352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veres, K.; Varga, E.; Dobos, Á.; Hajdú, Z.; Máthé, I.; Németh, É.; Szabó, K. Investigation of the composition and stability of the essential oils of Origanum vulgare ssp. vulgare L. and O. vulgare ssp. hirtum (Link) Ietswaart. Chromatographia 2011, 57, 95–98. [Google Scholar] [CrossRef]
- Lukas, B.; Schmiderer, C.; Novak, J. Essential oil diversity of European Origanum vulgare L. (Lamiaceae). Phytochemistry 2015, 119, 32–40. [Google Scholar] [CrossRef]
- Olijhoek, D.W.; Hellwing, A.L.F.; Grevsen, K.; Haveman, L.S.; Chowdhury, M.R.; Løvendahl, P.; Weisbjerg, M.R.; Noel, S.L.; Højberg, O.; Wiking, L.; et al. Effect of dried oregano (Origanum vulgare L.) plant material in feed on methane production, rumen fermentation, nutrient digestibility, and milk fatty acid composition in dairy cows. J. Dairy Sci. 2019, 102, 9902–9918. [Google Scholar] [CrossRef]
- Tekippe, J.A.; Hristov, A.N.; Heyler, K.S.; Cassidy, T.W.; Zheljazkov, V.D.; Ferreira, J.F.S.; Karnati, S.K.; Varga, G.A. Rumen fermentation and production effects of Origanum vulgare L. leaves in lactating dairy cows. J. Dairy Sci. 2011, 94, 5065–5079. [Google Scholar] [CrossRef] [Green Version]
- Lejonklev, J.; Kidmose, U.; Jensen, S.; Petersen, M.A.; Hellwing, A.L.F.; Mortensen, G.; Weisbjerg, M.R.; Larsen, M.K. Effect of oregano and caraway essential oils on the production and flavor of cow milk. J. Dairy Sci. 2016, 99, 7898–7903. [Google Scholar] [CrossRef] [PubMed]
- Hristov, A.N.; Lee, C.; Cassidy, T.T.; Heyler, K.; Tekippe, J.A.; Varga, G.A.; Corl, B.; Brandt, R.C. Effect of Origanum vulgare L. leaves on rumen fermentation, production, and milk fatty acid composition in lactating dairy cows. J. Dairy Sci. 2013, 96, 1189–1202. [Google Scholar] [CrossRef] [PubMed]
- Kolling, G.J.; Stivanin, S.C.B.; Gabbi, A.M.; Machado, F.S.; Ferreira, A.L.; Campos, M.M.; Tomich, T.R.; Cunha, C.S.; Dill, S.W.; Pereira, L.G.R.; et al. Performance and methane emissions in dairy cows fed oregano and green tea extracts as feed additives. J. Dairy Sci. 2018, 101, 4221–4234. [Google Scholar] [CrossRef] [PubMed]
- Calsamiglia, S.; Busquet, M.; Cardozo, P.W.; Castillejos, L.; Ferret, A. Invited review: Essential oils as modifiers of rumen microbial fermentation. J. Dairy Sci. 2007, 90, 2580–2595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavrenčič, A.; Levart, A.; Košir, I.J.; Čerenak, A. Influence of two hop (Humulus lupulus L.) varieties on in vitro dry matter and crude protein degradability and digestibility in ruminants. J. Sci. Food Agric. 2014, 94, 1248–1252. [Google Scholar] [CrossRef]
- Narvaez, N.; Wang, Y.; Xu, Z.; Alexander, T.; Garden, S.; McAllister, T. Effects of hop varieties on ruminal fermentation and bacterial community in an artificial rumen (rusitec). J. Sci. Food Agric. 2013, 93, 45–52. [Google Scholar] [CrossRef]
- Dang Van, Q.C.; Bejarano, L.; Mignolet, E.; Coulmier, D.; Froidmont, E.; Larondelle, Y.; Focant, M. Effectiveness of extruded rapeseed associated with an alfalfa protein concentrate in enhancing the bovine milk fatty acid composition. J. Dairy Sci. 2011, 94, 4005–4015. [Google Scholar] [CrossRef]
- Nefzaoui, A.; Ben Salem, H. Forage, fodder, and animal nutrition. In Cacti: Biology and Uses; Nobel, P.S., Ed.; University of California Press Ltd.: Oakland, CA, USA, 2002; pp. 199–210. [Google Scholar]
- Sá, W.C.C.S.; Santos, E.M.; Oliveira, J.S.; Perazzo, A.F. Production of spineless cactus in brazilian semiarid. In New Perspectives in Forage Crops; Edvan, R.L., Bezerra, L.R., Eds.; IntechOpen: London, UK, 2018; pp. 25–50. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, M.A.; Bispo, S.V.; Filho, R.R.R.; Urbano, S.A.; Costa, C.T.F. The use of cactus as forage for dairy cows in semi-arid regions of Brazil. In Organic Farming and Food Production; Konvalina, P., Ed.; IntechOpen: London, UK, 2012; pp. 169–189. [Google Scholar] [CrossRef] [Green Version]
- Gama, M.A.S.; de Paula, T.A.; Véras, A.S.C.; Guido, S.I.; Borges, C.A.V.; Antoniassi, R.; Lopes, F.C.F.; Neves, M.L.M.W.; Ferreira, M.D.A. Partially replacing sorghum silage with cactus (Opuntia stricta) cladodes in a soybean oil-supplemented diet markedly increases trans-11 18:1, cis-9, trans-11 CLA and 18:2 n-6 contents in cow milk. J. Anim. Physiol. Anim. Nutr. 2021, 105, 232–246. [Google Scholar] [CrossRef]
- Freitas, W.R.; Gama, M.A.S.; Silva, J.L.; Véras, A.S.C.; Chagas, J.C.C.; Conceição, M.G.; Almeida, G.A.P.; Calsavara, A.F.; Alves, A.M.S.V.; Ferreira, M.A.F. Milk fatty acid profile of dairy cows fed diets based on sugarcane bagasse in the Brazilian region. Chil. J. Agric. Res. 2019, 79, 464–472. [Google Scholar] [CrossRef]
- Souza, S.M.; Lopes, F.C.F.; Valadares Filho, S.C.; Gama, M.A.S.; Rennó, L.N.; Rodrigues, J.P.P. Milk fatty acid composition of Holstein x Gyr dairy cows fed sugarcane-based diets containing citrus pulp supplemented with sunflower oil. Semina: Ciências Agrárias 2019, 40, 1663–1680. [Google Scholar] [CrossRef] [Green Version]
- Qiu, X.; Eastridge, M.L.; Firkins, J.L. Effects of dry matter intake, addition of buffer, and source of fat on duodenal flow and concentration of conjugated linoleic acid and trans-11 C18:1 in milk. J. Dairy Sci. 2004, 87, 4278–4286. [Google Scholar] [CrossRef] [Green Version]
- Astello-García, M.G.; Cervantes, I.; Nair, V.; Santos-Díaz, M.; ReyesAgüero, A.; Guéraud, F.; Negre-Salvayre, A.; Rossignol, M.; Cisneros Zevallos, L.; Barba de La Rosa, A.P. Chemical composition and phenolic compounds profile of cladodes from Opuntia spp. cultivars with different domestication gradient. J. Food Compos. Anal. 2015, 43, 119–130. [Google Scholar] [CrossRef]
- Bakari, S.; Daoud, A.; Felhi, S.; Smaoui, S.; Gharsallah, N.; Kadri, A. Proximate analysis, mineral composition, phytochemical contents, antioxidant and antimicrobial activities and GC-MS investigation of various solvent extracts of cactus cladode. Food Sci. Technol. 2017, 37, 286–293. [Google Scholar] [CrossRef] [Green Version]
- Alves, F.A.L.; Andrade, A.P.; Bruno, R.L.A.; Silva, M.G.V.; Souza, M.F.V.; Santos, D.C. Seasonal variability of phenolic compounds and antioxidant activity in prickly pear cladodes of Opuntia and Nopalea genres. Food Sci. Technol. 2018, 37, 536–543. [Google Scholar] [CrossRef] [Green Version]
- Izuegbuna, O.; Otunola, G.; Bradley, G. Chemical composition, antioxidant, antiinflammatory, and cytotoxic activities of opuntia stricta cladodes. PLoS ONE 2019, 14, e0209682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryszak, M.; Szumacher-Strabel, M.; Huang, H.; Pawlak, P.; Lechniak, D.; Kołodziejski, P.; Yanza, Y.R.; Patra, A.K.; Váradyová, Z.; Cieslak, A. Lupinus angustifolius seed meal supplemented to dairy cow diet improves fatty acid composition in milk and mitigates methane production. Anim. Feed Sci. Technol. 2020, 267, 114590. [Google Scholar] [CrossRef]
- Monteiro, M.R.P.; Costa, A.B.P.; Campos, S.F.; Silva, M.R.; Silva, C.O.; Martino, H.S.D.; Silvestre, M.P.C. Evaluation of the chemical composition, protein quality and digestibility of lupin (Lupinus albus and Lupinus angustifolius). O Mundo Saúde 2014, 38, 251. [Google Scholar] [CrossRef] [Green Version]
- Bähr, M.; Fechner, A.; Hasenkopf, K.; Mittermaier, S.; Jahreis, G. Chemical composition of dehulled seeds of selected lupine cultivars in comparison to pea and soya bean. LWT Food Sci. Technol. Res. 2014, 59, 587. [Google Scholar] [CrossRef]
- Księżak, J.; Staniak, M.; Bojarszczuk, J. Nutrient contents in yellow lupine (Lupinus luteus L.) and blue lupine (Lupinus angustifolius L.) cultivars depending on habitat conditions. J. Environ. Stud. 2018, 27, 1145–1153. [Google Scholar] [CrossRef]
- Masucci, F.; Di Francia, A.; Romano, R.; di Serracapriola, M.M.; Lambiase, G.; Varricchio, M.L.; Proto, V. Effect of Lupinus albus as protein supplement on yield, constituents, clotting properties and fatty acid composition in ewes’ milk. Small Rumin. Res. 2006, 65, 251–259. [Google Scholar] [CrossRef] [Green Version]
- Staerfl, S.M.; Amelchanka, S.L.; Kälber, T.; Soliva, C.R.; Kreuzer, M.; Zeitz, J.O. Effect of feeding dried high-sugar ryegrass (‘AberMagic’) on methane and urinary nitrogen emissions of primiparous cows. Livest. Sci. 2012, 150, 293–301. [Google Scholar] [CrossRef]
- Innosa, D.; Ianni, A.; Faccia, M.; Martino, C.; Grotta, L.; Saletti, M.A.; Pomilio, F.; Martino, G. Physical, nutritional, and sensory properties of cheese obtained from goats fed a dietary supplementation with olive leaves. Animals 2020, 10, 2238. [Google Scholar] [CrossRef]
- Özcan, M.M.; Matthäus, B. A review: Benefit and bioactive properties of olive (Olea europaea L.) leaves. Eur. Food Res. Technol. 2017, 243, 89–99. [Google Scholar] [CrossRef]
- Taamalli, A.; Arráez-Román, D.; Barrajón-Catalán, E.; Ruiz-Torres, V.; Pérez-Sánchez, A.; Herrero, M.; Ibañez, E.; Micol, V.; Zarrouk, M.; Segura-Carretero, A.; et al. Use of advanced techniques for the extraction of phenolic compounds from Tunisian olive leaves: Phenolic composition and cytotoxicity against human breast cancer cells. Food Chem. Toxicol. 2012, 50, 1817–1825. [Google Scholar] [CrossRef] [Green Version]
- Lama-Muñoz, A.; del Mar Contreras, M.; Espínola, F.; Moya, M.; Romero, I.; Castro, E. Content of phenolic compounds and mannitol in olive leaves extracts from six Spanish cultivars: Extraction with the Soxhlet method and pressurized liquids. Food Chem. 2020, 320, 1–9. [Google Scholar] [CrossRef]
- Aboamer, A.A.; Hend, A.A.; Azzaz, H.H.; Alzahar, H.; Murad, H.A. Impact of urea-treated olive trees by-products on Barki Ewe’s nutrients digestibility and milk productivity. Egypt. J. Nutr. Feeds. 2018, 21, 613–623. [Google Scholar] [CrossRef]
- Talhaoui, N.; Vezza, T.; Gómez-Caravaca, A.M.; Fernández-Gutiérrez, A.; Gálvez, J.; Segura-Carretero, A. Phenolic compounds and in vitro immunomodulatory properties of three Andalusian olive leaf extracts. J. Funct. Foods. 2016, 22, 270–277. [Google Scholar] [CrossRef]
- Şahin, S.; Bilgin, M. A review: Olive tree (Olea europaea L.) leaf as a waste by-product of table olive and olive oil industry. J. Sci. Food Agric. 2017, 98, 1271–1279. [Google Scholar] [CrossRef]
- Rahmanian, N.; Jafari, S.M.; Wani, T.A. Bioactive profile, dehydration, extraction and application of the bioactive components of olive leaves. Trends Food Sci. Technol. 2015, 42, 150–172. [Google Scholar] [CrossRef]
- Souilem, S.; Fki, I.; Kobayashi, I.; Khalid, N.; Neves, M.A.; Isoda, H.; Sayadi, S.; Nakajima, M. Emerging technologies for recovery of value-added components from olive leaves and their applications in food/feed industries. Food Bioprocess. Technol. 2017, 10, 229–248. [Google Scholar] [CrossRef]
- Birkinshaw, A.; Schwarm, A.; Marquardt, S.; Kreuzer, M.; Terranova, M. Rapid responses in bovine milk fatty acid composition and phenol content to various tanniferous forages. J. Anim. Feed Sci. 2020, 29, 297–305. [Google Scholar] [CrossRef]
- Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef]
- Vahmani, P.; Fredeen, A.H.; Glover, K.E. Effect of supplementation with fish oil or microalgae on fatty acid composition of milk from cows managed in confinement or pasture systems. J. Dairy Sci. 2013, 96, 6660–6670. [Google Scholar] [CrossRef] [Green Version]
- Moran, C.A.; Morlacchini, M.; Keegan, J.D.; Fusconi, G. The effect of dietary supplementation with Aurantiochytrium limacinum on lactating dairy cows in terms of animal health, productivity and milk composition. J. Anim. Physiol. Anim. Nutr. 2018, 102, 576–590. [Google Scholar] [CrossRef] [Green Version]
- Boeckaert, C.; Vlaeminck, B.; Dijkstra, J.; Issa-Zacharia, A.; Van Nespen, T.; Van Straalen, W.; Fievez, V. Effect of dietary starch or micro algae supplementation on rumen fermentation and milk fatty acid composition of dairy cows. J. Dairy Sci. 2008, 91, 4714–4727. [Google Scholar] [CrossRef] [Green Version]
- Antaya, N.T.; Soder, K.J.; Kraft, J.; Whitehouse, N.L.; Guindon, N.E.; Erickson, P.S.; Conroy, A.B.; Brito, A.F. Incremental amounts of Ascophyllum nodosum meal do not improve animal performance but do increase milk iodine output in early lactation dairy cows fed high-forage diets. J. Dairy Sci. 2015, 98, 1991–2004. [Google Scholar] [CrossRef] [Green Version]
- Pajor, F.; Egerszegi, I.; Szűcs, Á.; Póti, P.; Bodnár, Á. Effect of marine algae supplementation on somatic cell count, prevalence of udder pathogens, and fatty acid profile of dairy goats’ milk. Animals 2021, 11, 1097. [Google Scholar] [CrossRef] [PubMed]
- Mavrommatis, A.; Sotirakoglou, K.; Skliros, D.; Flemetakis, E.; Tsiplakou, E. Dose and time response of dietary supplementation with Schizochytrium sp. on the abundances of several microorganisms in the rumen liquid of dairy goats. Livest. Sci. 2021, 247, 104489. [Google Scholar] [CrossRef]
- Soyeurt, H.; Dehareng, F.; Mayeres, P.; Bertozzi, C.; Gengler, N. Variation of delta (9)-desaturase activity in dairy cattle. J. Dairy Sci. 2008, 91, 3211–3224. [Google Scholar] [CrossRef] [Green Version]
- Lock, A.L.; Garnsworthy, P.C. Seasonal variation in milk conjugated linoleic acid and Delta(9)-desaturase activity in dairy cows. Livest. Prod. Sci. 2003, 79, 47–59. [Google Scholar] [CrossRef]
- Moran, C.; Morlacchini, M.; Fusconi, G. Enhancing the DHA content in milk from dairy cows by feeding ALL-G-RICH™. J. Appl. Anim. Nutr. 2017, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Fougère, H.; Delavaud, C.; Bernard, L. Diets supplemented with starch and corn oil, marine algae, or hydrogenated palm oil differentially modulate milk fat secretion and composition in cows and goats: A comparative study. J. Dairy Sci. 2018, 101, 8429–8445. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadrová, S.; Sedláková, K.; Křížová, L.; Malyugina, S. Alternative and Unconventional Feeds in Dairy Diets and Their Effect on Fatty Acid Profile and Health Properties of Milk Fat. Animals 2021, 11, 1817. https://doi.org/10.3390/ani11061817
Hadrová S, Sedláková K, Křížová L, Malyugina S. Alternative and Unconventional Feeds in Dairy Diets and Their Effect on Fatty Acid Profile and Health Properties of Milk Fat. Animals. 2021; 11(6):1817. https://doi.org/10.3390/ani11061817
Chicago/Turabian StyleHadrová, Sylvie, Kateřina Sedláková, Ludmila Křížová, and Svetlana Malyugina. 2021. "Alternative and Unconventional Feeds in Dairy Diets and Their Effect on Fatty Acid Profile and Health Properties of Milk Fat" Animals 11, no. 6: 1817. https://doi.org/10.3390/ani11061817
APA StyleHadrová, S., Sedláková, K., Křížová, L., & Malyugina, S. (2021). Alternative and Unconventional Feeds in Dairy Diets and Their Effect on Fatty Acid Profile and Health Properties of Milk Fat. Animals, 11(6), 1817. https://doi.org/10.3390/ani11061817