The Immediate Effect of Parachute-Resisted Gallop on Heart Rate, Running Speed and Stride Frequency in Dogs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Cases
2.3. Measurements and Equipment
2.4. Procedures
2.5. Data Management and Analysis
3. Results
3.1. Visual Analysis of Graphic Displays
3.2. Effect Size
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farr, B.D.; Ramos, M.T.; Otto, C.M. The Penn Vet Working Dog Center Fit to Work Program: A Formalized Method for Assessing and Developing Foundational Canine Physical Fitness. Front. Vet. Sci. 2020, 7, 470. [Google Scholar] [CrossRef]
- Alves, J.C.; Dos Santos, A.L.P.; Brites, P.; Dias, G.M.L.F. Evaluation of physical fitness in police dogs using an incremental exercise test. Comp. Exerc. Physiol. 2012, 8, 219–226. [Google Scholar] [CrossRef]
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985, 100, 126–131. [Google Scholar]
- Herrera Uribe, J.; Vitger, A.D.; Ritz, C.; Fredholm, M.; Bjørnvad, C.R.; Cirera, S. Physical training and weight loss in dogs lead to transcriptional changes in genes involved in the glucose-transport pathway in muscle and adipose tissues. Vet. J. 2016, 208, 22–27. [Google Scholar] [CrossRef]
- Lee, H.S.; Lee, S.H.; Kim, J.W.; Lee, Y.S.; Lee, B.C.; Oh, H.J.; Kim, J.H. Development of Novel Continuous and Interval Exercise Programs by Applying the FITT-VP Principle in Dogs. Sci. World J. 2020, 2020, 3029591. [Google Scholar] [CrossRef]
- Gazit, I.; Terkel, J. Explosives detection by sniffer dogs following strenuous physical activity. Appl. Anim. Behav. Sci. 2003, 81, 149–161. [Google Scholar] [CrossRef]
- Paoli, A.; Gentil, P.; Moro, T.; Marcolin, G.; Bianco, A. Resistance Training with Single vs. Multi-joint Exercises at Equal Total Load Volume: Effects on Body Composition, Cardiorespiratory Fitness, and Muscle Strength. Front. Physiol. 2017, 8, 1105. [Google Scholar] [CrossRef] [Green Version]
- Upton, D.E. The Effect of Assisted and Resisted Sprint Training on Acceleration and Velocity in Division IA Female Soccer Athletes. J. Strength Cond. Res. 2011, 25, 2645–2652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison, A.J.; Bourke, G. The effect of resisted sprint training on speed and strength performance in male rugby players. J. Strength Cond. Res. 2009, 23, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Alcaraz, P.E.; Palao, J.M.; Elvira, J.; Linthorne, N.P. Effects of Three Types of Resisted Sprint Training Devices on the Kinematics of Sprinting at Maximum Velocity. J. Strength Cond. Res. 2008, 22, 890–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paulson, S.; Braun, W.A. The Influence of Parachute-Resisted Sprinting on Running Mechanics in Collegiate Track Athletes. J. Strength Cond. Res. 2011, 25, 1680–1685. [Google Scholar] [CrossRef] [PubMed]
- Schilling, N.; Carrier, D.R. Function of the epaxial muscles in walking, trotting and galloping dogs: Implications for the evolution of epaxial muscle function in tetrapods. J. Exp. Biol. 2010, 213, 1490–1502. [Google Scholar] [CrossRef] [Green Version]
- Schilling, N.; Hackert, R. Sagittal spine movements of small therian mammals during asymmetrical gaits. J. Exp. Biol. 2006, 209, 3925–3939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, S.B.; Wilson, A.M.; Rhodes, L.; Andrews, J.; Payne, R.C. Functional anatomy and muscle moment arms of the pelvic limb of an elite sprinting athlete: The racing greyhound (Canis familiaris). J. Anat. 2008, 213, 361–372. [Google Scholar] [CrossRef] [PubMed]
- Deban, S.M.; Schilling, N.; Carrier, D.R. Activity of extrinsic limb muscles in dogs at walk, trot and gallop. J. Exp. Biol. 2012, 215, 287–300. [Google Scholar] [CrossRef] [Green Version]
- Radin, L.; Belić, M.; Brkljača Bottegaro, N.; Hrastić, H.; Torti, M.; Vučetić, V.; Stanin, D.; Vrbanac, Z. Heart rate deflection point during incremental test in competitive agility border collies. Vet. Res. Commun. 2015, 39, 137–142. [Google Scholar] [CrossRef]
- Hampson, B.A.; McGowan, C.M. Physiological responses of the Australian cattle dog to mustering exercise. Equine Comp. Exerc. Physiol. 2007, 4, 37–41. [Google Scholar] [CrossRef] [Green Version]
- Hand, M.S.; Thatcher, C.D.; Remillard, R.L.; Roudebush, P.; Novotny, B.J. Small Animal Clinical Nutrition, 5th ed.; Mark Morris Institute: Topeka, KS, USA, 2010. [Google Scholar]
- Miró, F.; Galisteo, A.M.; Garrido-Castro, J.L.; Vivo, J. Surface Electromyography of the Longissimus and Gluteus Medius Muscles in Greyhounds Walking and Trotting on Ground Flat, Up, and Downhill. Animals 2020, 10, 968. [Google Scholar] [CrossRef]
- Lauer, S.K.; Hillman, R.B.; Li, L.; Hosgood, G.L. Effects of treadmill inclination on electromyographic activity and hind limb kinematics in healthy hounds at a walk. Am. J. Vet. Res. 2009, 70, 658–664. [Google Scholar] [CrossRef]
- Breitfuss, K.; Franz, M.; Peham, C.; Bockstahler, B. Surface Electromyography of the Vastus Lateralis, Biceps Femoris, and Gluteus Medius Muscle in Sound Dogs during Walking and Specific Physiotherapeutic Exercises. Vet. Surg. 2014, 44, 588–595. [Google Scholar] [CrossRef]
- McLean, H.; Millis, D.; Levine, D. Surface Electromyography of the Vastus Lateralis, Biceps Femoris, and Gluteus Medius in Dogs During Stance, Walking, Trotting, and Selected Therapeutic Exercises. Front. Vet. Sci. 2019, 6, 211. [Google Scholar] [CrossRef] [Green Version]
- Barnicoat, F.; Wills, A. Effect of water depth on limb kinematics of the domestic dog (Canis lupus familiaris) during underwater treadmill exercise. Comp. Exerc. Physiol. 2016, 12, 199–207. [Google Scholar] [CrossRef]
- Nganvongpanit, K.; Kongsawasdi, S.; Chuatrakoon, B.; Yano, T. Heart rate change during aquatic exercise in small, medium and large healthy dogs. Thai J. Vet. Med. 2011, 41, 455–462. [Google Scholar]
- Skanse Hinge, M. Effect of water height and speed on heart rate of dogs during water treadmill exercise. In Proceedings of the 7th International Symposium on Veterinary Rehabilitation and Physical Therapy, International Association of Veterinary Rehabilitation and Physical Therapy, Vienna, Austria, 15–18 August 2012. [Google Scholar]
- Ready, A.E.; Morgan, G. The Physiological Response of Siberian Husky Dogs to Exercise: Effect of Interval Training. Can. Vet. J. 1984, 25, 86–91. [Google Scholar]
- Orozco, S.C.; Arias, M.P.; Carvajal, P.A.; Gallo-Villegas, J.; Olivera-Angel, M. Efficacy of high-intensity interval training compared with moderate-intensity continuous training on maximal aerobic potency in dogs: Trial protocol for a randomised controlled clinical study. Vet. Rec. Open 2021, 8, e4. [Google Scholar] [CrossRef] [PubMed]
- Kazdin, A. Single-Case Research Designs: Methods for Clinical and Applied Settings, 2nd ed.; Oxford University Press: New York, NY, USA, 2011. [Google Scholar]
- Morley, S. Single Case Methods in Clinical Psychology: A Practical Guide, 1st ed.; Routledge: New York, NY, USA, 2017. [Google Scholar]
- OCEBM Levels of Evidence Working Group. The Oxford Levels of Evidence 2. Oxford Centre for Evidence-Based Medicine. 2009. Available online: https://www.cebm.ox.ac.uk/resources/levels-of-evidence/ocebm-levels-of-evidence (accessed on 9 May 2021).
- Howick, J.; Chalmers, I.; Glasziou, P.; Greenhalgh, T.; Heneghan, C.; Liberati, A.; Moschetti, I.; Phillips, B.; Thornton, H.; Goddhard, O.; et al. The 2011 Oxford CEBM Levels of Evidence (Introductory document). Oxford Centre for Evidence-Based Medicine. 2011. Available online: https://www.cebm.ox.ac.uk/resources/levels-of-evidence/ocebm-levels-of-evidence (accessed on 9 May 2021).
- Hecksteden, A.; Faude, O.; Meyer, T.; Donath, L. How to Construct, Conduct and Analyze an Exercise Training Study? Front. Physiol. 2018, 9, 1007. [Google Scholar] [CrossRef] [PubMed]
- Evans, R.B.; Conzemius, M.G.; Robinson, D.A.; McClure, S.R.; Dahlberg, J.A.; Brown, T.D. Single-case experimental designs in veterinary research. Am. J. Vet. Res. 2006, 67, 189–195. [Google Scholar] [CrossRef]
- Graham, J.E.; Karmarkar, A.M.; Ottenbacher, K.J. Small Sample Research Designs for Evidence-Based Rehabilitation: Issues and Methods. Arch. Phys. Med. Rehabil. 2012, 93, S111–S116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Essner, A.; Sjöström, R.; Ahlgren, E.; Lindmark, B. Validity and reliability of Polar® RS800CX heart rate monitor, measuring heart rate in dogs during standing position and at trot on a treadmill. Physiol. Behav. 2013, 114–115, 1–5. [Google Scholar] [CrossRef]
- Essner, A.; Sjöström, R.; Ahlgren, E.; Gustås, P.; Edge-Hughes, L.; Zetterberg, L.; Hellström, K. Comparison of Polar® RS800CX heart rate monitor and electrocardiogram for measuring inter-beat intervals in healthy dogs. Physiol. Behav. 2015, 138, 247–253. [Google Scholar] [CrossRef]
- Weather at Gävle Airport. Available online: http://www.essk-wx.com/weather/gauges.htm (accessed on 6 June 2018).
- German, A.J.; Holden, S.L.; Moxham, G.L.; Holmes, K.L.; Hackett, R.M.; Rawlings, J.M. A Simple, Reliable Tool for Owners to Assess the Body Condition of Their Dog or Cat. J. Nutr. 2006, 136, 2031S–2033S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freeman, L.M.; Michel, K.E.; Zanghi, B.M.; Boler, B.M.V.; Fages, J. Evaluation of the use of muscle condition score and ultrasonographic measurements for assessment of muscle mass in dogs. Am. J. Vet. Res. 2019, 80, 595–600. [Google Scholar] [CrossRef]
- Tarvainen, M.P.; Niskanen, J.-P.; Lipponen, J.A.; Ranta-Aho, P.O.; Karjalainen, P.A. Kubios HRV—Heart rate variability analysis software. Comput. Methods Progr. Biomed. 2014, 113, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Schöberl, I.; Kortekaas, K.; Schöberl, F.F.; Kotrschal, K. Algorithm-supported visual error correction (AVEC) of heart rate measurements in dogs, Canis lupus familiaris. Behav. Res. Methods 2015, 47, 1356–1364. [Google Scholar] [CrossRef] [Green Version]
- Ottenbacher, K.J.; Hinderer, S.R. Evidence-based practice: Methods to evaluate individual patient improvement. Am. J. Phys. Med. Rehabil. 2001, 80, 786–796. [Google Scholar] [CrossRef] [PubMed]
- Tarlow, K.R.; Penland, A. Outcome Assessment and Inference with the Percentage of Nonoverlapping Data (PND) Single-Case Statistic. Prac. Innov. 2016, 1, 221–233. [Google Scholar] [CrossRef]
- Tate, R.L.; Perdices, M.; Rosenkoetter, U.; Shadish, W.; Vohra, S.; Barlow, D.H.; Horner, R.; Kazdin, A.; Kratochwill, T.; McDonald, S.; et al. The Single-Case Reporting guideline In BEhavioural interventions (SCRIBE) 2016 statement. J. Sch. Psychol. 2016, 56, 133–142. [Google Scholar] [CrossRef] [Green Version]
- Vohra, S.; Shamseer, L.; Sampson, M.; Bukutu, C.; Schmid, C.; Tate, R.; Nikles, J.N.; Zucker, D.R.; Kravitz, R.; Guyatt, G.; et al. CONSORT extension for reporting N-of-1 trials (CENT) 2015 Statement. J. Clin. Epidemiol. 2016, 76, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Scruggs, T.E.; Mastropieri, M.A. Summarizing Single-Subject Research: Issues and Applications. Behav. Modif. 1998, 22, 221–242. [Google Scholar] [CrossRef]
Case ID | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Breed | Flatcoated Retriever | German Shepard | Australian Kelpie | Border Collie | German Shorthaired Pointer |
Sex | female | Male neutered | male neutered | female neutered | male neutered |
Age (years) | 2 | 4 | 1.5 | 10 | 3.5 |
Weight (kg) | 27.5 | 33.0 | 20.0 | 20.0 | 28.7 |
BCS (1–9) | 4 | 4 | 5 | 4 | 4 |
MCS | normal | normal | normal | normal | normal |
Equipment randomisation first run | parachute | without parachute | parachute | parachute | without parachute |
Wind (m/s) | 4.4 | 4.4 | 4.4 | 4.4 | 4.4 |
Temperature (Celsius) | 21.1 | 11.9 | 13.2 | 21.1 | 21.1 |
Humidity (%) | 41 | 38 | 31 | 41 | 41 |
Pressure (hPa) | 1013.5 | 1021.2 | 1021.0 | 1014.0 | 1014.7 |
Case 1 | A1 | C | A2 | B | A3 |
Mean IBI SD) | 975 (355) | 432 (314) | 926 (110) | 392 (128) | 636 (62) |
Mean BPM | 62 | 139 | 65 | 153 | 94 |
IBImin | 597 | 262 | 518 | 255 | 493 |
IBImax | 1296 | 714 | 1195 | 641 | 932 |
Running speed (km/h) | NA | 21 | NA | 35 | NA |
Stride frequency | NA | 23 | NA | 16 | NA |
Case 2 | A1 | B | A2 | C | A3 |
Mean IBI (SD) | 807 (28) | 327 (61) | 667 (88) | 385 (87) | 596 (359) |
Mean BPM | 74 | 183 | 90 | 156 | 101 |
IBImin | 605 | 254 | 539 | 261 | 289 |
IBImax | 1164 | 454 | 788 | 696 | 1081 |
Running speed (km/h) | NA | 38 | NA | 27 | NA |
Stride frequency | NA | 13 | NA | 17 | NA |
Case 3 | A1 | C | A2 | B | A3 |
Mean IBI (SD) | 712 (32) | 371 (66) | 571 (37) | 317 (42) | 527 (12) |
Mean BPM | 84 | 162 | 105 | 189 | 114 |
IBImin | 388 | 252 | 464 | 253 | 435 |
IBImax | 1123 | 991 | 850 | 469 | 728 |
Running speed (km/h) | NA | 19 | NA | 26 | NA |
Stride frequency | NA | 25 | NA | 21 | NA |
Case 4 | A1 | C | A2 | B | A3 |
Mean IBI (SD) | 989 (100) | 514 (81) | 809 (14) | 437 (177) | 1242 (180) |
Mean BPM | 61 | 117 | 74 | 137 | 48 |
IBImin | 813 | 258 | 708 | 251 | 1002 |
IBImax | 1303 | 822 | 1000 | 726 | 1547 |
Running speed (km/h) | NA | 14 | NA | 23 | NA |
Stride frequency | NA | 31 | NA | 19 | NA |
Case 5 | A1 | B | A2 | C | A3 |
Mean IBI (SD) | 600 (37) | 329 (57) | 553 (93) | 388 (153) | 513 (59) |
Mean BPM | 100 | 182 | 108 | 155 | 117 |
IBImin | 528 | 251 | 474 | 252 | 464 |
IBImax | 837 | 501 | 737 | 682 | 567 |
Running speed (km/h) | NA | 27 | NA | 22 | NA |
Stride frequency | NA | 16 | NA | 20 | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hederstedt, S.; McGowan, C.; Essner, A. The Immediate Effect of Parachute-Resisted Gallop on Heart Rate, Running Speed and Stride Frequency in Dogs. Animals 2021, 11, 1983. https://doi.org/10.3390/ani11071983
Hederstedt S, McGowan C, Essner A. The Immediate Effect of Parachute-Resisted Gallop on Heart Rate, Running Speed and Stride Frequency in Dogs. Animals. 2021; 11(7):1983. https://doi.org/10.3390/ani11071983
Chicago/Turabian StyleHederstedt, Sandra, Catherine McGowan, and Ann Essner. 2021. "The Immediate Effect of Parachute-Resisted Gallop on Heart Rate, Running Speed and Stride Frequency in Dogs" Animals 11, no. 7: 1983. https://doi.org/10.3390/ani11071983
APA StyleHederstedt, S., McGowan, C., & Essner, A. (2021). The Immediate Effect of Parachute-Resisted Gallop on Heart Rate, Running Speed and Stride Frequency in Dogs. Animals, 11(7), 1983. https://doi.org/10.3390/ani11071983