Effects of Interval Exercise Training on Serum Biochemistry and Bone Mineral Density in Dogs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Treadmill Adaptation for Dog Safety
2.3. Interval Exercise Program
2.4. Heart Rate Measurement
2.5. Quantitative Computed Tomography (Bone Mineral Density and Muscle Volume)
2.6. Hematology and Serum Biochemistry Parameter Analysis
2.7. Statistical Analyses
3. Results
3.1. Heart Rate
3.2. Bone Mineral Density and Muscle Volume
3.3. Hematological and Serum Biochemistry Parameters
3.4. Correlations between Bone Mineral Density, Muscle Volume, and Serum Biochemistry Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- MacKinnon, M. ‘Sick as a dog’: Zooarchaeological evidence for pet dog health and welfare in the Roman world. World Archaeol. 2010, 42, 290–309. [Google Scholar] [CrossRef]
- Bartges, J.; Kushner, R.F.; Michel, K.E.; Sallis, R.; Day, M.J. One Health Solutions to Obesity in People and Their Pets. J. Comp. Pathol. 2017, 156, 326–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winkle, M.; Johnson, A.; Mills, D. Dog Welfare, Well-Being and Behavior: Considerations for Selection, Evaluation and Suitability for Animal-Assisted Therapy. Animals 2020, 10, 2188. [Google Scholar] [CrossRef] [PubMed]
- Mosier, J.E. Effect of Aging on Body Systems of the Dog. Vet. Clin. N. Am.-Small 1989, 19, 1–12. [Google Scholar] [CrossRef]
- Alansare, A.; Alford, K.; Lee, S.; Church, T.; Jung, H.C. The Effects of High-Intensity Interval Training vs. Moderate-Intensity Continuous Training on Heart Rate Variability in Physically Inactive Adults. Int. J. Environ. Res. Public Health 2018, 15, 1508. [Google Scholar] [CrossRef] [Green Version]
- Marzuca-Nassr, G.N.; Artigas-Arias, M.; Olea, M.A.; SanMartin-Calisto, Y.; Huard, N.; Duran-Vejar, F.; Beltran-Fuentes, F.; Munoz-Fernandez, A.; Alegria-Molina, A.; Sapunar, J.; et al. High-intensity interval training on body composition, functional capacity and biochemical markers in healthy young versus older people. Exp. Gerontol. 2020, 141. [Google Scholar] [CrossRef]
- Lee, H.S.; Oh, H.J.; Lee, S.H.; Kim, J.W.; Kim, J.-H. Comparison of physiological and hematological responses to treadmill exercise in younger and older adult dogs. Korea Inst. Sport Sci. 2019, 30, 677–688. [Google Scholar] [CrossRef]
- Piccione, G.; Casella, S.; Panzera, M.; Giannetto, C.; Fazio, F. Effect of Moderate Treadmill Exercise on Some Physiological Parameters in Untrained Beagle Dogs. Exp. Anim. Tokyo 2012, 61, 511–515. [Google Scholar] [CrossRef] [Green Version]
- Rovira, S.; Munoz, A.; Riber, C.; Benito, M. Heart rate, electrocardiographic parameters and arrhythmias during agility exercises in trained dogs. Rev. Med. Vet. Toulouse 2010, 161, 307–313. [Google Scholar]
- Radin, L.; Belic, M.; Bottegaro, N.B.; Hrastic, H.; Torti, M.; Vucetic, V.; Stanin, D.; Vrbanac, Z. Heart rate deflection point during incremental test in competitive agility border collies. Vet. Res. Commun. 2015, 39, 137–142. [Google Scholar] [CrossRef]
- Freeman, J.V.; Dewey, F.E.; Hadley, D.M.; Myers, J.; Froelicher, V.F. Autonomic nervous system interaction with the cardiovascular system during exercise. Prog. Cardiovasc. Dis. 2006, 48, 342–362. [Google Scholar] [CrossRef]
- Rizzo, M.; Arfuso, F.; Alberghina, D.; Giudice, E.; Gianesella, M.; Piccione, G. Monitoring changes in body surface temperature associated with treadmill exercise in dogs by use of infrared methodology. J. Therm. Biol. 2017, 69, 64–68. [Google Scholar] [CrossRef]
- Restan, A.Z.; Zacche, E.; da Silva, S.B.; Cerqueira, J.A.; Carfiofi, A.C.; Queiroz-Neto, A.; Camacho, A.A.; Ferraz, G.C. Lactate and glucose thresholds and heart rate deflection points for Beagles during intense exercise. Am. J. Vet. Res. 2019, 80, 284–293. [Google Scholar] [CrossRef] [PubMed]
- Bilezikian, J.P. Osteoporosis in men. J. Clin. Endocr. Metab. 1999, 84, 3431–3434. [Google Scholar] [CrossRef] [PubMed]
- Kuwabara, A.; Tanaka, K.; Tsugawa, N.; Nakase, H.; Tsuji, H.; Shide, K.; Kamao, M.; Chiba, T.; Inagaki, N.; Okano, T.; et al. High prevalence of vitamin K and D deficiency and decreased BMD in inflammatory bowel disease. Osteoporos. Int. 2009, 20, 935–942. [Google Scholar] [CrossRef] [PubMed]
- Valimaki, V.V.; Loyttyniemi, E.; Valimaki, M.J. Quantitative ultrasound variables of the heel in Finnish men aged 18-20 yr: Predictors, relationship to bone mineral content, and changes during military service. Osteoporos. Int. 2006, 17, 1763–1771. [Google Scholar] [CrossRef] [PubMed]
- Kida, K.; Osada, N.; Akashi, Y.J.; Sekizuka, H.; Omiya, K.; Miyake, F. The exercise training effects of skeletal muscle strength and muscle volume to improve functional capacity in patients with myocardial infarction. Int. J. Cardiol. 2008, 129, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Laredo, J.D.; El Quessar, A.; Bossard, P.; Vuillemin-Bodaghi, V. Vertebral tumors and pseudotumors. Radiol. Clin. N. Am. 2001, 39, 137–163. [Google Scholar] [CrossRef]
- Lester, M.E.; Urso, M.L.; Evans, R.K.; Pierce, J.R.; Spiering, B.A.; Maresh, C.M.; Hatfield, D.L.; Kraemer, W.J.; Nindl, B.C. Influence of exercise mode and osteogenic index on bone biomarker responses during short-term physical training. Bone 2009, 45, 768–776. [Google Scholar] [CrossRef]
- Burgomaster, K.A.; Howarth, K.R.; Phillips, S.M.; Rakobowchuk, M.; MacDonald, M.J.; Mcgee, S.L.; Gibala, M.J. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J. Physiol. Lond. 2008, 586, 151–160. [Google Scholar] [CrossRef]
- Farias, L.F.; Browne, R.A.V.; Frazao, D.T.; Dantas, T.C.B.; Silva, P.H.M.; Freitas, R.P.A.; Aoki, M.S.; Costa, E.C. Effect of Low-Volume High-Intensity Interval Exercise and Continuous Exercise on Delayed-Onset Muscle Soreness in Untrained Healthy Males. J. Strength Cond. Res. 2019, 33, 774–782. [Google Scholar] [CrossRef]
- Alghadir, A.H.; Aly, F.A.; Gabr, S.A. Effect of moderate aerobic training on bone metabolism indices among adult humans. Pak. J. Med. Sci. 2014, 30, 840–844. [Google Scholar] [CrossRef]
- Bell, K.E.; Seguin, C.; Parise, G.; Baker, S.K.; Phillips, S.M. Day-to-Day Changes in Muscle Protein Synthesis in Recovery From Resistance, Aerobic, and High-Intensity Interval Exercise in Older Men. J. Gerontol. A Biol. 2015, 70, 1024–1029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rauch, F.; Tutlewski, B.; Fricke, O.; Rieger-Wettengl, G.; Schauseil-Zipf, U.; Herkenrath, P.; Neu, C.M.; Schoenau, E. Analysis of cancellous bone turnover by multiple slice analysis at distal radius—A study using peripheral quantitative computed tomography. J. Clin. Densitom. 2001, 4, 257–262. [Google Scholar] [CrossRef]
- Schoenau, E.; Neu, C.M.; Mokov, E.; Wassmer, G.; Manz, F. Influence of puberty on muscle area and cortical bone area of the forearm in boys and girls. J. Clin. Endocr. Metab. 2000, 85, 1095–1098. [Google Scholar] [CrossRef]
- De Decker, S.; Lam, R.; Packer, R.M.A.; Gielen, I.M.V.L.; Volk, H.A. Thoracic and Lumbar Vertebral Bone Mineral Density Changes in a Natural Occurring Dog Model of Diffuse Idiopathic Skeletal Hyperostosis. PLoS ONE 2015, 10, e0124166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chalmers, H.J.; Dykes, N.L.; Lust, G.; Farese, J.P.; Burton-Wurster, N.I.; Williams, A.J.; Todhunter, R.J. Assessment of bone mineral density of the femoral head in dogs with early osteoarthritis. Am. J. Vet. Res. 2006, 67, 796–800. [Google Scholar] [CrossRef]
- Mitsiopoulos, N.; Baumgartner, R.N.; Heymsfield, S.B.; Lyons, W.; Gallagher, D.; Ross, R. Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography. J. Appl. Physiol. 1998, 85, 115–122. [Google Scholar] [CrossRef]
- Woods, G.; Gunz, N.I.; Handel, I.; Liuti, T.; Mellanby, R.J.; Schwarz, T. Computed Tomography Osteodensitometry for Assessment of Bone Mineral Density of the Canine Head-Preliminary Results. Animals 2021, 11, 1413. [Google Scholar] [CrossRef]
- Sutherland-Smith, J.; Hutchinson, D.; Freeman, L.M. Comparison of computed tomographic attenuation values for epaxial muscles in old and young dogs. Am. J. Vet. Res. 2019, 80, 174–177. [Google Scholar] [CrossRef]
- Gordon-Evans, W.J.; Johnson, A.L.; Knap, K.E.; Griffon, D.J. The effect of body condition on postoperative recovery of dachshunds with intervertebral disc disease treated with postoperative physical rehabilitation. Vet. Surg. 2019, 48, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Lee, Y.; Choi, W.; Chang, J.; Kang, J.H.; Na, K.J.; Chang, D.W. Quantitative CT assessment of bone mineral density in dogs with hyperadrenocorticism. J. Vet. Sci. 2015, 16, 531–542. [Google Scholar] [CrossRef] [Green Version]
- Kwon, D.; Kim, J.; Lee, H.; Kim, B.; Han, H.; Oh, H.; Kim, M.; Yoon, H.; Lee, B.; Eom, K. Quantitative computed tomographic evaluation of bone mineral density in beagle dogs: Comparison with dual-energy x-ray absorptiometry as a gold standard. J. Vet. Med. Sci. 2018, 80, 620–628. [Google Scholar] [CrossRef] [Green Version]
- Ferasin, L.; Marcora, S. A pilot study to assess the feasibility of a submaximal exercise test to measure individual response to cardiac medication in dogs with acquired heart failure. Vet. Res. Commun. 2007, 31, 725–737. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Lee, S.H.; Kim, J.W.; Lee, Y.S.; Lee, B.C.; Oh, H.J.; Kim, J.H. Development of Novel Continuous and Interval Exercise Programs by Applying the FITT-VP Principle in Dogs. Sci. World J. 2020, 2020, 3029591. [Google Scholar] [CrossRef]
- Miyazaki, H.; Yoshida, M.; Samura, K.; Matsumoto, H.; Ikemoto, F.; Tagawa, M. Ranges of diurnal variation and the pattern of body temperature, blood pressure and heart rate in laboratory beagle dogs. Exp. Anim. Tokyo 2002, 51, 95–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beerda, B.; Schilder, M.B.H.; van Hooff, J.A.R.A.M.; de Vries, H.W.; Mol, J.A. Behavioural, saliva cortisol and heart rate responses to different types of stimuli in dogs. Appl. Anim. Behav. Sci. 1998, 58, 365–381. [Google Scholar] [CrossRef]
- Hammond, H.K.; Kelly, T.L.; Froelicher, V. Radionuclide imaging correlatives of heart rate impairment during maximal exercise testing. J. Am. Coll. Cardiol. 1983, 2, 826–833. [Google Scholar] [CrossRef] [Green Version]
- Puustjarvi, K.; Karjalainen, P.; Nieminen, J.; Arokoski, J.; Parviainen, M.; Helminen, H.J.; Soimakallio, S. Endurance Training Associated with Slightly Lowered Serum Estradiol Levels Decreases Mineral Density of Canine Skeleton. J. Bone Miner. Res. 1992, 7, 619–624. [Google Scholar] [CrossRef] [PubMed]
- Puustjarvi, K.; Lappalainen, R.; Niemitukia, L.; Arnala, I.; Nieminen, J.; Tammi, M.; Helminen, H.J. Long-distance running alters bone anthropometry, elemental composition and mineral density of young dogs. Scand. J. Med. Sci. Sports 1995, 5, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Bruton, A.; Matute-Llorente, A.; Gonzalez-Aguero, A.; Casajus, J.A.; Vicente-Rodriguez, G. Plyometric exercise and bone health in children and adolescents: A systematic review. World J. Pediatr. 2017, 13, 112–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berry, S.D.; Dufour, A.B.; Travison, T.G.; Zhu, H.; Yehoshua, A.; Barron, R.; Recknor, C.; Samelson, E.J. Changes in bone mineral density (BMD): A longitudinal study of osteoporosis patients in the real-world setting. Arch. Osteoporos. 2018, 13. [Google Scholar] [CrossRef]
- Liang, M.T.C.; Braun, W.; Bassin, S.L.; Dutto, D.; Pontello, A.; Wong, N.D.; Spalding, T.W.; Arnaud, S.B. Effect of High-Impact Aerobics and Strength Training on BMD in Young Women Aged 20-35 Years. Int. J. Sports Med. 2011, 32, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Ghasemalipour, H.; Eizadi, M. The Effect of Aerobic Training on Some Bone Formation Markers (Osteocalcin, Alkaline Phosphatase) in Asthma Treated with Inhaled Corticosteroids. J. Res. Med. Sci. 2018, 20, e58477. [Google Scholar] [CrossRef] [Green Version]
- Berman, A.G.; Hinton, M.J.; Wallace, J.M. Treadmill running and targeted tibial loading differentially improve bone mass in mice. Bone Rep. 2019, 10, 100195. [Google Scholar] [CrossRef]
- Wolff, J. Das gesetz der transformation der knochen. Medicine 1892, 1, 1–152. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.L.; Li, F.B.; Ma, X.L.; Ma, J.X.; Bin, Z.; Yang, Z.; Li, Y.J.; Lv, J.W.; Xinmin, M.M. The Effects of Combined Treatment with Naringin and Treadmill Exercise on Osteoporosis in Ovariectomized Rats. Sci. Rep.-UK 2015, 5. [Google Scholar] [CrossRef] [Green Version]
- Yeh, J.K.; Aloia, J.F.; Chen, M.M.; Tierney, J.M.; Sprintz, S. Influence of Exercise on Cancellous Bone of the Aged Female Rat. J. Bone Miner. Res. 1993, 8, 1117–1125. [Google Scholar] [CrossRef] [PubMed]
- Iwamoto, J.; Takeda, T.; Ichimura, S. Effects of exercise on bone mineral density in mature osteopenic rats. J. Bone Miner. Res. 1998, 13, 1308–1317. [Google Scholar] [CrossRef]
- Martin, R.K.; Albright, J.P.; Clarke, W.R.; Niffenegger, J.A. Load-Carrying Effects on the Adult Beagle Tibia. Med. Sci. Sport Exerc. 1981, 13, 343–349. [Google Scholar] [CrossRef]
- Bennell, K.L.; Malcolm, S.A.; Khan, K.M.; Thomas, S.A.; Reid, S.J.; Brukner, P.D.; Ebeling, P.R.; Wark, J.D. Bone mass and bone turnover in power athletes, endurance athletes, and controls: A 12-month longitudinal study. Bone 1997, 20, 477–484. [Google Scholar] [CrossRef]
- Rudberg, A.; Magnusson, P.; Larsson, L.; Joborn, H. Serum isoforms of bone alkaline phosphatase increase during physical exercise in women. Calcif. Tissue Int. 2000, 66, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Tsuritani, I.; Honda, R.; Ishizaki, M.; Yamada, Y.; Aoshima, K.; Kasuya, M. Serum Bone-Type Alkaline-Phosphatase Activity in Women Living in a Cadmium-Polluted Area. Toxicol. Lett. 1994, 71, 209–216. [Google Scholar]
- Stockham, S.L.; Scott, M.A. Fundamentals of Veterinary Clinical Pathology; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Syakalima, M.; Takiguchi, M.; Yasuda, J.; Hashimoto, A. The age dependent levels of serum ALP isoenzymes and the diagnostic significance of corticosteroid-induced ALP during long-term glucocorticoid treatment. J. Vet. Med. Sci. 1997, 59, 905–909. [Google Scholar] [CrossRef] [Green Version]
- Gala, J.; Diaz-Curiel, M.; de la Piedra, C.; Calero, J. Short- and long-term effects of calcium and exercise on bone mineral density in ovariectomized rats. Brit. J. Nutr. 2001, 86, 521–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terkeltaub, R.A. Inorganic pyrophosphate generation and disposition in pathophysiology. Am. J. Physiol. Cell Physiol. 2001, 281, C1–C11. [Google Scholar] [CrossRef] [PubMed]
- Konopka, A.R.; Suer, M.K.; Wolff, C.A.; Harber, M.P. Markers of Human Skeletal Muscle Mitochondrial Biogenesis and Quality Control: Effects of Age and Aerobic Exercise Training. J. Gerontol. A-Biol. 2014, 69, 371–378. [Google Scholar] [CrossRef] [Green Version]
- Harber, M.P.; Konopka, A.R.; Undem, M.K.; Hinkley, J.M.; Minchev, K.; Kaminsky, L.A.; Trappe, T.A.; Trappe, S. Aerobic exercise training induces skeletal muscle hypertrophy and age-dependent adaptations in myofiber function in young and older men. J. Appl. Physiol. 2012, 113, 1495–1504. [Google Scholar] [CrossRef] [Green Version]
- Blackwell, J.E.M.; Gharahdaghi, N.; Brook, M.S.; Watanabe, S.; Boereboom, C.L.; Doleman, B.; Lund, J.N.; Wilkinson, D.J.; Smith, K.; Atherton, P.J.; et al. The physiological impact of high-intensity interval training in octogenarians with comorbidities. J. Cachexia Sarcopenia Muscle 2021, 12, 866–879. [Google Scholar] [CrossRef]
- Blue, M.N.M.; Smith-Ryan, A.E.; Trexler, E.T.; Hirsch, K.R. The effects of high intensity interval training on muscle size and quality in overweight and obese adults. J. Sci. Med. Sport 2018, 21, 207–212. [Google Scholar] [CrossRef]
- Little, J.P.; Safdar, A.; Bishop, D.; Tarnopolsky, M.A.; Gibala, M.J. An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1 alpha and activates mitochondrial biogenesis in human skeletal muscle. Am. J. Physiol.-Reg. I 2011, 300, R1303–R1310. [Google Scholar] [CrossRef] [Green Version]
- Gurd, B.J.; Perry, C.G.R.; Heigenhauser, G.J.F.; Spriet, L.L.; Bonen, A. High-intensity interval training increases SIRT1 activity in human skeletal muscle. Appl. Physiol. Nutr. Metab. 2010, 35, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.D.; Puigserver, P.; Andersson, U.; Zhang, C.Y.; Adelmant, G.; Mootha, V.; Troy, A.; Cinti, S.; Lowell, B.; Scarpulla, R.C.; et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 1999, 98, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Egan, B.; Carson, B.; Garcia-Roves, P.; Chibalin, A.; Sarsfield, F.; Barron, N.; McCaffrey, N.; Moyna, N.; Zierath, J.; O’Gorman, D.J.J.P. Exercise intensity-dependent regulation of PGC-1α mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle. J. Physiol. 2010, 588, 1779–1790. [Google Scholar] [CrossRef]
- Hoshino, D.; Kitaoka, Y.; Hatta, H.J.T.J.o.P.F.; Medicine, S. High-intensity interval training enhances oxidative capacity and substrate availability in skeletal muscle. J. Phys. Fit. Sports Med. 2016, 5, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Wyckelsma, V.L.; Levinger, I.; McKenna, M.J.; Formosa, L.E.; Ryan, M.T.; Petersen, A.C.; Anderson, M.J.; Murphy, R.M. Preservation of skeletal muscle mitochondrial content in older adults: Relationship between mitochondria, fibre type and high-intensity exercise training. J. Physiol. Lond. 2017, 595, 3345–3359. [Google Scholar] [CrossRef] [Green Version]
- Swanson, K.D.J.; Harper, T.A.M.; McMichael, M.; Fries, R.C.; Lascola, K.M.; Chandler, C.; Schaeffer, D.J.; Chinnadurai, S.K. Development of a perceived exertion scale for dogs using selected physiologic parameters. J. Small Anim. Pract. 2019, 60, 247–253. [Google Scholar] [CrossRef]
Parameters (Unit) | Dogs |
---|---|
No. of Dogs | 6 |
Sex | Male 1 |
Age (months) | 29.1 ± 6.7 2 |
Weight (kg) | 10.9 ± 0.5 |
Parameters (Unit) | Pre-Exercise | Post-Exercise | Rate of Increase (%) 1 |
---|---|---|---|
Femur (HA) | 541.6 ± 16.7 | 610.2 ± 27.8 * | 12.6 |
Vertebra (HA) | 291.4 ± 5.4 | 317.2 ± 6.6 | 8.8 |
Muscle volume (mm2) | 5384.0 ± 890.7 | 5434.0 ± 740.3 | 0.9 |
Parameters (Unit) | Pre-Exercise | Post-Exercise | Reference Range |
---|---|---|---|
White blood cell (K/μL) 1 | 10,110.0 ± 903.4 | 7138.0 ± 568.8 * | 6000–12,000 |
Red blood cell (M/μL) 1 | 660.8 ± 10.14 | 698.8 ± 21.61 | 570–880 |
Hemoglobin (g/dL) 1 | 15.5 ± 0.3 | 16.3 ± 0.6 | 12.9–18.4 |
MCV (fL) 1 | 65.7 ± 0.6 | 67.4 ± 0.6 * | 58.8–71.2 |
MCH (pg) 1 | 23.4 ± 0.1 | 23.3 ± 0.1 | 20.5–24.2 |
MCHC (g/dL) 1 | 35.7 ± 0.3 | 34.5 ± 0.2 * | 31–36.2 |
Calcium (mg/L) 2 | 9.5 ± 0.2 | 9.0 ± 0.0 | 9.0–11.9 |
Phosphorus (mg/L) 2 | 3.9 ± 0.2 | 4.0 ± 0.2 | 1.3–6.3 |
TALP (U/L) 2 | 68.6 ± 9.2 | 81.3 ± 17.2 * | 0–97.9 |
ALT (U/L) 2 | 36.3 ± 3.7 | 41.0 ± 5.0 | 5.8–83.3 |
AST (U/L) 2 | 23.5 ± 1.0 | 33.5 ± 1.6 * | 11.7–42.5 |
BUN (mmol/L) 2 | 14.3 ± 9.3 | 12.3 ± 0.7 | 9.6–31.4 |
Creatinine (mg/L) 2 | 0.7 ± 0.0 | 0.7 ± 0.0 | 0.4–1.3 |
Glucose (mmol/L) 2 | 94.8 ± 3.2 | 96.3 ± 5.4 | 74.5–120 |
Albumin (g/dL) 2 | 3.8 ± 0.1 | 3.8 ± 0.0 | 2.6–4.4 |
Total protein (g/dL) 2 | 6.8 ± 0.2 | 6.7 ± 0.2 | 5.7–7.5 |
Cholesterol (mg/L) 2 | 218.5 ± 23.0 | 208.0 ± 25.3 | 112–312 |
Triglycerides (mmol/L) 2 | 59.8 ± 9.8 | 63.6 ± 12.8 | 21–133 |
Creatine kinase (U/L) 2 | 114.8 ± 5.3 | 214.0 ± 20.8 * | 8–216 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.S.; Kim, J.H.; Oh, H.J.; Kim, J.H. Effects of Interval Exercise Training on Serum Biochemistry and Bone Mineral Density in Dogs. Animals 2021, 11, 2528. https://doi.org/10.3390/ani11092528
Lee HS, Kim JH, Oh HJ, Kim JH. Effects of Interval Exercise Training on Serum Biochemistry and Bone Mineral Density in Dogs. Animals. 2021; 11(9):2528. https://doi.org/10.3390/ani11092528
Chicago/Turabian StyleLee, Hae Sung, Jae Hwan Kim, Hyun Ju Oh, and Jong Hee Kim. 2021. "Effects of Interval Exercise Training on Serum Biochemistry and Bone Mineral Density in Dogs" Animals 11, no. 9: 2528. https://doi.org/10.3390/ani11092528
APA StyleLee, H. S., Kim, J. H., Oh, H. J., & Kim, J. H. (2021). Effects of Interval Exercise Training on Serum Biochemistry and Bone Mineral Density in Dogs. Animals, 11(9), 2528. https://doi.org/10.3390/ani11092528