Causes, Effects and Methods of Monitoring Gas Exchange Disturbances during Equine General Anaesthesia
Abstract
:Simple Summary
Abstract
1. Introduction
Chemical Regulation of Ventilation
2. Reasons for Ventilation Impairment during Anaesthesia
2.1. Hypoventilation
2.2. Atelectasis
2.3. V/Q Mismatch and Shunting
2.4. Dead Space
3. Influence of Hypoxaemia and Hypoxia on Haemodynamics—The Respiratory System after Recovery
3.1. Haemodynamics
3.2. Post-Operative Period
3.3. Respiratory System
4. Influence of Hypercapnia
5. Monitoring of Gas Disturbances
- Observation of mucous membrane colour and capillary refill time
- Pulse oximetry
- Blood gas measurement
- Near infrared spectroscopy (NIRS)
- Observation of respiratory rate and rhythm
- Spirometry
- Blood gas measurement
- Capnography
5.1. Pulse Oximetry
5.2. Near Infrared Spectroscopy (NIRS) ß
5.3. Blood Gas Measurements
5.4. Spirometry
5.5. Capnography
6. Summary
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnston, G.M.; Eastment, J.K.; Wood, J.L.N.; Taylor, P.M. The confidential enquiry into perioperative equine fatalities (CEPEF): Mortality results of Phases 1 and 2. Vet. Anaesth. Analg. 2002, 29, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Brodbelt, D. Perioperative mortality in small animal anaesthesia. Vet. J. 2009, 182, 152–161. [Google Scholar] [CrossRef]
- Koenig, J.; McDonell, W.; Valverde, A. Accuracy of Pulse Oximetry and Capnography in Healthy and Compromised Horses during Spontaneous and Controlled Ventilation. Can. J. Vet. Res. 2003, 67, 169–174. [Google Scholar] [PubMed]
- Gilbert, H.C.; Veder, J.S. Monitoring the anesthetized patient. In Clinical Anesthesia; J. B. Lippincott: Philadephia, PA, USA, 1992; pp. 742–743. [Google Scholar]
- Hubbell, J.A.E.; Muir, W.W. Oxygenation, oxygen delivery and anaesthesia in the horse. Equine Vet. J. 2014, 47, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Nyman, G.; Hedenstierna, G. Ventilation-perfusion relationships in the anaesthetised horse. Equine Vet. J. 1989, 21, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Grosenbaugh, A.D.; Muir, W.W. Cardiorespiratory effects of sevoflurane, isoflurane, and halothane anesthesia in horses. Am. J. Veter Res. 1998, 59, 101–106. [Google Scholar]
- Wagner, P.D. The physiological basis of pulmonary gas exchange: Implications for clinical interpretation of arterial blood gases. Eur. Respir. J. 2014, 45, 227–243. [Google Scholar] [CrossRef] [PubMed]
- Hall, L.W. II Disturbances of Cardiopulmonary Function in Anaesthetised Horses. Equine Vet. J. 1971, 3, 95–98. [Google Scholar] [CrossRef]
- Dupont, J.; Serteyn, D.; Sandersen, C. Prolonged Recovery from General Anesthesia Possibly Related to Persistent Hypoxemia in a Draft Horse. Front. Vet. Sci. 2018, 5, 5. [Google Scholar] [CrossRef]
- McMurphy, R.M.; Cribb, P.H. Alleviation of postanesthetic hypoxemia in the horse. Can. Vet. J. La Rev. Vet. Can. 1989, 30, 37–41. [Google Scholar]
- Yoon, S.; Zuccarello, M.; Rapoport, R.M. pCO2 and pH regulation of cerebral blood flow. Front. Physiol. 2012, 3, 365. [Google Scholar] [CrossRef] [Green Version]
- Bayly, W.M.; Hodgson, D.R.; Schulz, D.A.; Dempsey, J.A.; Gollnick, P.D. Exercise-induced hypercapnia in the horse. J. Appl. Physiol. 1989, 67, 1958–1966. [Google Scholar] [CrossRef] [PubMed]
- Muir, W.W.; Moore, A.C.; Hamlin, R.L. Ventilatory alterations in normal horses in response to changes in inspired oxygen and carbon dioxide. Am. J. Vet. Res. 1975, 36, 155–159. [Google Scholar]
- Pelletier, N.; Leith, D.E. Ventilation and carbon dioxide exchange in exercising horses: Effect of inspired oxygen fraction. J. Appl. Physiol. 1995, 78, 654–662. [Google Scholar] [CrossRef] [PubMed]
- Wagner, A.E. The importance of hypoxaemia and hypercapnia in anaesthetised horses. Equine Vet. Educ. 1993, 5, 207–211. [Google Scholar] [CrossRef]
- Grandy, J.L.; Steffey, E.P.; Hodgson, D.S. Arterial Hypotension and the Development of Postanesthetic Myopathy in Halotane-Anaesthetized Horses. Am. J. Vet. Res. 1987, 48, 192–197. [Google Scholar] [PubMed]
- Brosnan, R.J. Inhaled Anesthetics in Horses. Veterinary Clinics of North. Am. Equine Pract. 2013, 29, 69–87. [Google Scholar] [CrossRef] [Green Version]
- Nyman, G.; Grubb, T.L.; Heinonen, E.; Frendin, J.; Edner, A.; Malavasi, L.M.; Frostell, C.; Högman, M. Pulsed delivery of inhaled nitric oxide counteracts hypoxaemia during 2.5 hours of inhalation anaesthesia in dorsally recumbent horses. Vet. Anaesth. Analg. 2012, 39, 480–487. [Google Scholar] [CrossRef]
- Koterba, A.M.; Kosch, P.C.; Beech, J.; Whitlock, T. Breathing strategy of the adult horse (Equus caballus) at rest. J. Appl. Physiol. 1988, 64, 337–346. [Google Scholar] [CrossRef]
- Sarkar, M.; Niranjan, N.; Banyal, P. Mechanisms of hypoxemia. Lung India 2017, 34, 47. [Google Scholar] [CrossRef]
- Saraswat, V. Effects of anaesthesia techniques and drugs on pulmonary function. Indian J. Anaesth. 2015, 59, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Brosnan, R.J.; Steffey, E.P.; Escobar, A. Effects of hypercapnic hyperpnea on recovery from isoflurane or sevoflurane anesthesia in horses. Vet. Anaesth. Analg. 2012, 39, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Nyman, G.; Funkquist, B.; Kvart, C.; Frostell, C.; Tokics, L.; Strandberg, Å.; Lundquist, H.; Lundh, B.; Brismar, B.; Hedenstierna, G. Atelectasis causes gas exchange impairment in the anaesthetised horse. Equine Vet. J. 1990, 22, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Mosing, M.; Senior, J.M. Maintenance of equine anaesthesia over the last 50 years: Controlled inhalation of volatile anaesthetics and pulmonary ventilation. Equine Vet. J. 2018, 50, 282–291. [Google Scholar] [CrossRef] [Green Version]
- Joyce, C.J.; Baker, A.B. What is the Role of Absorption Atelectasis in the Genesis of Perioperative Pulmonary Collapse? Anaesth. Intensive Care 1995, 23, 691–696. [Google Scholar] [CrossRef] [Green Version]
- Guedes, A. Blood gases. In Interpretation of Equine Laboratory Diagnostics; John Wiley & Sons: Hoboken, NJ, USA, 2018; pp. 57–65. [Google Scholar]
- Dobson, A.; Gleed, R.D.; Meyer, R.E.; Stewart, B.J. Changes in Blood Flow Distribution in Equine Lungs Induced by Anaesthesia. Q. J. Exp. Physiol. 1985, 70, 283–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trim, C.M.; Wan, P.Y. Hypoxaemia during anaesthesia in seven horses with colic. J. Assoc. Vet. Anaesth. 1990, 17, 45–49. [Google Scholar] [CrossRef]
- Mosing, M.; Böhm, S.H.; Rasis, A.; Hoosgood, G.; Auer, U.; Tusman, G.; Bettschart-Wolfensberger, R.; Schramel, J.P. Physiologic Factors Influencing the Arterial-To-End-Tidal CO2 Difference and the Alveolar Dead Space Fraction in Spontaneously Breathing Anesthetised Horses. Front. Vet. Sci. 2018, 5, 58. [Google Scholar] [CrossRef] [Green Version]
- Drábková, Z.; Schramel, J.P.; Kabeš, R. Determination of physiological dead space in anaesthetized horses: A method-comparison study. Vet. Anaesth. Analg. 2018, 45, 73–77. [Google Scholar] [CrossRef]
- Gallivan, G.; McDonell, W.; Forrest, J. Comparative ventilation and gas exchange in the horse and the cow. Res. Vet. Sci. 1989, 46, 331–336. [Google Scholar] [CrossRef]
- Robertson, H.T. Erratum: Dead Space: The Physiology of Wasted Ventilation. Eur. Respir J. 2015, 45, 1704–1716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edner, A.; Nyman, G.; Essén-Gustavsson, B. The effects of spontaneous and mechanical ventilation on central cardiovascular function and peripheral perfusion during isoflurane anaesthesia in horses. Vet. Anaesth. Analg. 2005, 32, 136–146. [Google Scholar] [CrossRef]
- Ambrósio, A.M.; Ida, K.K.; Souto, M.T.; Oshiro, A.H.; Fantoni, D.T. Effects of positive end-expiratory pressure titration on gas exchange, respiratory mechanics and hemodynamics in anesthetized horses. Vet. Anaesth. Analg. 2013, 40, 564–572. [Google Scholar] [CrossRef]
- Kurt Grimm, J.A.; Lamont, L.A.; Tranquilli, W.J.; Greene, S.A.; Robertson, S.A.; McDonell, W.N.; Kerr, C.L. Section 5 Respiratory System Veterinary Anesthesia and Analgesia: The Fifth Edition of Lumb and 27 Physiology, Pathophysiology, and Anesthetic Management of Patients with Respiratory Disease; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Abboud, F.M.; Heistad, D.D.; Mark, A.L.; Schmid, P.G. Reflex control of the peripheral circulation. Prog. Cardiovasc. Dis. 1976, 18, 371–403. [Google Scholar] [CrossRef]
- Auckburally, A.; Nyman, G. Review of hypoxaemia in anaesthetized horses: Predisposing factors, consequences and management. Vet. Anaesth. Analg. 2017, 44, 397–408. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, J.; Rasmussen, V.; von Jessen, F.; Ullstad, T.; Kehlet, H. Late Postoperative Episodic and Constant Hypoxaemia and Associated ECG Abnormalities. Br. J. Anaesth. 1990, 65, 684–691. [Google Scholar] [CrossRef] [Green Version]
- Cargill, R.; Kiely, D.G.; Lipworth, B.J. Adverse Effects of Hypoxaemia on Diastolic Filling in Humans. Clin. Sci. 1995, 89, 165–169. [Google Scholar] [CrossRef]
- Lindsay, W.A.; Robinson, G.M.; Brunson, D.B. Induction of Equine Postanaesthetic Myositis after Halotane-Induced Hypotension. Am. J. Vet. Res. 1989, 50, 404–410. [Google Scholar] [PubMed]
- Romer, L.M.; Haverkamp, H.C.; Lovering, A.; Pegelow, D.F.; Dempsey, J.A. Effect of exercise-induced arterial hypoxemia on quadriceps muscle fatigue in healthy humans. Am. J. Physiol. Integr. Comp. Physiol. 2006, 290, R365–R375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa-Farré, C.; Prades, M.; Ribera, T.; Valero, O.; Taurá, P. Does intraoperative low arterial partial pressure of oxygen increase the risk of surgical site infection following emergency exploratory laparotomy in horses? Vet. J. 2014, 200, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Obert, R.; Reif, G.; Kça, Z.A.; Rnst, P.; Eter, E.; Orn, H.; Ndrea, A.; Urz, K.; Aniel, D.; Essler, I.S. Supplemental Perioperative Oxygen to Reduce the Incidence of Surgical-Wound Infection Abstract Background Destruction by Oxidation, or Oxidative. N. Engl. J. Med. 2000, 342, 161–167. [Google Scholar]
- Moore, J.N.; A White, N.; Berg, J.N.; Trim, C.M.; Garner, H.E. Endotoxemia following experimental intestinal strangulation obstruction in ponies. Can. J. Comp. Med. Rev. Can. Med. Comp. 1981, 45, 330–332. [Google Scholar]
- Nelson, D.P.; Samsel, R.W.; Wood, L.D.; Schumacker, P.T. Pathological supply dependence of systemic and intestinal O2 uptake during endotoxemia. J. Appl. Physiol. 1988, 64, 2410–2419. [Google Scholar] [CrossRef]
- Trim, C.M. Monitoring during anaesthesia: Techniques and interpretation. Equine Veter Educ. 2010, 15, 30–40. [Google Scholar] [CrossRef]
- Laurenza, C.; Ansart, L.; Portier, K. Risk Factors of Anesthesia-Related Mortality and Morbidity in One Equine Hospital: A Retrospective Study on 1,161 Cases Undergoing Elective or Emergency Surgeries. Front. Veter Sci. 2020, 6, 6. [Google Scholar] [CrossRef] [PubMed]
- Holcombe, S.J. Neuromuscular Regulation of the Larynx and Nasopharynx in the Horse. AAEP Proc. 1998, 44, 26–29. [Google Scholar]
- Dugdale, A.H.; Taylor, P.M. Equine anaesthesia-associated mortality: Where are we now? Vet. Anaesth. Analg. 2016, 43, 242–255. [Google Scholar] [CrossRef] [Green Version]
- Lumb, A.B.; Slinger, P. Hypoxic Pulmonary Vasoconstriction: Physiology and Anesthetic Implications. Anesthesiology 2015, 122, 932–946. [Google Scholar] [CrossRef]
- Nagendran, J.; Stewart, K.; Hoskinson, M.; Archer, S.L. An anesthesiologist’s guide to hypoxic pulmonary vasoconstriction: Implications for managing single-lung anesthesia and atelectasis. Curr. Opin. Anaesthesiol. 2006, 19, 34–43. [Google Scholar] [CrossRef]
- Khanna, A.K.; McDonell, W.N.; Dyson, D.H.; Taylor, P.M. Cardiopulmonary effects of hypercapnia during controlled intermittent positive pressure ventilation in the horse. Can. J. Vet. Res. Rev. Can. Rech. Vet. 1995, 59, 213–221. [Google Scholar]
- Crystal, G.J. Carbon Dioxide and the Heart: Physiology and Clinical Implications. Anesth. Analg. 2015, 121, 610–623. [Google Scholar] [CrossRef] [PubMed]
- Reiners, J.K.; Rossdeutscher, W.; Hopster, K.; Kästner, S. Development and clinical evaluation of a new sensor design for buccal pulse oximetry in horses. Equine Vet. J. 2017, 50, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Magdesian, K. Monitoring the critically ill equine patient. Vet. Clin. N. Am. Equine Pract. 2004, 20, 11–39. [Google Scholar] [CrossRef] [PubMed]
- Hubbell, J.A.E. A Review of the American College of Veterinary Anesthesiologists Guidelines for Anesthesia of Horses. AAEP Proc. 2008, 54, 48–53. [Google Scholar]
- Variane, G.F.T.; Chock, V.Y.; Netto, A.; Pietrobom, R.F.R.; Van Meurs, K.P. Simultaneous Near-Infrared Spectroscopy (NIRS) and Amplitude-Integrated Electroencephalography (aEEG): Dual Use of Brain Monitoring Techniques Improves Our Understanding of Physiology. Front. Pediatr. 2020, 7, 560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zoff, A.H.A.; Dugdale, A.; Scarabelli, S.; Rioja, E. Evaluation of pulse co-oximetry to determine haemoglobin saturation with oxygen and haemoglobin concentration in anaesthetized horses: A retrospective study. Vet. Anaesth. Analg. 2019, 46, 452–457. [Google Scholar] [CrossRef]
- Drewnowska, O.; Lisowska, B.; Turek, B. Equine general anesthesia monitoring–review of the methods and current knowledge. Med. Weter. 2018, 74, 67–77. [Google Scholar] [CrossRef] [Green Version]
- Barker, S.J.; Tremper, K.K. Pulse Oximetry: Applications and Limitations. Int. Anesthesiol. Clin. 1987, 25, 155–175. [Google Scholar] [CrossRef]
- Barton, L.J.; Devey, J.J.; Gorski, S.; Mainiero, L.; DeBehnke, D. Evaluation of Transmittance and Reflectance Pulse Oximetry in a Canine Model of Hypotension and Desaturation. J. Vet. Emerg. Crit. Care 1996, 6, 21–28. [Google Scholar] [CrossRef]
- Auckburally, A. Pulse oximetry and oxygenation assessment in small animal practice. Practice 2016, 38, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Odette, O.; Cooley, K.G.; Johnson, R.A. Veterinary Anesthetic and Monitoring Equipment; Wiley & Sons: Hoboken, NJ, USA, 2018; pp. 223–233. [Google Scholar]
- Shah, N.; Ragaswamy, H.B.; Govindugari, K.; Estanol, L. Performance of three new-generation pulse oximeters during motion and low perfusion in volunteers. J. Clin. Anesthesia 2012, 24, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Tusman, G.; Bohm, S.H.; Suarez-Sipmann, F. Advanced Uses of Pulse Oximetry for Monitoring Mechanically Ventilated Patients. Anesthesia Analg. 2017, 124, 62–71. [Google Scholar] [CrossRef] [PubMed]
- McConnell, E.J.; Rioja, E.; Bester, L.; Sanz, M.G.; Fosgate, G.T.; Saulez, M.N. Use of near-infrared spectroscopy to identify trends in regional cerebral oxygen saturation in horses. Equine Vet. J. 2012, 45, 470–475. [Google Scholar] [CrossRef] [PubMed]
- Gingold, B.M.; Killos, M.B.; Griffith, E.; Posner, L. Measurement of peripheral muscle oxygen saturation in conscious healthy horses using a near-infrared spectroscopy device. Vet. Anaesth. Analg. 2019, 46, 789–795. [Google Scholar] [CrossRef]
- Gay, A.N.; Lazar, D.A.; Stoll, B.; Naik-Mathuria, B.; Mushin, O.P.; Rodriguez, M.A.; Burrin, D.; Olutoye, O.O. Near-infrared spectroscopy measurement of abdominal tissue oxygenation is a useful indicator of intestinal blood flow and necrotizing enterocolitis in premature piglets. J. Pediatr. Surg. 2011, 46, 1034–1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murkin, J.M.; Arango, M. Near-infrared spectroscopy as an index of brain and tissue oxygenation. Br. J. Anaesth. 2009, 103, i3–i13. [Google Scholar] [CrossRef] [Green Version]
- Casati, A.; Spreafico, E.; Putzu, M.; Fanelli, G. New technology for noninvasive brain monitoring: Continuous cerebral oximetry. Minerva Anestesiol. 2006, 72. [Google Scholar]
- Greisen, G.; Leung, T.; Wolf, M. Has the time come to use near-infrared spectroscopy as a routine clinical tool in preterm infants undergoing intensive care? Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 4440–4451. [Google Scholar] [CrossRef] [Green Version]
- Cope, M.; Delpy, D.T.; Reynolds, E.O.R.; Wray, S.; Wyatt, J.; Van Der Zee, P. Methods of Quantitating Cerebral Near Infrared Spectroscopy Data. Adv. Exp. Med. Biol. 1988, 222, 183–189. [Google Scholar] [CrossRef]
- O’Leary, H.; Gregas, M.C.; Limperopoulos, C.; Zaretskaya, I.; Bassan, H.; Soul, J.; Di Salvo, D.N.; Du Plessis, A.J. Elevated Cerebral Pressure Passivity Is Associated with Prematurity-Related Intracranial Hemorrhage. Pediatrics 2009, 124, 302–309. [Google Scholar] [CrossRef] [Green Version]
- Armstead, W.M. Cerebral Blood Flow Autoregulation and Dysautoregulation. Anesthesiol. Clin. 2016, 34, 465–477. [Google Scholar] [CrossRef] [Green Version]
- Jeawon, S.S.; Katz, L.M.; Galvin, N.P.; Fogarty, U.M.; Duggan, V.E. Determination of reference intervals for umbilical cord arterial and venous blood gas analysis of healthy Thoroughbred foals. Theriogenology 2018, 118, 1–6. [Google Scholar] [CrossRef]
- Krueger, C.R.; Hackett, E.S.; Hess, A.M.; Mama, K.R. Evaluation of the Element point-of-care blood gas analyzer for use in horses. J. Veter Emerg. Crit. Care 2020, 30, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Castro, T.F.; González, F. Blood Gas Analysis in Mangalarga Marchador Horses with Colic Análisis de Gases Sanguíneos En Caballos Mangalarga Marchador Con Cólico. Rev. MVZ Córdoba 2015, 20, 4447–4454. [Google Scholar] [CrossRef] [Green Version]
- Aguilera-Tejero, E.; Estepa, J.C.; López, I.; Mayer-Valor, R.; Rodriguez, M. Arterial blood gases and acid-base balance in healthy young and aged horses. Equine Vet. J. 1998, 30, 352–354. [Google Scholar] [CrossRef]
- Wong, D.M.; Hepworth-Warren, K.; Sponseller, B.T.; Howard, J.M.; Wang, C. Measured and calculated variables of global oxygenation in healthy neonatal foals. Am. J. Vet. Res. 2017, 78, 230–238. [Google Scholar] [CrossRef] [Green Version]
- Hackett, E.S.; Traub-Dargatz, J.L., Jr.; Tarr, S.F.; Dargatz, D.A. Arterial blood gas parameters of normal foals born at 1500 metres elevation. Equine Vet. J. 2009, 42, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, D.R. Blood Gas and Acid-Base Changes in the Neonatal Foal. Vet. Clin. N. Am. Equine Pract. 1987, 3, 617–629. [Google Scholar] [CrossRef]
- Picandet, V.; Jeanneret, S.; Lavoie, J.-P. Effects of Syringe Type and Storage Temperature on Results of Blood Gas Analysis in Arterial Blood of Horses. J. Vet. Intern. Med. 2007, 21, 476–481. [Google Scholar] [CrossRef] [PubMed]
- Eastwood, G.M.; Suzuki, S.; Lluch, C.; Schneider, A.G.; Bellomo, R.; Candal, C.L. A pilot assessment of alpha-stat vs pH-stat arterial blood gas analysis after cardiac arrest. J. Crit. Care 2015, 30, 138–144. [Google Scholar] [CrossRef]
- Moens, Y. Mechanical Ventilation and Respiratory Mechanics During Equine Anesthesia. Veter Clin. N. Am. Equine Pract. 2013, 29, 51–67. [Google Scholar] [CrossRef]
- Moens, Y.P.S. Clinical application of continuous spirometry with a pitot-based flow meter during equine anaesthesia. Equine Vet. Educ. 2010, 22, 354–360. [Google Scholar] [CrossRef]
- Herholz, C. Clinical application of continuous spirometry during equine anaesthesia and in spontaneous breathing, awake horses. Equine Vet. Educ. 2010, 22, 361–363. [Google Scholar] [CrossRef]
- Schramel, J.P.; Wimmer, K.; Ambrisko, T.D.; Moens, Y.P. A novel flow partition device for spirometry during large animal anaesthesia. Vet. Anaesth. Analg. 2014, 41, 191–195. [Google Scholar] [CrossRef]
- Moens, Y.P.S.; Gootjes, P.; Ionita, J.; Heinonen, E.; Schatzmann, U. In vitro validation of a Pitot-based flow meter for the measurement of respiratory volume and flow in large animal anaesthesia. Vet. Anaesth. Analg. 2009, 36, 209–219. [Google Scholar] [CrossRef]
- Duke-Novakovski, T. Basics of monitoring equipment. Can. Vet. J. La Rev. Vet. Can. 2017, 58, 1200–1208. [Google Scholar]
- Thawley, V.; Waddell, L.S. Pulse Oximetry and Capnometry. Top. Companion Anim. Med. 2013, 28, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Bednarski, R.M.; Muir, W. Capnography in veterinary medicine. In Capnography; Cambridge University Press (CUP): Cambridge, UK, 2011; pp. 272–280. [Google Scholar]
- Hardman, J.; Curran, J.; Mahajan, R.P. End-tidal carbon dioxide measurement and breathing system filters. Anaesthesia 1997, 52, 646–648. [Google Scholar] [CrossRef]
- Hubbell, J.A.E. Review of Support of Ventilation in the Anesthetized Horse. AAEP Proc. 2010, 56, 33–37. [Google Scholar]
- Rainger, J.; Dart, C.; Perkins, N. Factors affecting the relationship between arterial and end-tidal carbon dioxide pressures in the anaesthetised horse. Aust. Vet. J. 2010, 88, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.E.; Jaffe, M.B. Capnographic waveforms in the mechanically ventilated patient. Respir. Care 2005, 50, 100. [Google Scholar] [PubMed]
- Siobal, M.S. Monitoring Exhaled Carbon Dioxide. Respir. Care 2016, 61, 1397–1416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Function of the System | Measurement Method | Parameters Measured | Normal Values | ||
Respiratory | Ventilation | Clinical exam | Respiratory rate (breaths/minute) | 6–20 | |
Spirometry | Tidal volume (mL/kg) | 10 | |||
Resistance (cm H2O/L/s) | <1.2 | ||||
Compliance (L/cm H2O) | 2.4 | ||||
Blood gas | Arterial blood pH PaCO2 (mm Hg) | 7.30–7.45 40–60 | |||
Capnography | EtCO2 (mm Hg) | 30–50 | |||
Respiratory and cardiovascular | Oxygenation | Pulse oximetry | SpO2 (%) | 93–100 | |
Blood gas | PaO2 (mm Hg) | 100–500 (depending on FiO2) | |||
NIRS | O3 (%) | 55–85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stefanik, E.; Drewnowska, O.; Lisowska, B.; Turek, B. Causes, Effects and Methods of Monitoring Gas Exchange Disturbances during Equine General Anaesthesia. Animals 2021, 11, 2049. https://doi.org/10.3390/ani11072049
Stefanik E, Drewnowska O, Lisowska B, Turek B. Causes, Effects and Methods of Monitoring Gas Exchange Disturbances during Equine General Anaesthesia. Animals. 2021; 11(7):2049. https://doi.org/10.3390/ani11072049
Chicago/Turabian StyleStefanik, Elżbieta, Olga Drewnowska, Barbara Lisowska, and Bernard Turek. 2021. "Causes, Effects and Methods of Monitoring Gas Exchange Disturbances during Equine General Anaesthesia" Animals 11, no. 7: 2049. https://doi.org/10.3390/ani11072049
APA StyleStefanik, E., Drewnowska, O., Lisowska, B., & Turek, B. (2021). Causes, Effects and Methods of Monitoring Gas Exchange Disturbances during Equine General Anaesthesia. Animals, 11(7), 2049. https://doi.org/10.3390/ani11072049